Package ‘plot3logit’

Type Package
Title Ternary Plots for Trinomial Regression Models
Version 2.2.0
Author Flavio Santi [cre, aut] (<https://orcid.org/0000-0002-2014-1981>), Maria Michela Dickson [aut] (<https://orcid.org/0000-0002-4307-0469>), Giuseppe Espa [aut] (<https://orcid.org/0000-0002-0331-3630>)
Maintainer Flavio Santi <flavio.santi@univr.it>
URL https://www.flaviosanti.it/software/plot3logit
BugReports https://github.com/f-santi/plot3logit
Description An implementation of the ternary plot for interpreting regression coefficients of trinomial regression models, as proposed in Santi, Dickson and Espa (2019) <doi:10.1080/00031305.2018.1442368>. Ternary plots can be drawn using either 'ggtern' package (based on 'ggplot2') or 'Ternary' package (based on standard graphics).
Depends R (>= 3.5), ggtern (>= 3.3.0), Ternary (>= 1.0.1)
Imports dplyr, ellipse, forcats, generics, ggplot2 (>= 3.3.0), graphics, grDevices, lifecycle, magrittr (>= 1.5), purrr, Rdpack, stats, tibble, tidyr, tidyselect, utils
Suggests knitr, MASS (>= 7.3-51), mlogit, nnet, rmarkdown, VGAM
License GPL (>=2)
LazyData true
NeedsCompilation no
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.0
Repository CRAN
Date 2020-07-18
VignetteBuilder knitr
RdMacros Rdpack, lifecycle
Description

An implementation of the ternary plot for interpreting regression coefficients of trinomial regression models, as proposed in Santi et al. (2019).

Details

The package permits the covariate effects of trinomial regression models to be represented graphically by means of a ternary plot. The aim of the plots is helping the interpretation of regression coefficients in terms of the effects that a change in regressors' values has on the probability distribution of the dependent variable. Such changes may involve either a single regressor, or a group of them (composite changes), and the package permits both cases to be represented in a user-friendly way. Methodological details are illustrated and discussed in Santi et al. (2019).

The package can read the results of both categorical and ordinal trinomial logit regression fitted by various functions (see the next section) and creates a `field3logit` object which may be represented by means of functions `gg3logit()` and `stat_field3logit()`.

The `plot3logit` package inherits graphical classes and methods from the package `ggtern` (Hamilton and Ferry 2018) which, in turn, is based on the `ggplot2` package (Wickham 2017).

Graphical representation based on standard graphics is made available through the package `Ternary` (Smith 2017) by function `TernaryField()` and in particular by the method `plot` of `field3logit` class.

Since version 2.0.0, `plot3logit` permits one to draw also the confidence regions associated to the covariates effects. See the vignette of the package (type `vignette('plot3logit-overview')`) and the help of function `stat_conf3logit()` for some examples.
Compatibility

Function `field3logit()` can read trinomial regression estimates from the output of the following functions:

- `multinom` of package `nnet` (logit regression);
- `polr` of package `MASS` (ordinal logit regression);
- `mlogit` of package `mlogit` (logit regression);
- `vgam` of package `VGAM` (logit regression).

Moreover, explicit matrix of regression coefficients can be passed to `field3logit()`. See examples and function `field3logit()` for further details.

References

See Also

`field3logit()`, `gg3logit()`, `TernaryField()`.

Examples

```r
## Not run:
data(cross_1year)
# Read from "nnet::multinom"
library(nnet)
mod0 <- multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale')
gg3logit(field0) + stat_field3logit()

# Read from "MASS::polr"
library(MASS)
mydata <- cross_1year
mydata$finalgrade <- factor(mydata$finalgrade,
  c('Low', 'Average', 'High'), ordered = TRUE)
mod1 <- polr(finalgrade ~ gender + irregularity, data = mydata)
field1 <- field3logit(mod1, 'genderFemale')
gg3logit(field1) + stat_field3logit()

# Read from "mlogit::mlogit"
library(mlogit)
mydata <- mlogit.data(cross_1year, choice = 'employment_sit', shape = 'wide')
mod2 <- mlogit(employment_sit ~ 0 | gender + finalgrade, data = mydata)
field2 <- field3logit(mod2, 'genderFemale')
gg3logit(field2) + stat_field3logit()
```
Read from matrix
M <- matrix(c(-2.05, 0.46, -2.46, 0.37), nrow = 2)
rownames(M) <- c('Intercept', 'genderFemale')
attr(M, 'labs') <- c('Employed', 'Unemployed', 'Trainee')
field3 <- field3logit(M, c(0, 1))
gg3logit(field3) + stat_field3logit()

