Package ‘plotROC’

June 23, 2018

Type Package

Title Generate Useful ROC Curve Charts for Print and Interactive Use

Version 2.2.1

Date 2018-06-01

Maintainer Michael C. Sachs <sachsmc@gmail.com>

Description Most ROC curve plots obscure the cutoff values and inhibit interpretation and comparison of multiple curves. This attempts to address those shortcomings by providing plotting and interactive tools. Functions are provided to generate an interactive ROC curve plot for web use, and print versions. A Shiny application implementing the functions is also included.

License MIT + file LICENSE

URL http://sachsmc.github.io/plotROC

BugReports http://github.com/sachsmc/plotROC/issues

Depends R (>= 3.0.0), ggplot2

Imports methods, grid, gridSVG, shiny, plyr, rlang

Suggests knitr, testthat, stringr, survivalROC, rmarkdown

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Michael C. Sachs [aut, cre],
Robert W. Corty [ctb]

Repository CRAN

Date/Publication 2018-06-23 07:52:56 UTC

R topics documented:

 calculate_multi_roc .. 2
 calculate_roc .. 3
calculate_multi_roc

Description

Deprecated, use `geom_roc` instead

Usage

```r
calculate_multi_roc(data, M_string, D_string)
```

Arguments

- `data`: data frame containing at least 1 marker and the common class labels, coded as 0 and 1
- `M_string`: vector of marker column names
- `D_string`: class label column name

Value

List of data frames containing cutoffs, and estimated true and false positive fractions
calculate_roc

Calculate the Empirical ROC curve

Description
Depreciated, use geom_roc instead

Usage
```
calculate_roc(M, D, ci = FALSE, alpha = 0.05)
```

Arguments

- `M`: continuous marker values or predictions of class labels
- `D`: class labels, must be coded as 0 and 1. If not numeric with 0/1, then plotROC assumes the first level in sort order is healthy status, with a warning.
- `ci`: Logical, if true, will calculate exact joint confidence regions for the TPF and FPF
- `alpha`: Confidence level, ignored if `ci = FALSE`

Details
Confidence intervals for TPF and FPF are calculated using the exact method of Clopper and Pearson (1934) each at the level $1 - \sqrt{1 - \alpha}$. Based on result 2.4 from Pepe (2003), the cross-product of these intervals yields $1 - \alpha$

Value
A dataframe containing cutoffs, estimated true and false positive fractions, and confidence intervals if `ci = TRUE`.

calc_auc

Calculate the Area under the ROC curve

Description
Given a ggplot object with a GeomRoc layer, computes the area under the ROC curve for each group

Usage
```
calc_auc(ggroc)
```

Arguments

- `ggroc`: A ggplot object that contains a GeomRoc layer
Examples

D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
 M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
 Z = c(rep("A", 50), rep("B", 50)))

ggroc <- ggplot(rocdata, aes(m = M, d = D)) + geom_roc()
calc_auc(ggroc)

ggroc2 <- ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc()
calc_auc(ggroc2)

direct_label

Add direct labels to a ROC plot

Description

Add direct labels to a ROC plot

Usage

direct_label(ggroc_p, labels = NULL, label.angle = 45, nudge_x = 0,
 nudge_y = 0, size = 6, ...)

Arguments

ggroc_p A ggplot object that contains a geom_roc layer
labels, vector of labels to add directly to the plot next to the curves. If multiple curves,
must be in the same order as the grouping factor. If NULL, attempts to determine
labels from the ggroc_p object
label.angle angle of adjustment for the direct labels
nudge_x, nudge_y Horizontal and vertical adjustment to nudge labels by. These can be scalars or
vectors the same length as the number of labels
size Size of labels
... Other arguments passed to annotate
export_interactive_roc

Generate svg code for an ROC curve object

Description

Takes a ggplot object that contains a GeomRoc layer and returns a string that contains html suitable for creating a standalone interactive ROC curve plot.

