Package ‘plotROC’

October 6, 2023

Type Package

Title Generate Useful ROC Curve Charts for Print and Interactive Use

Version 2.3.1

Date 2023-10-05

Maintainer Michael C. Sachs <sachsmc@gmail.com>

Description Most ROC curve plots obscure the cutoff values and inhibit interpretation and comparison of multiple curves. This attempts to address those shortcomings by providing plotting and interactive tools. Functions are provided to generate an interactive ROC curve plot for web use, and print versions. A Shiny application implementing the functions is also included.

License MIT + file LICENSE

URL https://sachsmc.github.io/plotROC/

BugReports https://github.com/sachsmc/plotROC/issues/

Depends R (>= 3.0.0), ggplot2

Imports methods, grid, gridSVG, shiny, plyr, rlang

Suggests knitr, testthat, stringr, survivalROC, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

Author Michael C. Sachs [aut, cre],
Robert W. Corty [ctb],
Luis Crouch [ctb] (Modification to calc_auc)

Repository CRAN

Date/Publication 2023-10-06 12:40:02 UTC
calculate_multi_roc

Calculate the Empirical ROC curves for multiple biomarkers

Description

Deprecated, use geom_roc instead

Usage

```
calculate_multi_roc(data, M_string, D_string)
```

Arguments

- `data`: data frame containing at least 1 marker and the common class labels, coded as 0 and 1
- `M_string`: vector of marker column names
- `D_string`: class label column name

Value

List of data frames containing cutoffs, and estimated true and false positive fractions
calculate_roc
Calculate the Empirical ROC curve

Description
Deprecated, use `geom_roc` instead

Usage
```r
calculate_roc(M, D, ci = FALSE, alpha = 0.05)
```

Arguments
- **M**
 continuous marker values or predictions of class labels
- **D**
 class labels, must be coded as 0 and 1. If not numeric with 0/1, then plotROC assumes the first level in sort order is healthy status, with a warning.
- **ci**
 Logical, if true, will calculate exact joint confidence regions for the TPF and FPF
- **alpha**
 Confidence level, ignored if `ci = FALSE`

Details

Confidence intervals for TPF and FPF are calculated using the exact method of Clopper and Pearson (1934) each at the level $1 - \sqrt{1 - \alpha}$. Based on result 2.4 from Pepe (2003), the cross-product of these intervals yields a $1 - \alpha$

Value

A dataframe containing cutoffs, estimated true and false positive fractions, and confidence intervals if `ci = TRUE`.

calc_auc
Calculate the Area under the ROC curve

Description

Given a ggplot object with a GeomRoc layer, computes the area under the ROC curve for each group

Usage

```r
calc_auc(ggroc)
```

Arguments
- **ggroc**
 A ggplot object that contains a GeomRoc layer
Value

A data frame with the estimated AUCs for each panel and group

Examples

```r
d.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(d.ex, d.ex),
                      M = c(rnorm(50, mean = d.ex, sd = .4), rnorm(50, mean = d.ex, sd = 1)),
                      Z = c(rep("A", 50), rep("B", 50)))

ggroc <- ggplot(rocdata, aes(m = M, d = D)) + geom_roc()
calc_auc(ggroc)

ggroc2 <- ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc()
calc_auc(ggroc2)
```

direct_label

Add direct labels to a ROC plot

Description

Add direct labels to a ROC plot

Usage

```r
direct_label(
  ggroc_p,
  labels = NULL,
  label.angle = 45,
  nudge_x = 0,
  nudge_y = 0,
  size = 6,
  ...
)
```

Arguments

- `ggroc_p`: A ggplot object that contains a `geom_roc` layer
- `labels`: vector of labels to add directly to the plot next to the curves. If multiple curves, must be in the same order as the grouping factor. If `NULL`, attempts to determine labels from the `ggroc_p` object
- `label.angle`: angle of adjustment for the direct labels
- `nudge_x`, `nudge_y`: Horizontal and vertical adjustment to nudge labels by. These can be scalars or vectors the same length as the number of labels
- `size`: Size of labels
- `...`: Other arguments passed to `annotate`
export_interactive_roc

Generate svg code for an ROC curve object

Description

Takes a ggplot object that contains a GeomRoc layer and returns a string that contains html suitable for creating a standalone interactive ROC curve plot.