End(Not run)

add_confregions

Computes the confidence regions of covariate effects

Description

Given the confidence level, it computes the confidence regions of the effects for each arrow of the `field3logit` or `multifield3logit` object given in input. If the `field3logit` or `multifield3logit` object already contains the confidence regions, they will be updated if the value of **conf** is different.

Usage

```r
add_confregions(x, conf = 0.95, npoints = 100)
```

Arguments

- **x**: an object of class `field3logit` or `multifield3logit`.
- **conf**: confidence level of the regions.
- **npoints**: number of points of the borders of the regions.

Value

Object of class `field3logit` or `multifield3logit` with updated confidence regions.

Examples

```r
data(cross_1year)
mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale')
field0
add_confregions(field0)
```
autoplot.field3logit

Create a gg3logit plot with field and confidence regions

Description

autoplot() creates a gg3logit plot and adds a field and its confidence regions. autoplot() is a wrapper for gg3logit() and stat_3logit().

Usage

```r
## S3 method for class 'field3logit'
autoplot(
  object,
  \ldots,
  mapping_field = aes(),
  mapping_conf = aes(),
  data = NULL,
  params_field = list(),
  params_conf = list(),
  show.legend = NA,
  conf = TRUE
)
```

Arguments

- `object` an object of class field3logit or multifield3logit.
- `\ldots` other arguments passed to specific methods
- `mapping_field` aesthetic mappings passed to argument mapping of stat_field3logit() and stat_conf3logit().
- `mapping_conf` aesthetic mappings passed to argument mapping of stat_field3logit() and stat_conf3logit().
- `data` a field3logit or a multifield3logit object.
- `params_field` graphical parameters passed to argument mapping of stat_field3logit() and stat_conf3logit().
- `params_conf` graphical parameters passed to argument mapping of stat_field3logit() and stat_conf3logit().
- `show.legend` logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
- `conf` if TRUE and if confidence regions are available, the layer of stat_conf3logit() is added, otherwise only a gg3logit() object with the layer of stat_field3logit() is returned.

See Also

Other gg functions: gg3logit(), stat_3logit(), stat_conf3logit(), stat_field3logit()
Examples

```r
## Not run:
data(cross_1year)
mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale', conf = 0.95)
autoplot(field0)
## End(Not run)
```

cross_1year

Master’s students’ employment condition

Description

data.frame with 3282 cross-sectional observations of 7 variables about employment condition of master’s students one year after graduation. Data are used in Santi et al. (2019) and refer to students graduated at the University of Trento (Italy) between 2009 and 2013.

Format

data.frame with 3282 observations of 7 variables:

- **employment_sit**: employment situation, a factor with three levels: *Employed, Unemployed, Trainee*.
- **gender**: gender, a factor with two levels: *Male, Female*.
- **finalgrade**: final grade degree, a factor with three levels: *Low, Average, High*.
- **duration**: duration of studies, a factor with three levels: *Short, Average, Long*.
- **social_class**: social class, a factor with five levels: *Working class, White-collar workers, Lower middle class, Upper middle class, Unclassified*.
- **irregularity**: irregularity indicator of student’s studies, a factor with three levels: *Low, Average, High*.
- **hsscore**: high school final score, a numeric between 60 and 100.

References

List of deprecated and defunct functions

Description

The following functions are deprecated and will no longer be updated. They may be removed in a future version of the package.

Deprecated functions

- `plot3logit()` (since version 2.0.0). Instead of `plot3logit()`, generate a `field3logit` object through `field3logit()` and then plot it through the method `plot()` (standard graphics based on package `Ternary`, through `autoplot()`, or through `gg3logit()` plus some `stat_*3logit` stats (graphics based on package `ggtern`).