Usage

```r
export_interactive_roc(ggroc_p, add.cis = TRUE, hide.points = FALSE,
prefix = "a", width = 6, height = 6, omit.js = FALSE,
style = style_roc(theme = theme_grey()), ...)
```

Arguments

- `ggroc_p`: A ggplot object with a GeomRoc layer and optionally a GeomRocci layer as returned by `geom_roc` and/or `geom_rocci`. It can be modified with annotations, themes, etc.
- `add.cis`: Logical, if true, removes the current confidence interval layer (if present) and replaces it with a denser layer of confidence regions
- `hide.points`: Logical, if true, hides points layer so that points with cutoff values are only visible when hovering. Recommended for plots containing more than 3 curves.
- `prefix`: A string to assign to the objects within the svg. Enables unique identification by the javascript code
- `width, height`: Width and height in inches of plot
- `omit.js`: Logical. If true, omit inclusion of javascript source in output. Useful for documents with multiple interactive plots
- `style`: A call to the function `style_roc`
- `...`: Other arguments passed to `geom_rocci` when `add.cis` = `TRUE`

Details

If you intend to include more than one of these objects in a single page, use a different `prefix` string for each one. To use this function in knitr, use the chunk options `fig.keep='none'` and `results = 'asis'`, then `cat()` the resulting string to the output. See the vignette for examples. Older browsers (< IE7) are not supported.

Value

A character object containing the html necessary to plot the ROC curve in a web browser
GeomRoc

Empirical Receiver Operating Characteristic Curve

Description

Display the empirical ROC curve. Useful for characterizing the classification accuracy of continuous measurements for predicting binary states.

Usage

```r
geom_roc(mapping = NULL, data = NULL, stat = "roc", n.cuts = 10,
arrow = NULL, lineend = "butt", linejoin = "round", linemitre = 1,
linealpha = 1, pointalpha = 1, pointsize = 0.5, labels = TRUE,
labels.size = 3.88, labelround = 1, na.rm = TRUE, cutoffs.at = NULL,
cutoff.labels = NULL, position = "identity", show.legend = NA,
inherit.aes = TRUE, ...)
```

Arguments

- `mapping` Set of aesthetic mappings created by `aes` or `aes_*`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- `data` The data to be displayed in this layer. There are three options:
 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot`.
 - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify` for which variables will be created.
 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.
- `stat` Use to override the default connection between `geom_roc` and `stat_roc`.
- `n.cuts` Number of cutpoints to display along each curve
- `arrow` Arrow specification, as created by `arrow`
- `lineend` Line end style (round, butt, square)
- `linejoin` Line join style (round, mitre, bevel)
- `linemitre` Line mitre limit (number greater than 1)
- `linealpha` Alpha level for the lines, `alpha.line` is deprecated
- `pointalpha` Alpha level for the cutoff points, `alpha.point` is deprecated
- `pointsize` Size of cutoff points, `size.point` is deprecated
- `labels` Logical, display cutoff text labels
- `labelsize` Size of cutoff text labels
GeomRoc

labelround Integer, number of significant digits to round cutoff labels
na.rm Remove missing values from curve
cutoffs.at Vector of user supplied cutoffs to plot as points. If non-NULL, it will override the values of n.cuts and plot the observed cutoffs closest to the user-supplied ones.
cutoff.labels vector of user-supplied labels for the cutoffs. Must be a character vector of the same length as cutoffs.at.
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Format

An object of class GeomRoc (inherits from Geom, ggproto) of length 6.

Computed variables

false_positive_fraction estimate of false positive fraction
true_positive_fraction estimate of true positive fraction
cutoffs values of m at which estimates are calculated

Aesthetics

geom_roc understands the following aesthetics (required aesthetics are in bold):

• x The FPF estimate. This is automatically mapped by stat_roc
• y The TPF estimate. This is automatically mapped by stat_roc smallest level in sort order is assumed to be 0, with a warning
• alpha
• color
• fill
• linetype
• size

See Also

See geom_rocci for displaying rectangular confidence regions for the empirical ROC curve, style_roc for adding guidelines and labels, and direct_label for adding direct labels to the curves. Also export_interactive_roc for creating interactive ROC curve plots for use in a web browser.
Examples