Usage

```r
export_interactive_roc(
  ggroc_p,
  add.cis = TRUE,
  hide.points = FALSE,
  prefix = "a",
  width = 6,
  height = 6,
  omit.js = FALSE,
  style = style_roc(theme = theme_grey()),
  ...
)
```

Arguments

- **ggroc_p**: A ggplot object with a GeomRoc layer and optionally a GeomRocci layer as returned by `geom_roc` and/or `geom_rocci`. It can be modified with annotations, themes, etc.
- **add.cis**: Logical, if true, removes the current confidence interval layer (if present) and replaces it with a denser layer of confidence regions.
- **hide.points**: Logical, if true, hides points layer so that points with cutoff values are only visible when hovering. Recommended for plots containing more than 3 curves.
- **prefix**: A string to assign to the objects within the svg. Enables unique identification by the javascript code.
- **width, height**: Width and height in inches of plot.
- **omit.js**: Logical. If true, omit inclusion of javascript source in output. Useful for documents with multiple interactive plots.
- **style**: A call to the function `style_roc`.
- **...**: Other arguments passed to `geom_rocci` when `add.cis = TRUE`.

Details

If you intend to include more than one of these objects in a single page, use a different `prefix` string for each one. To use this function in knitr, use the chunk options `fig.keep='none'` and `results = 'asis'`, then `cat()` the resulting string to the output. See the vignette for examples. Older browsers (< IE7) are not supported.
Value

A character object containing the html necessary to plot the ROC curve in a web browser

GeomRoc

Empirical Receiver Operating Characteristic Curve

Description

Display the empirical ROC curve. Useful for characterizing the classification accuracy of continuous measurements for predicting binary states

Usage

```
GeomRoc

geom_roc(
  mapping = NULL,
  data = NULL,
  stat = "roc",
  n.cuts = 10,
  arrow = NULL,
  lineend = "butt",
  linejoin = "round",
  linemitre = 1,
  linealpha = 1,
  pointalpha = 1,
  pointsize = 0.5,
  labels = TRUE,
  labelsize = 3.88,
  labelround = 1,
  na.rm = TRUE,
  cutoffs.at = NULL,
  cutoff.labels = NULL,
  position = "identity",
  show.legend = "identity",
  inherit.aes = TRUE,
  ...
)
```

Arguments

- **mapping**: Set of aesthetic mappings created by `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
data
The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).

stat
Use to override the default connection between geom_roc and stat_roc.

n.cuts
Number of cutpoints to display along each curve

arrow
Arrow specification, as created by arrow

lineend
Line end style (round, butt, square)

linejoin
Line join style (round, mitre, bevel)

linemitre
Line mitre limit (number greater than 1)

linealpha
Alpha level for the lines, alpha.line is deprecated

pointalpha
Alpha level for the cutoff points, alpha.point is deprecated

pointsizie
Size of cutoff points, size.point is deprecated

labels
Logical, display cutoff text labels

labelsize
Size of cutoff text labels

labelround
Integer, number of significant digits to round cutoff labels

na.rm
Remove missing values from curve

cutoffs.at
Vector of user supplied cutoffs to plot as points. If non-NULL, it will override the values of n.cuts and plot the observed cutoffs closest to the user-supplied ones.

cutoff.labels
vector of user-supplied labels for the cutoffs. Must be a character vector of the same length as cutoffs.at.

position
Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.

show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().

...
Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

Format
An object of class GeomRoc (inherits from Geom, ggproto, gg) of length 6.
Computed variables

- **false_positive_fraction** estimate of false positive fraction
- **true_positive_fraction** estimate of true positive fraction
- **cutoffs** values of m at which estimates are calculated

Aesthetics

`geom_roc` understands the following aesthetics (required aesthetics are in bold):

- **x** The FPF estimate. This is automatically mapped by `stat_roc`
- **y** The TPF estimate. This is automatically mapped by `stat_roc` smallest level in sort order is assumed to be 0, with a warning
- **alpha**
- **color**
- **fill**
- **linetype**
- **size**

See Also

See `geom_rocci` for displaying rectangular confidence regions for the empirical ROC curve, `style_roc` for adding guidelines and labels, and `direct_label` for adding direct labels to the curves. Also `export_interactive_roc` for creating interactive ROC curve plots for use in a web browser.