`field3logit` Computation of the vector field

Description

`field3logit()` computes the vector field associated to a change in regressor values (which may involve more than one regressor) of a trinomial logit model either fitted by some multinomial regression function or explicitly specified.

The method `plot()` draws the ternary plot using standard graphics methods provided by package `Ternary`. See function `gg3logit()` for plotting through the package `ggtern` based on the grammar of graphics.

Methods `as.data.frame()`, `as_tibble()`, `fortify()` and `tidy()` permits the graphical information of a `field3logit` object to be exported in a standardised format (either a data.frame or a tibble).

Usage

```r
field3logit(
  model,
  delta,
  label = "<empty>",
  p0 = NULL,
  alpha = NULL,
  vcov = NULL,
  nstreams = 8,
  narrows = Inf,
  edge = 0.01,
  conf = NA,
  npoints = 100
)
```

```r
## S3 method for class 'field3logit'
print(x, ...)
```
S3 method for class 'field3logit'
plot(x, ..., add = FALSE, length = 0.05)

S3 method for class 'field3logit'
as_tibble(x, ..., wide = TRUE)

S3 method for class 'field3logit'
as.data.frame(x, ..., wide = TRUE)

S3 method for class 'field3logit'
fortify(model, data, ..., wide = TRUE)

S3 method for class 'field3logit'
tidy(x, ..., wide = TRUE)

S3 method for class 'field3logit'
coef(object, ...)

S3 method for class 'field3logit'
vcov(object, ...)

S3 method for class 'field3logit'
labels(object, ...)

S3 replacement method for class 'field3logit'
labels(x) <- value

Arguments

- **model**
 - either a fitted trinomial model or a matrix of regressor coefficients. See section Compatibility and examples of plot3logit-package.

- **delta**
 - the change in the values of covariates to be represented. This could be either a numeric vector, the name of a covariate (passed either as a character or an expression), or a mathematical expression involving one or more than one covariates (passed either as a character or an expression). If a list is passed to delta, multiple fields are computed according to parameters passed as components of a 2-level list. See details and examples.

- **label**
 - label to be used for identifying the field when multiple fields are plotted. See multifield3logit().

- **p0**
 - list of starting points (ternary coordinates) of the curves of the field. If not specified, field3logit automatically compute nstreams candidate points so that arrows are evenly distributed over the ternary plot area. See Examples.

- **alpha**
 - numeric vector of length two where constants $\alpha^{(1)}$ and $\alpha^{(2)}$ are stored (only for ordinal models), as defined in Equation (7) of Santi et al. (2019).

- **vcov**
 - (only if the model is read from a matrix, otherwise it will be ignored) variance-covariance matrix of parameter estimates. The elements of the variance-covariance matrix should be ordered according to the matrix of parameter estimates where the categories of the dependent variable are the slow index, whereas the covariates are the fast index.
number of stream lines of the field to be computed. In case of ordinal models, this parameter is ineffective, as only one curve can be drawn. The parameter is ineffective also in case that argument \(\rho_0 \) is set.

maximum number of arrows to be drawn per curve.

minimum distance between each arrow (or point) and the edge of the ternary plot.

confidence level of confidence regions to be computed for each arrow of the field.

number of points of the border to be computed for each confidence region.

object of class field3logit.

... other arguments passed to or from other methods.

logical argument which specifies whether the field should be added to an existing plot (add = TRUE) or a new ternary plot should be drawn (add = FALSE).

length of the edges of the arrow head (in inches).

it allows to choose whether \texttt{as.data.frame}, \texttt{as_tibble}, \texttt{fortify} and \texttt{tidy} should return a \texttt{data.frame} or a \texttt{tibble} in wide (default) or long form.

not used. Argument included only for interface compatibility with the generic \texttt{fortify}.

value to be assigned.

Details

Argument \texttt{delta} could be passed in one of the following formats:

- explicitly, as a numeric vector corresponding to the change \(\Delta x \in \mathbb{R}^k \) in regressors values \(x \in \mathbb{R}^k \);
- implicitly, as a character of the name of the covariate to be considered. In this case, vector \(\Delta x \in \mathbb{R}^k \) is computed for a unit change of the specified covariate;
- as a mathematical expression (passed as an \texttt{expression} or a \texttt{character} object) involving one or more than one covariates. This allows one to analyse the effects of composite covariate changes through an easy-to-write and easy-to-read code without having to cope with explicit numerical specification of vector \(\Delta x \in \mathbb{R}^k \).