D.ex <- rbinom(50, 1, .5)
rocdta <- data.frame(D = c(D.ex, D.ex),
M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdta, aes(m = M, d = D)) + geom_roc()

ggplot(rocdta, aes(m = M, d = D, color = Z)) + geom_roc()

ggplot(rocdta, aes(m = M, d = D)) + geom_roc() + facet_wrap(~ Z)

ggplot(rocdta, aes(m = M, d = D)) + geom_roc(n.cuts = 20)

ggplot(rocdta, aes(m = M, d = D)) + geom_roc(cutoffs.at = c(1.5, 1, .5, 0, -.5))

ggplot(rocdta, aes(m = M, d = D)) + geom_roc(labels = FALSE)

ggplot(rocdta, aes(m = M, d = D)) + geom_roc(size = 1.25)

geom_rocci

Confidence regions for the ROC curve

Description

Display rectangular confidence regions for the empirical ROC curve.

Usage

`geom_rocci(mapping = NULL, data = NULL, stat = "rocci", ci.at = NULL, sig.level = 0.05, na.rm = TRUE, alpha.box = 0.3, labels = TRUE, labels.size = 3.88, labelround = 1, position = "identity", show.legend = NA, inherit.aes = TRUE, ...)"

GeomRocci

Arguments

- **mapping**: Set of aesthetic mappings created by `aes` or `aes_`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.

- **data**: The data to be displayed in this layer. There are three options:
 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot`.
 - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify` for which variables will be created.
 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.

- **stat**: Use to override the default connection between `geom_rocci` and `stat_rocci`.
geom_rocci

ci.at Vector of values in the range of the biomarker where confidence regions will be displayed
sig.level Significance level for the confidence regions
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
alpha.box Alpha level for the confidence regions
labels If TRUE, adds text labels for the cutoffs where the confidence regions are displayed
labelsize Size of cutoff text labels
labelround Integer, number of significant digits to round cutoff labels
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.
...
other arguments passed on to layer. These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be parameters to the paired geom/stat.

Format

An object of class GeomRocci (inherits from Geom, ggproto) of length 6.

Aesthetics

gem_rocci understands the following aesthetics (required aesthetics are in bold). stat_rocci automatically maps the estimates to the required aesthetics:

• x The FPF estimate
• y The TPF estimate
• xmin Lower confidence limit for the FPF
• xmax Upper confidence limit for the FPF
• ymin Lower confidence limit for the TPF
• ymax Upper confidence limit for the TPF
• alpha
• color
• fill
• linetype
• size
See Also

See `geom_roc` for the empirical ROC curve, `style_roc` for adding guidelines and labels, and `direct_label` for adding direct labels to the curves. Also `export_interactive_roc` for creating interactive ROC curve plots for use in a web browser.

Examples

```r
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
                     M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
                     Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + geom_rocci()

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci()

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(n.cuts = 0) +
       geom_rocci(ci.at = quantile(rocdata$M, c(.1, .25, .5, .75, .9)))

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(linetype = 1)
```

getD3

Reads included JavaScript functions and returns them as a string for pasting into a webpage

Description

Reads included JavaScript functions and returns them as a string for pasting into a webpage

Usage

```r
getD3()
```

ggroc

Plot an ROC curve

Description

Deprecated, use `geom_roc` instead

Usage

```r
ggroc(rocdata, fpf_string = "FPF", tpf_string = "TPF", c_string = "c",
       ci = FALSE, label = NULL, label.adj.x = 0, label.adj.y = 0,
       label.angle = 45, plotmath = FALSE, xlabel = "False positive fraction",
       ylabel = "True positive fraction")
```
melt_roc

Arguments

- **rocdata**: Data frame containing true and false positive fractions, and cutoff values
- **fpf_string**: Column name identifying false positive fraction column
- **tpf_string**: Column name identifying true positive fraction column
- **c_string**: Column name identifying cutoff values
- **ci**: Logical, not supported
- **label**: Not supported
- **label.adj.x**: Not supported
- **label.adj.y**: Not supported
- **label.angle**: Not supported
- **plotmath**: Not supported
- **xlabel**: Defaults to "False positive fraction"
- **ylabel**: Defaults to "True positive fraction"

Value

A ggplot object

Description

Multiple biomarkers measured on the same subjects are often stored as multiple columns in a data frame. This is a convenience function that transforms the data into long format, suitable for use with ggplot and geom_roc

Usage

melt_roc(data, d, m, names = NULL)

