plot3Drgl: Tools for plotting 3-D and 2-D data in openGL.

Karline Soetaert
NIOZ-Yerseke
The Netherlands

Abstract

R package plot3Drgl (Soetaert 2014b) contains functions for plotting multi-dimensional data in openGL, based on functions as in plot3D (Soetaert 2013).
A related package that depends on plot3Drgl is OceanView (Soetaert 2014a) which contains functions for visualizing oceanographic data.

Keywords: plot, persp, image, 2-D, 3-D, scatter plots, surface plots, slice plots, openGL, R.

1. Introduction

The R package plot3D (Soetaert 2013) provides functions for plotting 2- and 3-D data. Package plot3Drgl allows to plot these functions also in openGL, as made available by package rgl (Adler and Murdoch 2013).

One possibility is to first create a plot in base R-graphics, and then use function plotrgl to depict the same figure in rgl.

The main advantage of rgl over base graphics is that it allows to interactively rotate, zoom, and shift the graphics, and even select regions. However, in contrast to the base R plot functions in plot3D, it is not possible to plot a colorkey.

2. Function plotrgl

Typically I start by making a 3D plot using functions from package plot3D. Although not necessary, plotting can be postponed by setting argument plot = FALSE

 persp3D(z = volcano, plot = FALSE)

The figure is then plotting in openGL by function plotrgl, whose arguments are:

 args(plotrgl)

 function (lighting = FALSE, new = TRUE, add = FALSE, smooth = FALSE, ...

 NULL

plot3Drgl: Tools for plotting 3-D and 2-D data in openGL.

Here the ... are any parameter that would be passed to rgl functions par3d, open3d or material3d.
Argument smooth adds Gouraud shading, while lighting adds a light source.

plotrgl(smooth = TRUE, lighting = TRUE)

Now you can use the left mouse key to rotate the plot, the middle mouse key to move it, and the right key to zoom. You may also want to try function cutrgl, which allows to cut parts of the plot.

An alternative, shorter version to do the same is:

persp3Drgl(z = volcano, smooth = TRUE, lighting = TRUE)

Function croprgl can be used to adapt the ranges (not shown)

cutrgl() # requires selection using left mouse
croprgl(xlim = c(0.2, 0.8))
uncutrgl() # restores original plot

The same figure in base R-graphics looks less nice but has a colorkey:
3. scatter plot example

A linear regression of the mtcars data can be easily plotted both in base graphics and using rgl:

```r
attach(mtcars)
fit <- lm(mpg ~ wt + disp)
# predict values on regular xy grid
wt.pred <- seq(1.5, 5.5, length.out = 30)
disp.pred <- seq(71, 472, length.out = 30)
xy <- expand.grid(wt = wt.pred,
                 disp = disp.pred)
mpg.pred <- matrix(nrow = 30, ncol = 30,
                    data = predict(fit, newdata = data.frame(xy),
                                  interval = "prediction"))
# fitted points for droplines to surface
fitpoints <- predict(fit)
scatter3D(z = mpg, x = wt, y = disp, colvar = abs(mpg - fitpoints),
         pch = 18, cex = 2, theta = 20, phi = 20, ticktype = "detailed",
         plotdev(shade = 0.1)
```

Figure 1: The volcano, after a region has been cutted
plot3Drgl: Tools for plotting 3-D and 2-D data in openGL.

Figure 2: The volcano, using base R graphics

```
xlab = "wt", ylab = "disp", zlab = "mpg", main = "mtcars",
clab = "error", zlim = c(5, 35),
surf = list(x = wt.pred, y = disp.pred, z = mpg.pred,
    facets = NA, border = "black", fit = fitpoints)
```

```
detach(mtcars)
```

```
plotrgl(new = FALSE)
```
4. isosurfaces

Function isosurf3D from plot3D creates surfaces of equal scalar value from a volumetric data...
set. It makes use of a function from package **misc3d** (Feng and Tierney 2008).

If we depict several isosurfaces, it is best to use transparent colors by setting argument `alpha` smaller than 1. Plotting transparent surfaces is very slow in base graphics, but not so in openGL.

```r
x <- y <- z <- seq(-2, 2, length.out = 15)
xyz <- mesh(x, y, z)
F <- with(xyz, log(x^2 + y^2 + z^2 + 
10*(x^2 + y^2) * (y^2 + z^2) ^2))
# three levels, transparency added
isosurf3D(x, y, z, F, level = seq(0, 4, by = 2),
col = c("red", "blue", "yellow"),
clab = "F", alpha = 0.2, plot = FALSE)
plotdev()

plotrgl(new = FALSE, lighting = TRUE)
```
5. Issues

- Sometimes the axes are not drawn in rgl plots. This is only in the most recent version of the rgl package. If you want axes, just type

```
decorate3d()
```

- The package contains a function to visualise arrows in rgl as cones. But it has a flaw, as the arrows are distorted, if not perpendicular to the z-axis. Use with care

6. Finally

This vignette was made with Sweave (Leisch 2002).
plot3Drgl: Tools for plotting 3-D and 2-D data in openGL.

References

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: karline.soetaert@nioz.nl
URL: http://http://www.nioz.nl/