See examples for comparing all three methods.

It is also possible to pass a list to argument \texttt{delta}. In such a case, the function \texttt{field3logit} is run once for every component of \texttt{delta}, and the set of generated \texttt{field3logit} objects is combined into a single object of class \texttt{multifield3logit}. The components of the list passed to \texttt{delta} must be named lists whose elements are used as arguments of each call of function \texttt{field3logit}, whereas the arguments specified in the parent call of \texttt{field3logit} are used as default values. It follows that arguments shared by all fields can be specified once in the parent call of \texttt{field3logit}, and only arguments which changes from field to field (such as \texttt{delta} and \texttt{label}) should be set in the lists making up the list passed to \texttt{delta}. See the last example in section Examples and the help of \texttt{multifield3logit()}.

Value

S3 object of class \texttt{field3logit} structured as a named list or an object of class \texttt{multifield3logit} if \texttt{delta} is a list.
References

See Also

`multifield3logit()`, `gg3logit()`, `autoplot()`.

Examples

data(cross_1year)

```r
# Not run:
# Fitting the model
mod0 <- nnet::multinom(employment_sit ~ finalgrade + irregularity + hsscore, cross_1year)
mod0

# Assessing the effect of "finalgradeHigh" (explicit notation)
field0 <- field3logit(mod0, c(0, 0, 1, 0, 0, 0))
gg3logit(field0) + stat_field3logit()

# Assessing the effect of "finalgradeHigh" (implicit notation)
field0 <- field3logit(mod0, 'finalgradeHigh')
gg3logit(field0) + stat_field3logit()

# Assessing the combined effect of "finalgradeHigh" and
# a decrease of "hsscore" by 10
field0 <- field3logit(mod0, 'finalgradeHigh - 10 * hsscore')
gg3logit(field0) + stat_field3logit()
```

```r
# Fitting the model
mod1 <- nnet::multinom(employment_sit ~ ., data = cross_1year)

# List passed to argument "delta" for generating "multifield3logit" objects
refpoint <- list(c(0.7, 0.15, 0.15))
depo <- list(
  list(delta = 'durationShort', label = 'Short duration'),
  list(delta = 'durationLong', label = 'Long duration'),
  list(delta = 'finalgradeHigh', label = 'High final grade'),
  list(delta = 'finalgradeLow', label = 'Low final grade')
)
mfields <- field3logit(mod1, delta = depo, p0 = refpoint, narrows = 1)
mfields
```
gg3logit

Description

`gg3logit` initialises a `ggplot` object through `ggtern`. If a fortified `field3logit` or a `multifield3logit` object is passed to argument `data`, the mandatory aesthetics of the ternary plot are automatically set.

Usage

```r
gg3logit(data = NULL, mapping = aes(), ...)
```

Arguments

- **data**: a `field3logit` object, a `multifield3logit` object, or a `data.frame` structured like a fortified `field3logit` or a `multifield3logit` object. If a `field3logit` or a `multifield3logit` is passed, none of the aesthetics mappings listed in Section "Aesthetic mappings" below has to be specified.

- **mapping**: list of aesthetic mappings to use for plot. If a `field3logit` or a `multifield3logit` is passed to `data`, none of the aesthetics mappings listed in section Aesthetic mappings below has to be specified (if specified, they will be overwritten).

- ... additional arguments passed through to `ggtern`.

Aesthetic mappings

The following aesthetics are required by at least one of the available stats. None of them should be specified if a `field3logit` or a `multifield3logit` is passed to the argument data of `gg3logit()`, `stat_field3logit()` or `stat_conf3logit()`:

- **x, y, z** are required by:
 - `stat_field3logit()` as ternary coordinates of the starting points of the arrows;
 - `stat_conf3logit()` ternary coordinates of the points on the border of confidence regions;
- **xend, yend, zend**: required by `stat_field3logit()` as ternary coordinates of the ending points of the arrows;
- **group**: identifier of groups of graphical objects (arrows and their confidence regions);
- **type**: type of graphical object (arrows or confidence regions).