Examples

```r
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
                      M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
                      Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdata, aes(m = M, d = D)) + geom_roc()

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + facet_wrap(~ Z)

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(n.cuts = 20)

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(cutoffs.at = c(1.5, 1, .5, 0, -.5))

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(labels = FALSE)

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(size = 1.25)
```
geom_rocci

Confidence regions for the ROC curve

Description

Display rectangular confidence regions for the empirical ROC curve.

Usage

```r
gem_rocci(
  mapping = NULL,
  data = NULL,
  stat = "rocci",
  ci.at = NULL,
  sig.level = 0.05,
  na.rm = TRUE,
  alpha.box = 0.3,
  labels = TRUE,
  labelsize = 3.88,
  labelround = 1,
  position = "identity",
  show.legend = NA,
  inherit.aes = TRUE,
  ...
)
```

Arguments

- `mapping` Set of aesthetic mappings created by `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- `data` The data to be displayed in this layer. There are three options:
 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
 - A `data.frame`, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.
 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data. A function can be created from a formula (e.g. `~ head(.x, 10)`).
- `stat` Use to override the default connection between `geom_rocci` and `stat_rocci`.
- `ci.at` Vector of values in the range of the biomarker where confidence regions will be displayed.
sig.level Significance level for the confidence regions
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
alpha.box Alpha level for the confidence regions
labels If TRUE, adds text labels for the cutoffs where the confidence regions are displayed
labelsize Size of cutoff text labels
labelround Integer, number of significant digits to round cutoff labels
position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().
... Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.

Format

An object of class GeomRocci (inherits from Geom, ggproto, gg) of length 6.

Aesthetics

geom_rocci understands the following aesthetics (required aesthetics are in bold). stat_rocci automatically maps the estimates to the required aesthetics:

- x The FPF estimate
- y The TPF estimate
- xmin Lower confidence limit for the FPF
- xmax Upper confidence limit for the FPF
- ymin Lower confidence limit for the TPF
- ymax Upper confidence limit for the TPF
- alpha
- color
- fill
- linetype
- size
getD3

Reads included JavaScript functions and returns them as a string for pasting into a webpage

Description

Reads included JavaScript functions and returns them as a string for pasting into a webpage

Usage

getD3()

getD3

Plot an ROC curve

Description

Deprecated, use geom_roc instead
Usage

ggroc(
 rocdata,
 fpf_string = "FPF",
 tpf_string = "TPF",
 c_string = "c",
 ci = FALSE,
 label = NULL,
 label.adj.x = 0,
 label.adj.y = 0,
 label.angle = 45,
 plotmath = FALSE,
 xlabel = "False positive fraction",
 ylabel = "True positive fraction"
)

Arguments

rocdata Data frame containing true and false positive fractions, and cutoff values
fpf_string Column name identifying false positive fraction column
tpf_string Column name identifying true positive fraction column
c_string Column name identifying cutoff values
.ci Logical, not supported
label Not supported
label.adj.x Not supported
label.adj.y Not supported
label.angle Not supported
plotmath Not supported
xlabel Defaults to "False positive fraction"
ylabel Defaults to "True positive fraction"

Value

A ggplot object

melt_roc Transform biomarkers stored as wide to long

Description

Multiple biomarkers measured on the same subjects are often stored as multiple columns in a data frame. This is a convenience function that transforms the data into long format, suitable for use with ggplot and geom_roc
multi_groc

Usage

melt_roc(data, d, m, names = NULL)

Arguments

data: Data frame containing disease status and biomarkers stored in columns
d: Column containing binary disease status. Can be a column name or index
m: Vector of column names or indices identifying biomarkers
names: Optional vector of names to assign to the biomarkers. If NULL, names will be taken from the column names

Value

A data frame in long format with three columns: D = binary disease status, M = biomarker value, and name = biomarker name

Examples

D.ex <- rbinom(50, 1, .5)
widedata <- data.frame(D = D.ex, M1 = rnorm(50, mean = D.ex, sd = 1),
 M2 = rnorm(50, mean = D.ex, sd = .5))
longdata <- melt_roc(widedata, "D", c("M1", "M2"))
ggplot(longdata, aes(d = D, m = M, color = name)) + geom_roc()

multi_ggroc

Plot multiple ROC curves

Description

Given a list of results computed by calculate_roc, plot the curve using ggplot with sensible defaults. Pass the resulting object and data to export_interactive_roc, plot_interactive_roc, or plot_journal_roc.

