Package ‘places’

October 14, 2022

Type Package
Title Clusters GPS Data into Places
Version 0.1.1
Description Clusters GPS coordinates into places (i.e., meaningful stops). Additionally, categorizes places into types (e.g., home, cafe, gym). Places are identified as home using a rules-based algorithm defining home as the stop occurring most frequently during the night. Other places (e.g., cafe, gym) are identified using the Google Maps API.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports dplyr, tidyr, sp, rgdal, geosphere, data.table, rlang, googleway, stringr, stats, hms
Suggests R.rsp
VignetteBuilder R.rsp
Depends R (>= 2.10)
Language en-US
NeedsCompilation no
Author Katherine Roehrick [aut, cre]
Maintainer Katherine Roehrick <kr.gitcode@gmail.com>
Repository CRAN
Date/Publication 2021-04-08 07:50:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_clusters</td>
<td>2</td>
</tr>
<tr>
<td>get_home</td>
<td>3</td>
</tr>
<tr>
<td>get_places</td>
<td>5</td>
</tr>
<tr>
<td>places_gps</td>
<td>6</td>
</tr>
<tr>
<td>Index</td>
<td>7</td>
</tr>
</tbody>
</table>
Description

Use `get_clusters()` to cluster a dataframe of GPS coordinates into places.

Usage

```r
get_clusters(
  df,
  max.accu = 165,
  max.speed = 2.6,
  min.time = 3,
  max.time = 15,
  max.distance = 150,
  var.segment = NULL
)
```

Arguments

- **df**: A dataframe of GPS coordinates as described below.
- **max.accu**: An integer in meters. This number means there’s a 68% probability that the true location is within this radius. The default is 165 m. Any GPS rows with an accuracy higher than this will be dropped.
- **max.speed**: An integer in meters/sec. It is the threshold value that distinguishes a row as Static or Moving. The default is 2.6 meters/sec.
- **min.time**: An integer in minutes. It is the minimum amount of time between two points for the pair to be considered a stationary cluster. The defaults is 3 minutes.
- **max.time**: An integer in minutes. It is the maximum amount of time between two points for the pair to be considered a stationary cluster. The defaults is 15 minutes.
- **max.distance**: An integer in meters. It is the maximum distance in meters between two points for the pair to be labelled a cluster. The defaults is 150 m.
- **var.segment**: If this variable is NOT set, clusters will be created based on the participant’s entire dataset. If this variable is set, clusters will be segmented on the variable. A list can be provided.

Value

A list containing two named objects. **PLACES** is a dataframe of named clusters and latitude and longitude coordinates for each named cluster that was computed as a weighted average of the original GPS datapoints found within the cluster. The **PLACES** dataframe identifies moving clusters as 999999 **CLUSTERS** is a list of dataframes for each participant that contain the named clusters and coordinates for each original GPS datapoint. Unlike the **PLACES** dataframe, the **CLUSTERS** list labels "moving" clusters as NA.
Dataframe Requirements

The dataframe needs to have the following named columns:

- user_id = participant id
- lat = latitude coordinates
- lon = longitude coordinates
- start_time = time of GPS coordinates as POSIXct

The dataframe may - but does need to - have the following named columns:

- tz Olson_id = local timezone (only needed if running "get_home")
- accu = GPS accuracy. This number means there’s a 68% probability that the true location is within this radius. If this is not available, an accu column will be created and set to 0 so all rows are kept.
- speed = Speed in meters/sec at which the phone sensing data indicates an individual was moving. If this is not available, speed will be calculated as distance / time between two coordinates.

See Also

generate home to predict which cluster is an individual’s home
get_places to label each cluster’s place type as identified by Google Places API

Examples

```r
## Prepare the dataset "places_gps" and run get_clusters()
## Not run:
places_gps$time_local <- as.POSIXct(strptime(places_gps$time_local, "%m/%d/%y %H:%M"), tz="UTC")
colnames(places_gps)[c(2,4)] <- c("start_time", "lon")
clusters <- get_clusters(places_gps)
## End(Not run)
```

get_home

Predict which cluster is an individual’s home.

Description

Predict which cluster is an individual’s home.
Usage

get_home(
 df1,
 df2,
 home.start = "00:00:00",
 home.end = "06:00:00",
 filt = TRUE,
 max.distance = 150
)

Arguments

df1 A dataframe of GPS coordinates as described below.
df2 A dataframe with named clusters (most likely the dataframe that is returned after running `reduce_multi` OR the places dataframe that is returned after running `get_clusters`).
home.start A character vector HH:MM:SS which represents the start time that most individuals will be asleep by.
home.end A character vector HH:MM:SS which represent the start time that most individual may start to wake up by.
filt A logical T or F if the GPS data should be filtered between home.start and home.end. The default is T.
max.distance An integer in meters. It is the maximum distance in meters a cluster can be from the home location to be labelled as "home". The defaults is 150 m.

Value

Returns a list of dataframes. COUNT is a dataframe that count how many times an individual was at a clusters HOME is a dataframe with clusters labelled as "Home", "Other", "In Transit"

Dataframe Requirements

The dataframe needs to have the following named columns:

- user_id = participant id
- lat = latitude coordinates
- lon = longitude coordinates
- start_time = GPS coordinates as POSIXct. Assumes POSIXct variable has been created using UTC timezone.
- tz_olson_id = local timezone (e.g., EST, America/New_York) as character vector.

See Also

- `get_clusters` to cluster GPS coordinates into places.
- `get_places` to label each cluster's place type as identified by Google Places API
Examples

```r
## Assume you have run get_clusters() on the dataset "places_gps"
## Not run:

home <- get_home(places_gps, clusters[[1]], home.start = "21:30:00", home.end = "09:30:00")
## End(Not run)
```

declare get_places

get_places

Label each cluster’s place type using Google Places API

Description

Use get_places() to return the closest place type identified by Google Places API.

Usage

```r
get_places(df, key = NULL, radius = 50)
```

Arguments

- `df` A dataframe of GPS coordinates as described below
- `key` A character vector with a Google API key. The default is NULL and must be set by the user.
- `radius` The maximum radius the Google API should search within for nearby locations. The default is 50m.

Value

A dataframe with clusters labelled with specific place types (defined by Google) and general categories (defined by package creator)

Dataframe Requirements

The dataframe needs to have the following named columns:

- lat.centroid.final = latitude coordinates
- lon.centroid.final = longitude coordinates

See Also

- get_clusters to cluster GPS coordinates into places.
- get_home to predict which cluster is an individual’s home
Examples

```r
## Assume you have run get_clusters() and get_home() on the dataset "places_gps"
## Not run:

## Please add your API key from Google - please be aware that this service may cost money.
key <- SET_KEY
labelled <- get_places(home[[2]], key)
## End(Not run)
```

places_gps

GPS coordinates.

Description

A dataset containing the GPS coordinates and other attributes for 1 hypothetical person.

Usage

```r
places_gps
```

Format

A data frame with 309 rows and 7 variables:

- `user_id` unique identifier for each participant
- `time_local` datetime of GPS coordinates
- `lat` latitude
- `lng` longitude
- `ema` survey report id
- `Response.Time` datetime of survey report
- `tz_olson_id` timezone label ...
Index

* datasets
 places_gps, 6

get_clusters, 2, 4, 5
get_home, 3, 3, 5
get_places, 3, 4, 5
places_gps, 6