Arguments

- **data**: Data frame containing disease status and biomarkers stored in columns
- **d**: Column containing binary disease status. Can be a column name or index
- **m**: Vector of column names or indices identifying biomarkers
- **names**: Optional vector of names to assign to the biomarkers. If NULL, names will be taken from the column names

Value

A data frame in long format with three columns: D = binary disease status, M = biomarker value, and name = biomarker name
Examples

```r
d.ex <- rbinom(50, 1, .5)
widedata <- data.frame(D = d.ex, M1 = rnorm(50, mean = d.ex, sd = 1),
                      M2 = rnorm(50, mean = d.ex, sd = .5))
longdata <- melt_roc(widedata, "D", c("M1", "M2"))
ggplot(longdata, aes(d = D, m = M, color = name)) + geom_roc()
```

multi_ggroc

Plot multiple ROC curves

Description

Given a list of results computed by `calculate_roc`, plot the curve using `ggplot` with sensible defaults. Pass the resulting object and data to `export_interactive_roc`, `plot_interactive_roc`, or `plot_journal_roc`.

Usage

```r
multi_ggroc(datalist, fpf_string = rep("FPF", length(datalist)),
            tpf_string = rep("TPF", length(datalist)), c_string = rep("c",
            length(datalist)), label = NULL, legend = TRUE, label.adj.x = rep(0,
            length(datalist)), label.adj.y = rep(0, length(datalist)),
            label.angle = rep(45, length(datalist)), plotmath = FALSE,
            xlabel = "False positive fraction", ylabel = "True positive fraction")
```

Arguments

- `datalist` List of data frames each containing true and false positive fractions and cutoffs
- `fpf_string` Column names identifying false positive fraction
- `tpf_string` Column names identifying true positive fraction
- `c_string` Column names identifying cutoff values
- `label` Not supported.
- `legend` If true, draws legend
- `label.adj.x` Not supported.
- `label.adj.y` Not supported.
- `label.angle` Not supported.
- `plotmath` Logical. Not supported.
- `xlabel` Defaults to "False positive fraction"
- `ylabel` Defaults to "True positive fraction"

Value

A ggplot object
plotROC

Tools for plotting ROC Curves

Description

Generate Useful ROC Curve Charts for Print and Interactive Use. This defines a set of stats and geoms for use with ggplot2. In addition, ggplot objects created with these geoms can be exported and turned into interactive plots for use on the web. The interactive features include hovering to display hidden labels, and clicking to reveal confidence regions.

Details

To get started, see `geom_roc`, `geom_rocci`, or the examples below. For transforming data, we also provide the convenience function `melt_roc`.

The vignette contains some examples, along with explanations of the results. To view, run `vignette("examples", package = "plotROC")`

Author(s)

Michael Sachs (@sachsmc)

Examples

```r
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
                     M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
                     Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + geom_rocci()

ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + style_roc()

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci()

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(sig.level = .01)

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(n.cuts = 0) + geom_rocci(ci.at = quantile(rocdata$M, c(.1, .25, .5, .75, .9)))

rocplot <- ggplot(rocdata, aes(m = M, d = D)) + geom_roc()

plot_interactive_roc(rocplot)

plot_interactive_roc(rocplot + aes(color = Z))

plot_interactive_roc(rocplot + facet_wrap(~ Z))
```
plot_interactive_roc
Generate a standalone html document displaying an interactive ROC curve

Description
Generate a standalone html document displaying an interactive ROC curve

Usage
```
plot_interactive_roc(ggroc, file = NULL, ...)
```

Arguments
- `ggroc` An object as returned by `ggroc` or `multi_ggroc`. It can be modified with annotations, themes, etc.
- `file` A path to save the result to. If NULL, will save to a temporary directory
- `...` arguments passed to `export_interactive_roc`

Value
NULL opens an interactive document in RStudio or the default web browser

plot_journal_roc
Plot an ROC curve for use in print

Description
Deprecated, use `style_roc` instead

Usage
```
plot_journal_roc(ggroc_p, font.size = 3, n.cuts = 20, ci.at = NULL, opacity = 0.3, lty = NULL, color = NULL, lwd = NULL, legend = FALSE)
```