Usage

multi_ggroc(
datalist,
fpf_string = rep("FPF", length(datalist)),
tpf_string = rep("TPF", length(datalist)),
c_string = rep("c", length(datalist)),
label = NULL,
legend = TRUE,
label.adj.x = rep(0, length(datalist)),
label.adj.y = rep(0, length(datalist)),
label.angle = rep(45, length(datalist)),
plotmath = FALSE,
xlabel = "False positive fraction",
ylabel = "True positive fraction")
Arguments

datalist List of data frames each containing true and false positive fractions and cutoffs
fpf_string Column names identifying false positive fraction
tpf_string Column names identifying true positive fraction
c_string Column names identifying cutoff values
label Not supported.
legend If true, draws legend
label.adj.x Not supported.
label.adj.y Not supported.
label.angle Not supported.
plotmath Logical. Not supported.
xlabel Defaults to "False positive fraction"
ylabel Defaults to "True positive fraction"

Value

A ggplot object

plotROC Tools for plotting ROC Curves

Description

Generate Useful ROC Curve Charts for Print and Interactive Use. This defines a set of stats and geoms for use with ggplot2. In addition, ggplot objects created with these geoms can be exported and turned into interactive plots for use on the web. The interactive features include hovering to display hidden labels, and clicking to reveal confidence regions.

Details

To get started, see geom_roc, geom_rocci, or the examples below. For transforming data, we also provide the convenience function melt_roc.

The vignette contains some examples, along with explanations of the results. To view, run vignette("examples", package = "plotROC")

Author(s)

Michael Sachs (@sachsmc)

See Also

Useful links:

• https://sachsmc.github.io/plotROC/
• Report bugs at https://github.com/sachsmc/plotROC/issues/
Examples

D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
 M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
 Z = c(rep("A", 50), rep("B", 50)))

ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + geom_rocci()

ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + style_roc()

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci()

ggplot(rocdata, aes(m = M, d = D, color = Z)) + geom_roc() + geom_rocci(sig.level = .01)

ggplot(rocdata, aes(m = M, d = D)) + geom_roc(n.cuts = 0) + geom_rocci(ci.at = quantile(rocdata$M, c(.1, .25, .5, .75, .9)))

rocplot <- ggplot(rocdata, aes(m = M, d = D)) + geom_roc()

plot_interactive_roc(rocplot)
plot_interactive_roc(rocplot + aes(color = Z))
plot_interactive_roc(rocplot + facet_wrap(~ Z))

Description

Generate a standalone html document displaying an interactive ROC curve

Usage

plot_interactive_roc(ggroc, file = NULL, ...)

Arguments

- **ggroc**: An object as returned by `ggroc` or `multi_ggroc`. It can be modified with annotations, themes, etc.
- **file**: A path to save the result to. If NULL, will save to a temporary directory arguments passed to `export_interactive_roc`

Value

NULL opens an interactive document in Rstudio or the default web browser
plot_journal_roc

Plot an ROC curve for use in print

Description

Deprecated, use style_roc instead

Usage

plot_journal_roc(
 ggroc_p,
 font.size = 3,
 n.cuts = 20,
 ci.at = NULL,
 opacity = 0.3,
 lty = NULL,
 color = NULL,
 lwd = NULL,
 legend = FALSE
)

Arguments

ggroc_p An object as returned by ggroc or multi_ggroc. It can be modified with annotations, themes, etc.
font.size Not supported
n.cuts Not supported
ci.at Not supported
opacity Not supported
lty Not supported
color Not supported
lwd Not supported
legend Not supported

Value

A ggplot object
roc_key

<table>
<thead>
<tr>
<th>roc_key</th>
<th>Key for ROC geom</th>
</tr>
</thead>
</table>

Description

Key for ROC geom

Usage

roc_key(data, params, size)

Arguments

data | Data created by stat
params | parameters
size | Size

shiny_plotROC

<table>
<thead>
<tr>
<th>shiny_plotROC</th>
<th>Start the plotROC Shiny app</th>
</tr>
</thead>
</table>

Description

A convenience function to easily start the shiny application. It will open in Rstudio, or in the default web browser.