The following variables of a fortified `field3logit` or a `multifield3logit` object may be useful for defining other standard aesthetics (such as fill, colour, ...):

- **label** identifies a field through a label, thus it is useful for distinguishing the fields in a `multifield3logit` object.
- **idarrow** identifies each group of graphical objects (arrows and their confidence regions) within every field. Unlike variable `group`, `idarrow` is not a global identifier of graphical objects.

See Also

Other gg functions: `autoplot.field3logit()`, `stat_3logit()`, `stat_conf3logit()`, `stat_field3logit()`
Examples

```r
## Not run:
data(cross_1year)
mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale')

gg3logit(field0) + stat_field3logit()
## End(Not run)
```

labels Set the labels of a field3logit or a multifield3logit object

Description

It enables the labels of an existing field3logit or a multifield3logit object to be set.

Usage

```r
labels(x) <- value
```

Arguments

- `x`: a field3logit or a multifield3logit object.
- `value`: a character with the new label (or labels in case of a multifield3logit object).

multifield3logit Multiple trilogit fields

Description

Methods of S3 class multifield3logit handle multiple fields3logit objects simultaneously and permit new multifield3logit objects to be easily created by means of the sum operator "+".

Usage

```r
multifield3logit(x, ...)
```

```r
## S3 method for class 'field3logit'
x + y
```

```r
## S3 method for class 'multifield3logit'
print(x, maxitems = 10, ...)
```

```r
## S3 method for class 'multifield3logit'
plot(x, y = NULL, add = FALSE, col = NA, legend = TRUE, ...)
```

```r
## S3 method for class 'multifield3logit'
```
multifield3logit

```r
as_tibble(x, ..., wide = TRUE)
## S3 method for class 'multifield3logit'
as.data.frame(x, ..., wide = TRUE)
## S3 method for class 'multifield3logit'
fortify(model, data, ..., wide = TRUE)
## S3 method for class 'multifield3logit'
tidy(x, ..., wide = TRUE)
## S3 method for class 'multifield3logit'
labels(object, ...)
## S3 replacement method for class 'multifield3logit'
labels(x) <- value
## S3 method for class 'multifield3logit'
x[i, drop = TRUE]
``` 

Arguments

- `x, y, model` object of class `field3logit` or `multifield3logit`.
- `...` other arguments passed to or from other methods.
- `maxitems` maximum number of items to be enumerated when an object of class `multifield3logit` is printed.
- `add` logical argument which specifies whether the field should be added to an existing plot (`add = TRUE`) or a new ternary plot should be drawn (`add = FALSE`).
- `col, legend` graphical parameters if Ternary package is used.
- `wide` it allows to choose whether `as.data.frame`, `as_tibble`, `fortify` and `tidy` should return a `data.frame` or a `tibble` in wide (default) or long form.
- `data` not used. Argument included only for interface compatibility with the generic `fortify`.
- `object` object of class `field3logit`.
- `value` value to be assigned.
- `i` index of the `field3logit` object to be selected.
- `drop` if `TRUE`, a `field3logit` object is returned if the subselected `multifield3logit` object has length one.

Value

S3 object of class `multifield3logit` structured as a named list.

See Also

`field3logit()`.
Examples

```r
## Not run:
data(cross_1year)

mod0 <- nnet::multinom(employment_sit ~ ., data = cross_1year)
mod0

field_Sdur <- field3logit(mod0, 'durationShort',
                          label = 'Short duration')
field_Hfgr <- field3logit(mod0, 'finalgradeHigh',
                          label = 'High final grade')

gg3logit(field_Sdur + field_Hfgr) +
  stat_field3logit()
  facet_wrap(~ label)

refpoint <- list(c(0.7, 0.15, 0.15))

field_Sdur <- field3logit(mod0, 'durationShort',
                          label = 'Short duration', p0 = refpoint, narrows = 1)
field_Ldur <- field3logit(mod0, 'durationLong',
                          label = 'Long duration', p0 = refpoint, narrows = 1)
field_Hfgr <- field3logit(mod0, 'finalgradeHigh',
                          label = 'High final grade', p0 = refpoint, narrows = 1)
field_Lfgr <- field3logit(mod0, 'finalgradeLow',
                          label = 'Low final grade', p0 = refpoint, narrows = 1)

mfields <- field_Sdur + field_Ldur + field_Lfgr + field_Hfgr
mfields

gg3logit(mfields) +
  stat_field3logit(aes(colour = label)) +
  theme_zoom_L(0.45)

## End(Not run)
```

Description

Deprecated

This function is deprecated and may be soon removed from the package.