Arguments
- `ggroc_p` An object as returned by `ggroc` or `multi_ggroc`. It can be modified with annotations, themes, etc.
- `font.size` Not supported
- `n.cuts` Not supported
- `ci.at` Not supported
- `opacity` Not supported
- `lty` Not supported
roc_key

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>Not supported</td>
</tr>
<tr>
<td>lwd</td>
<td>Not supported</td>
</tr>
<tr>
<td>legend</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Value

A ggplot object

Description

Key for ROC geom

Usage

roc_key(data, params, size)

Arguments

data | Data created by stat
params | parameters
size | Size

shiny_plotROC

Start the plotROC Shiny app

Description

A convenience function to easily start the shiny application. It will open in Rstudio, or in the default web browser.

Usage

shiny_plotROC()
StatRoc

Calculate the empirical Receiver Operating Characteristic curve

Description

Given a binary outcome \(d \) and continuous measurement \(m \), computes the empirical ROC curve for assessing the classification accuracy of \(m \).

Usage

StatRoc

```r
statroc(mapping = NULL, data = NULL, geom = "roc",
    position = "identity", show.legend = NA, inherit.aes = TRUE,
    na.rm = TRUE, max.num.points = 1000, increasing = TRUE, ...)
```

Arguments

- `mapping` Set of aesthetic mappings created by `aes` or `aes_`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.

- `data` The data to be displayed in this layer. There are three options: If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot`. A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify` for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.

- `geom` The geometric object to use for display the data

- `position` Position adjustment, either as a string, or the result of a call to a position adjustment function.

- `show.legend` logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `FALSE` never includes, and `TRUE` always includes.

- `inherit.aes` If `FALSE`, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders`.

- `na.rm` Remove missing observations

- `max.num.points` maximum number of points to plot

- `increasing` TRUE (default) if \(M \) is positively associated with \(\Pr(D = 1) \), if FALSE, assumes \(M \) is negatively associated with \(\Pr(D = 1) \)

- `...` other arguments passed on to `layer`. These are often aesthetics, used to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.
Format

An object of class StatRoc (inherits from Stat ggproto) of length 5.

Aesthetics

stat_roc understands the following aesthetics (required aesthetics are in bold):

- \(m \) The continuous biomarker/predictor
- \(d \) The binary outcome, if not coded as 0/1, the smallest level in sort order is assumed to be 0, with a warning
- \(\alpha \) Controls the label alpha, see also linealpha and pointalpha
- color
- linetype
- size Controls the line weight, see also pointsize and labelsize

Computed variables

- `false_positive_fraction` estimate of false positive fraction
- `true_positive_fraction` estimate of true positive fraction
- `cutoffs` values of \(m \) at which estimates are calculated

Examples

```r
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
                      M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
                      Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdata, aes(m = M, d = D)) + stat_roc()
```

StatRocci

Calculate confidence regions for the empirical ROC curve

Description

Confidence intervals for TPF and FPF are calculated using the exact method of Clopper and Pearson (1934) each at the level \(1 - \sqrt{1 - \alpha} \). Based on result 2.4 from Pepe (2003), the cross-product of these intervals yields a \(1 - \alpha \)

Usage

StatRocci

```r
stat_rocci(mapping = NULL, data = NULL, geom = "rocci",
          position = "identity", show.legend = NA, inherit.aes = TRUE,
          ci.at = NULL, sig.level = 0.05, na.rm = TRUE, ...)
```
Arguments

mapping Set of aesthetic mappings created by `aes` or `aes_`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.

data The data to be displayed in this layer. There are three options: If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot`.

A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify` for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjustment function.

show.legend logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `false` never includes, and `true` always includes.

inherit.aes If `false`, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders`.

ci.at Vector of cutoffs at which to display confidence regions. If `NULL`, will automatically choose 3 evenly spaced points to display the regions

sig.level Significance level for the confidence regions

na.rm Remove missing observations

... other arguments passed on to `layer`. These are often aesthetics, used to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Format

An object of class `StatRocci` (inherits from `Stat, ggproto`) of length 5.