Usage

shiny_plotROC()

StatRoc

<table>
<thead>
<tr>
<th>StatRoc</th>
<th>Calculate the empirical Receiver Operating Characteristic curve</th>
</tr>
</thead>
</table>

Description

Given a binary outcome d and continuous measurement m, computes the empirical ROC curve for assessing the classification accuracy of m
Usage

StatRoc

stat_roc(
 mapping = NULL,
 data = NULL,
 geom = "roc",
 position = "identity",
 show.legend = NA,
 inherit.aes = TRUE,
 na.rm = TRUE,
 max.num.points = 1000,
 increasing = TRUE,
 ...
)

Arguments

mapping Set of aesthetic mappings created by \texttt{aes()}. If specified and \texttt{inherit.aes = TRUE} (the default), it is combined with the default mapping at the top level of the plot. You must supply \texttt{mapping} if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If \texttt{NULL}, the default, the data is inherited from the plot data as specified in the call to \texttt{ggplot()}. A \texttt{data.frame}, or other object, will override the plot data. All objects will be fortified to produce a data frame. See \texttt{fortify()} for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a \texttt{data.frame}, and will be used as the layer data. A function can be created from a formula (e.g. \texttt{~ head(.x, 10)}).

geom The geometric object to use to display the data, either as a ggproto Geom subclass or as a string naming the geom stripped of the \texttt{geom_} prefix (e.g. "point" rather than "geom_point")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use \texttt{position_jitter}), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? \texttt{NA}, the default, includes if any aesthetics are mapped. \texttt{FALSE} never includes, and \texttt{TRUE} always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If \texttt{FALSE}, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. \texttt{borders()}. na.rm Remove missing observations max.num.points maximum number of points to plot increasing \texttt{TRUE} (default) if \texttt{M} is positively associated with Pr(D = 1), if \texttt{FALSE}, assumes \texttt{M} is negatively associated with Pr(D = 1)
Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Format

An object of class StatRoc (inherits from Stat, ggproto, gg) of length 6.

Aesthetics

`stat_roc` understands the following aesthetics (required aesthetics are in bold):

- `m` The continuous biomarker/predictor
- `d` The binary outcome, if not coded as 0/1, the smallest level in sort order is assumed to be 0, with a warning
- `alpha` Controls the label alpha, see also `linealpha` and `pointalpha`
- `color`
- `linetype`
- `size` Controls the line weight, see also `pointsize` and `labelsize`

Computed variables

- `false_positive_fraction` estimate of false positive fraction
- `true_positive_fraction` estimate of true positive fraction
- `cutoffs` values of `m` at which estimates are calculated

Examples

```r
d.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(d.ex, d.ex),
                     M = c(rnorm(50, mean = d.ex, sd = .4), rnorm(50, mean = d.ex, sd = 1)),
                     Z = c(rep("A", 50), rep("B", 50)))
ggplot(rocdata, aes(m = M, d = D)) + stat_roc()
```

StatRocci

Calculate confidence regions for the empirical ROC curve

Description

Confidence intervals for TPF and FPF are calculated using the exact method of Clopper and Pearson (1934) each at the level $1 - \sqrt{1 - \alpha}$. Based on result 2.4 from Pepe (2003), the cross-product of these intervals yields a $1 - \alpha$
Usage

StatRocci

stat_rocci(
 mapping = NULL,
 data = NULL,
 geom = "rocci",
 position = "identity",
 show.legend = NA,
 inherit.aes = TRUE,
 ci.at = NULL,
 sig.level = 0.05,
 na.rm = TRUE,
 ...
)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data, either as a ggproto Geom subclass or as a string naming the geom stripped of the geom_ prefix (e.g. "point" rather than "geom_point")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().

ci.at Vector of cutoffs at which to display confidence regions. If NULL, will automatically choose 3 evenly spaced points to display the regions

sig.level Significance level for the confidence regions
na.rm Remove missing observations

Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Format

An object of class StatRocci (inherits from Stat, ggproto, gg) of length 6.