`plot3logit()` method draws the ternary plot using standard graphics methods provided by package Ternary. Use the method `plot()` of `field3logit` objects instead.

Usage

```r
plot3logit(
  model,
  delta,
  label = "<empty>",
)```


```r
p0 = NULL,
alpha = NULL,
ncurves = 8,
narrows = Inf,
edge = 0.01,
```

Arguments

- **model**: either a fitted trinomial model or a matrix of regressor coefficients. See section Compatibility and examples of `plot3logit-package`.
- **delta**: the change in the values of covariates to be represented. This could be either a numeric vector, the name of a covariate (passed either as a character or an expression), or a mathematical expression involving one or more than one covariates (passed either as a character or an expression). If a list is passed to delta, multiple fields are computed according to parameters passed as components of a 2-level list. See details and examples.
- **label**: label to be used for identifying the field when multiple fields are plotted. See `multifield3logit()`.
- **p0**: list of starting points (ternary coordinates) of the curves of the field. If not specified, `field3logit` automatically compute `nstreams` candidate points so that arrows are evenly distributed over the ternary plot area. See Examples.
- **alpha**: numeric vector of length two where constants $\alpha^{(1)}$ and $\alpha^{(2)}$ are stored (only for ordinal models), as defined in Equation (7) of Santi et al. (2019).
- **ncurves**: number of curves of the field to be computed. In case of ordinal models, this parameter is ineffective, as only one curve can be drawn. The parameter is ineffective also in case that argument `p0` is set.
- **narrows**: maximum number of arrows to be drawn per curve.
- **edge**: minimum distance between each arrow (or point) and the edge of the ternary plot.
- **...**: other arguments passed to or from other methods.

Value

S3 object of class `field3logit` structured as a named list.

See Also

- `field3logit()`.

---

**stat_3logit**

Add a field and confidence regions to a `gg3logit` plot

Description

`stat_3logit()` adds a field and its confidence regions to a `gg3logit` plot. `stat_3logit()` is a wrapper for stats `stat_field3logit()` and `stat_conf3logit()` which are jointly applied.
Usage

\[
\text{stat}_3\text{logit}(
  \text{mapping\_field} = \text{aes}(),
  \text{mapping\_conf} = \text{aes}(),
  \text{data} = \text{NULL},
  \text{params\_field} = \text{list}(),
  \text{params\_conf} = \text{list}(),
  \text{show\_legend} = \text{NA},
  \text{inherit\_aes} = \text{TRUE},
  \text{conf} = \text{TRUE}
) 
\]

Arguments

- **mapping\_field, mapping\_conf**: aesthetic mappings passed to argument mapping of \text{stat\_field3logit()} and \text{stat\_conf3logit()}.
- **data**: a \text{field3logit} or a \text{multifield3logit} object.
- **params\_field, params\_conf**: graphical parameters passed to argument mapping of \text{stat\_field3logit()} and \text{stat\_conf3logit()}.
- **show\_legend**: logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
- **inherit\_aes**: If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. \text{borders()}.
- **conf**: if TRUE and if confidence regions are available, the layer of \text{stat\_conf3logit()} is added, otherwise only the layer of \text{stat\_field3logit()} is returned.

See Also

Other gg functions: \text{autoplot\_field3logit()}, \text{gg3logit()}, \text{stat\_conf3logit()}, \text{stat\_field3logit()}

Examples

```r
Not run:
data(cross_1year)
mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale', conf = 0.95)

gg3logit(field0) + stat_3logit()
gg3logit(field0) + stat_3logit(conf = TRUE)