Aesthetics

`stat_rocci` understands the following aesthetics (required aesthetics are in bold):

- m The continuous biomarker/predictor
- d The binary outcome, if not coded as 0/1, the smallest level in sort order is assumed to be 0, with a warning
 - alpha
 - color
 - fill
 - linetype
 - size
Computed variables

FPF estimate of false positive fraction
TPF estimate of true positive fraction
cutoffs values of m at which estimates are calculated
FPFL lower bound of confidence region for FPF
FPFU upper bound of confidence region for FPF
TPFL lower bound of confidence region for TPF
TPFU upper bound of confidence region for TPF

References

Examples

```r
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
                      M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
                      Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + stat_rocci()
ggplot(rocdata, aes(m = M, d = D)) + geom_roc() +
stat_rocci(ci.at = quantile(rocdata$M, c(.1, .3, .5, .7, .9)))
```

style_roc

Add guides and annotations to a ROC plot

Description

Adds a diagonal guideline, minor grid lines, and optionally direct labels to ggplot objects containing a geom_roc layer.

Usage

```
style_roc(major.breaks = c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1),
           minor.breaks = c(seq(0, 0.1, by = 0.01), seq(0.9, 1, by = 0.01)),
           guide = TRUE, xlab = "False positive fraction",
           ylab = "True positive fraction", theme = theme_bw)
```
verify_d

Arguments

major.breaks vector of breakpoints for the major gridlines and axes
minor.breaks vector of breakpoints for the minor gridlines and axes
guide logical, if TRUE draws diagonal guideline
xlab X-axis label
ylab Y-axis label
theme Theme function compatible with ggplot2

Examples

dex <- rbinom(50, 1, .5)
fakedata <- data.frame(m1 = rnorm(50, mean = D.ex),
 D = D.ex)
ggplot(fakedata, aes(m = m1, d = D)) + geom_roc() + style_roc()
ggplot(fakedata, aes(m = m1, d = D)) + geom_roc() + style_roc(xlab = "1 - Specificity")
ggplot(fakedata, aes(m = m1, d = D)) + geom_roc() + style_roc(theme = theme_grey)

verify_d Check that D is suitable for using as binary disease status

Description

Checks for two classes and gives a warning message indicating which level is assumed to be 0/1.
Throws an error if more than two levels appear in D.

Usage

verify_d(D)

Arguments

D Vector that will be checked for 2-class labels

Value

A vector the same length as D that takes values 0, indicating no disease or 1 indicating disease.

Examples

verify_d(c(1, 0, 1))
Not run:
verify_d(c(TRUE, FALSE, TRUE)) #warning
verify_d(c("Dead", "Alive", "Dead")) #warning
verify_d(c("Disease", "Healthy", "Missing")) #error

End(Not run)
Index

Topics

- **Internal**
 - getD3, 10
 - roc_key, 15
- **Datasets**
 - geom_rocci, 8
 - GeomRoc, 6
 - StatRoc, 16
 - StatRocci, 17
 - aes, 6, 8, 16, 18
 - aes_, 6, 8, 16, 18
 - annotate, 4
 - arrow, 6
 - borders, 7, 9, 16, 18
 - calc_auc, 3
 - calculate_multi_roc, 2
 - calculate_roc, 3, 12
 - direct_label, 4, 7, 10
 - export_interactive_roc, 5, 7, 10, 12, 14
 - fortify, 6, 8, 16, 18
 - geom_roc, 2–5, 10, 11, 13
 - geom_roc (GeomRoc), 6
 - geom_rocci, 5, 7, 8, 13
 - GeomRoc, 6
 - GeomRocci (geom_rocci), 8
 - getD3, 10
 - ggplot, 6, 8, 16, 18
 - ggroc, 10, 14
 - layer, 7, 9, 16, 18
 - melt_roc, 11, 13
 - multi_ggroc, 12, 14
 - plot_interactive_roc, 12, 14
 - plot_journal_roc, 12, 14
 - plotROC, 13
 - plotROC-package (plotROC), 13
 - roc_key, 15
 - shiny_plotROC, 15
 - stat_roc, 7
 - stat_roc (StatRoc), 16
 - stat_rocci (StatRocci), 17
 - StatRoc, 16
 - StatRocci, 17
 - style_roc, 5, 7, 10, 14, 19
 - verify_d, 20