Aesthetics

`stat_rocci` understands the following aesthetics (required aesthetics are in bold):

- `m` The continuous biomarker/predictor
- `d` The binary outcome, if not coded as 0/1, the smallest level in sort order is assumed to be 0, with a warning
- `alpha`
- `color`
- `fill`
- `linetype`
- `size`

Computed variables

- **FPF** estimate of false positive fraction
- **TPF** estimate of true positive fraction
- **cutoffs** values of `m` at which estimates are calculated
- **FPFL** lower bound of confidence region for FPF
- **FPFU** upper bound of confidence region for FPF
- **TPFL** lower bound of confidence region for TPF
- **TPFU** upper bound of confidence region for TPF

References

Examples

```r
D.ex <- rbinom(50, 1, .5)
rocdata <- data.frame(D = c(D.ex, D.ex),
                      M = c(rnorm(50, mean = D.ex, sd = .4), rnorm(50, mean = D.ex, sd = 1)),
                      Z = c(rep("A", 50), rep("B", 50)))
ggplot(rocdata, aes(m = M, d = D)) + geom_roc() + stat_rocci()
ggplot(rocdata, aes(m = M, d = D)) + geom_roc() +
       stat_rocci(ci.at = quantile(rocdata$M, c(.1, .3, .5, .7, .9)))
```

style_roc
Add guides and annotations to a ROC plot

Description

Adds a diagonal guideline, minor grid lines, and optionally direct labels to ggplot objects containing a geom_roc layer.

Usage

```r
style_roc(
  major.breaks = c(0, 0.1, 0.25, 0.5, 0.75, 0.9, 1),
  minor.breaks = c(seq(0, 0.1, by = 0.01), seq(0.9, 1, by = 0.01)),
  guide = TRUE,
  xlab = "False positive fraction",
  ylab = "True positive fraction",
  theme = theme_bw
)
```

Arguments

- `major.breaks`: vector of breakpoints for the major gridlines and axes
- `minor.breaks`: vector of breakpoints for the minor gridlines and axes
- `guide`: logical, if TRUE draws diagonal guideline
- `xlab`: X-axis label
- `ylab`: Y-axis label
- `theme`: Theme function compatible with ggplot2

Examples

```r
D.ex <- rbinom(50, 1, .5)
fakedata <- data.frame(M1 = rnorm(50, mean = D.ex),
                       D = D.ex)
ggplot(fakedata, aes(m = M1, d = D)) + geom_roc() + style_roc()
ggplot(fakedata, aes(m = M1, d = D)) + geom_roc() + style_roc(xlab = "1 - Specificity")
ggplot(fakedata, aes(m = M1, d = D)) + geom_roc() + style_roc(theme = theme_gray)
```
verify_d

Check that D is suitable for using as binary disease status

Description

Checks for two classes and gives a warning message indicating which level is assumed to be 0/1. Throws an error if more than two levels appear in D.

Usage

verify_d(D)

Arguments

D Vector that will be checked for 2-class labels

Value

A vector the same length as D that takes values 0, indicating no disease or 1 indicating disease.

Examples

verify_d(c(1, 0, 1))
Not run:
verify_d(c(TRUE, FALSE, TRUE)) #warning
verify_d(c("Dead", "Alive", "Dead")) #warning
verify_d(c("Disease", "Healthy", "Missing")) #error

End(Not run)
Index

* Internal
 getD3, 11
 roc_key, 17

* datasets
 geom_rocci, 9
 GeomRoc, 6
 StatRoc, 17
 StatRocci, 19

aes(), 6, 9, 18, 20
annotate, 4
arrow, 7
borders(), 7, 10, 18, 20
calc_auc, 3
calculate_multi_roc, 2
calculate_roc, 3, 13
direct_label, 4, 8, 11
export_interactive_roc, 5, 8, 11, 13, 15
fortify(), 7, 9, 18, 20
geom_roc, 2–5, 11, 12, 14
geom_roc (GeomRoc), 6
geom_roc (geom_rocci), 5, 8, 9, 14
GeomRoc, 6
GeomRocci (geom_rocci), 9
getD3, 11
ggplot(), 7, 9, 18, 20
ggroc, 11, 15, 16
layer(), 7, 10, 19, 21
melt_roc, 12, 14
multi_ggroc, 13, 15, 16
plot_interactive_roc, 13, 15
plot_journal_roc, 13, 16
plotROC, 14
plotROC-package (plotROC), 14
roc_key, 17
shiny_plotROC, 17
stat_roc, 8
stat_roc (StatRoc), 17
stat_roc (StatRocci), 19
StatRoc, 17
StatRocci, 19
style_roc, 5, 8, 11, 16, 22
verify_d, 23