End(Not run)
```
stat_conf3logit

Add the confidence regions of a field to a gg3logit plot

Description

\texttt{stat_conf3logit()} adds a field to a gg3logit plot.

Usage

\begin{verbatim}
stat_conf3logit(
mapping = aes(),
data = NULL,
geom = "polygon",
position = "identity",
show.legend = NA,
inherit.aes = TRUE,
...)
\end{verbatim}

Arguments

\begin{itemize}
  \item mapping \texttt{list of aesthetic mappings to be used for plot. Mandatory aesthetics should not be specified if field3logit or multifield3logit object is passed to \texttt{data}. See section "Aesthetic mappings" of \texttt{gg3logit()} for details.}
  \item data \texttt{a field3logit or a multifield3logit object.}
  \item geom \texttt{The geometric object to use display the data}
  \item position \texttt{Position adjustment, either as a string, or the result of a call to a position adjustment function.}
  \item show.legend \texttt{logical. Should this layer be included in the legends? \texttt{NA}, the default, includes if any aesthetics are mapped. \texttt{FALSE} never includes, and \texttt{TRUE} always includes. It can also be a named logical vector to finely select the aesthetics to display.}
  \item inherit.aes \texttt{If \texttt{FALSE}, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. \texttt{borders()}.}
  \item ... \texttt{Other arguments passed on to \texttt{layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like \texttt{colour = "red" or size = 3}. They may also be parameters to the paired geom/stat.}
\end{itemize}

See Also

Other gg functions: \texttt{autoplot.field3logit()}, \texttt{gg3logit()}, \texttt{stat_3logit()}, \texttt{stat_field3logit()}

Examples

\begin{verbatim}
## Not run:
data(cross_1year)
mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale', conf = 0.95)
\end{verbatim}
**stat_field3logit**

Add a field to a gg3logit plot

**Description**

`stat_field3logit()` adds a field to a `gg3logit` plot.

**Usage**

```r
stat_field3logit(
 mapping = aes(),
 data = NULL,
 geom = "segment",
 position = "identity",
 show.legend = NA,
 inherit.aes = TRUE,
 arrow. = arrow(length = unit(0.2, "cm")),
 ...)
```

**Arguments**

- **mapping**: list of aesthetic mappings to be used for plot. Mandatory aesthetics should not be specified if `field3loglit` or `multifield3logit` object is passed to `data`. See section "Aesthetic mappings" of `gg3logit()` for details.
- **data**: a `field3logit` or a `multifield3logit` object.
- **geom**: The geometric object to use display the data
- **position**: Position adjustment, either as a string, or the result of a call to a position adjustment function.
- **show.legend**: logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
- **inherit.aes**: If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.
- **arrow.**: specification for arrow heads, as created by function `arrow` of package `grid`.
- **...**: Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

**See Also**

Other gg functions: `autoplot.field3logit()`, `gg3logit()`, `stat_3logit()`, `stat_conf3logit()`
Examples

```r
Not run:
data(cross_1year)
mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale', conf = 0.95)
gg3logit(field0) + stat_field3logit()
gg3logit(field0) + stat_field3logit() + stat_conf3logit()
End(Not run)
```

TernaryField

**Draw a field on an existing ternary plot**

**Description**

TernaryField() adds the vector field returned by field3logit() to an existing ternary plot generated by Ternary::TernaryPlot().

**Usage**

```r
TernaryField(
 field,
 ...
 length = 0.05,
 conf = FALSE,
 npoints = 100,
 conf.args = list()
)
```

**Arguments**

- `field`: object of class field3logit as returned by field3logit().
- `...`: other arguments passed to or from other methods.
- `length`: length of the edges of the arrow head (in inches).
- `conf`: if FALSE confidence regions are not drawn, even if available; if TRUE confidence regions are drawn only if available; if a numeric value is passed, confidence regions at the specified confidence level are computed (if not already available) and drawn.
- `npoints`: number of points of the border to be computed for each confidence region.
- `conf.args`: graphical parameters of confidence regions to be passed to Ternary::TernaryPolygon().

**Value**

An object of class field3logit with confidence regions included, if computed within TernaryField().

**See Also**

field3logit().
Examples

```r
library(nnet)
data(cross_1year)

mod0 <- nnet::multinom(employment_sit ~ gender + finalgrade, data = cross_1year)
field0 <- field3logit(mod0, 'genderFemale')

