Example Data

The pleio package contains a pre-made simulated dataset with multiple quantitative traits simulated from a multivariate normal distribution with common correlation structure, correlation of 0.5, and genotypes simulated based on minor allele frequency of 0.2, and assumes that traits 2 and 3 have non-zero coefficients, while all other traits are not associated with dose of minor allele.

Here, we load the simulated dataset and show matrix y for phenotypes and the distribution of the minor dosage in the single genotype, geno.

```r
## load package and dataset
require(pleio)
data(pleio.qdemo)
## preview simulated data
head(y)
```

```r
## [1,] -0.6795023 1.07928655 -0.3447868 0.7757427 0.2441987 0.2849724
## [2,] -0.5310806 0.06419289 -0.8963973 0.2715258 -0.4579625 -1.2279082
## [3,] 1.0244553 1.18181268 0.1977245 0.3652163 0.3497826 1.0145627
## [4,] -0.3054566 -0.49250649 1.0348276 -0.1683192 1.8157372 0.4571641
## [5,] -0.4246874 -1.57093941 -0.3505441 0.7817763 -2.4317261 -1.0474812
## [6,] 2.0213843 1.45198074 0.2430903 2.2323818 1.2128110 2.0509974
```

```r
table(geno)
## geno
##   0  1  2
## 312 170 18
```

Sequential Pleiotropy Tests

The `pleio.q.sequential` function is a high-level way to perform sequential tests of the number of traits (and which traits) are associated with a genotype. The algorithm starts with testing the usual multivariate null hypothesis that all betas are zero. If this test rejects, because the p-value is less than a user-specified threshold, then allow one beta to be non-zero in order to test whether the remaining betas = 0. If the test allowing for one non-zero beta rejects, then allow two non-zero betas (testing all combinations of two non-zero betas). Continue this sequential testing until the p-value for a test is greater than the specified threshold. When the sequential testing stops, one can conclude that the final model contains the non-zero betas, while all other betas are inferred to be zero. For m traits, the sequential testing stops either when the p-value is less than the threshold, or when (m-1) traits are tested. If the p-value remains less than `pval.threshold` when testing (m-1) traits, this implies that all m traits are associated with the genotype.

Below we run two functions, `pleio.q.fit`, which performs pre-calculations on the models to be tested, and `pleio.q.sequential`, which performs the sequential pleiotropy tests on the pre-computed object from `pleio.q.fit`.
The final result lists the indices of the non-zero betas (the indices of the traits associated with a genotype), and the p-value that tests the fit of the final model. A p-value greater than the threshold is expected for the final model, showing that the final model fits the data well. For this example, the sequential approach stopped at 2 traits because the p-value is greater than the \textit{pval.threshold} argument given of 0.05.

\begin{verbatim}
fit <- pleio.q.fit(y, geno)

 test.seq <- pleio.q.sequential(fit, pval.threshold=.05)

 test.seq

 ## $pval
 ## [1] 0.2744734
 ##
 ## $index.beta
 ## [1] 2 3
\end{verbatim}

\textbf{Equivalent Steps to Sequential Fit}

The sequential steps above can be performed with more user control using \textit{pleio.q.test}, with \textit{count.nonzero.beta} as the number of non-zero betas for the null hypothesis. The result of \textit{pleio.q.test} contains the global test statistic, degrees of freedom (df), p-value for testing the model, the indices of the non-zero betas in the model, and a data.frame called “tests” that contains the tests performed for the null hypothesis models (i.e., the indices of the non-zero betas and the corresponding statistic, tk, for each model). For \(m \) traits, and \(k = \text{count.nonzero.beta} \), there are \(m \)-choose-\(k \) models in the set that are considered in the null hypothesis, and the minimum tk test statistic over the set provides the global test statistic reported.

\begin{verbatim}
 test0 <- pleio.q.test(fit, count.nonzero.beta = 0)

 test0

 ## $stat
 ## [1] 37.08576
 ##
 ## $pval
 ## [1] 1.694389e-06
 ##
 ## $df
 ## [1] 6
 ##
 ## $index.nonzero.beta
 ## [1] 0
 ##
 ## $tests
 ## index.1 tk
 ## 1 0 37.08576

 test1 <- pleio.q.test(fit, count.nonzero.beta = 1)

 test1

 ## $stat
 ## [1] 23.53879
 ##
 ## $pval
 ## [1] 0.000266202
 ##
 ## $df
 ## [1] 5
\end{verbatim}
$index.nonzero.beta
[1] 3

$tests

<table>
<thead>
<tr>
<th>index.1</th>
<th>tk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.44700</td>
</tr>
<tr>
<td>2</td>
<td>24.26597</td>
</tr>
<tr>
<td>3</td>
<td>23.53879</td>
</tr>
<tr>
<td>4</td>
<td>28.02627</td>
</tr>
<tr>
<td>5</td>
<td>37.01172</td>
</tr>
<tr>
<td>6</td>
<td>36.32446</td>
</tr>
</tbody>
</table>

test2 <- pleio.q.test(fit, count.nonzero.beta = 2)

test2

$stat
[1] 5.1274

$pval
[1] 0.2744734

$df
[1] 4

$index.nonzero.beta
[1] 2 3

$tests

<table>
<thead>
<tr>
<th>index.1</th>
<th>index.2</th>
<th>tk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2 21.43943</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3 21.50900</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4 20.53175</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5 32.01780</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6 31.14303</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3 5.12740</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4 17.74535</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5 24.14999</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>6 24.26479</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>4 17.37530</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>5 23.31140</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>6 23.24654</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>5 27.59217</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>6 25.76981</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>6 36.13547</td>
</tr>
</tbody>
</table>