TernaryPlot()
TernaryField(field0)
```

USvote2016

Self-reported votes from VOTER Survey in 2016

Description

Self-reported votes from 2016 VOTER Survey by Democracy Fund Voter Study Group (2017). Object USvote2016 includes only few variables based on the result of the survey, which are publicly available online. See file "data-raw/USvote2016_prepare.R" in the GitHub repository "f-santi/plot3logit" (https://github.com/f-santi/plot3logit), where it is documented how the dataset USvote2016 has been generated.

Format
tibble (data.frame) with 8000 observations of 7 variables:

- idcode: voter identifier (integer).
- vote: declared vote, a factor with three levels: "Clinton", "Trump", "Other".
- race: race, a factor with six levels: "White", "Black", "Hispanic", "Asian", "Mixed", "Other".
- educ: level of education, a factor with six levels: "No high school", "High school grad.", "Some college", "2-year college", "4-year college", "Post-grad".
- gender: gender, a factor with four levels: "Male", "Female", "Skipped", "Not Asked".
- famincome: income (in USD) of voter’s family, a factor with five levels: ":[0; 30,000)", ":[30,000; 60,000)", ":[60,000; 100,000)", ":[100,000; 150,000)", ":[150,000; Inf)".

References

Index

* data
  cross_1year, 6
  USvote2016, 20
* gg functions
  autoplot.field3logit, 5
  gg3logit, 10
  stat_3logit, 15
  stat_conf3logit, 17
  stat_field3logit, 18
  +.field3logit (multifield3logit), 12
  [.multifield3logit (multifield3logit), 12
  <-.multifield3logit (multifield3logit), 12
  add_confregions, 4
  arrow, 18
  as.data.frame(), 7
  as.data.frame.field3logit (field3logit), 7
  as.data.frame.multifield3logit (multifield3logit), 12
  as_tibble(), 7
  as_tibble.field3logit (field3logit), 7
  as_tibble.multifield3logit (multifield3logit), 12
  autoplot(), 5, 7, 10
  autoplot.field3logit, 5, 11, 16–18
  borders(), 16–18
  coef.field3logit (field3logit), 7
  cross_1year, 6
  deprecated-functions, 7
  field3logit, 7
  field3logit(), 3, 7, 13, 15, 19
  fortify(), 7
  fortify.field3logit (field3logit), 7
  fortify.multifield3logit (multifield3logit), 12
  gg3logit, 5, 10, 15–18
  gg3logit(), 2, 3, 5, 7, 10, 11, 17, 18
  ggplot, 11
  ggplot2, 2
  ggttern, 2, 7, 11
  grid, 18
  labels, 12
  labels.field3logit (field3logit), 7
  labels.multifield3logit (multifield3logit), 12
  labels<-.field3logit (field3logit), 7
  labels<-.multifield3logit (multifield3logit), 12
  layer(), 17, 18
  mlogit, 3
  multifield3logit, 12
  multifield3logit(), 8–10, 15
  multinom, 3
  plot, 2
  plot(), 7, 14
  plot.field3logit (field3logit), 7
  plot.multifield3logit (multifield3logit), 12
  plot3logit (plot3logit-deprecated), 14
  plot3logit(), 7, 14
  plot3logit-deprecated, 14
  plot3logit-package, 2
  polr, 3
  print.field3logit (field3logit), 7
  print.multifield3logit (multifield3logit), 12
  stat_3logit, 5, 11, 15, 17, 18
  stat_3logit(), 5, 15
  stat_conf3logit, 5, 11, 16, 17, 18
  stat_conf3logit(), 2, 5, 11, 15–17
  stat_field3logit, 5, 11, 16, 17, 18
  stat_field3logit(), 2, 5, 11, 15, 16, 18
  Ternary::TernaryPlot(), 19
  Ternary::TernaryPolygon(), 19
  TernaryField, 19
  TernaryField(), 2, 3, 19
tidy(), 7
tidy.field3logit(field3logit), 7
tidy.multipfield3logit(multipfield3logit), 12

USvote2016, 20

vcov.field3logit(field3logit), 7
vgam, 3