Package ‘pls’

March 23, 2019

Title Partial Least Squares and Principal Component Regression

Version 2.7-1

Date 2019-03-23

Author Bjørn-Helge Mevik [aut, cre],
 Ron Wehrens [aut],
 Kristian Hovde Liland [aut],
 Paul Hiemstra [ctb]

Maintainer Bjørn-Helge Mevik <b-h@mevik.net>

Encoding UTF-8

LazyData yes

Description Multivariate regression methods
 Partial Least Squares Regression (PLSR), Principal Component
 Regression (PCR) and Canonical Powered Partial Least Squares (CPPLS).

Depends R (>= 2.10)

Imports grDevices, graphics, methods, stats

Suggests MASS, parallel, Rmpi, testthat, RUnit

License GPL-2

URL http://mevik.net/work/software/pls.html,
 https://github.com/bhmevik/pls

BugReports https://github.com/bhmevik/pls/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2019-03-23 18:00:03 UTC

R topics documented:

 biplot.mvr .. 2
 coef.mvr .. 4
 coefplot .. 6
biplot.mvr

Biplots of PLSR and PCR Models.

Description

Biplot method for mvr objects.

Usage

```r
## S3 method for class 'mvr'
biplot(x, comps = 1:2, which = c("x", "y", "scores", "loadings"),
       var.axes = FALSE, xlabs, ylabs, main, ...)
```
Arguments

x an mvr object.
comps integer vector of length two. The components to plot.
which character. Which matrices to plot. One of "x" (X scores and loadings), "y" (Y scores and loadings), "scores" (X and Y scores) and "loadings" (X and Y loadings).
var.axes logical. If TRUE, the second set of points have arrows representing them.
xlabs either a character vector of labels for the first set of points, or FALSE for no labels. If missing, the row names of the first matrix is used as labels.
ylabs either a character vector of labels for the second set of points, or FALSE for no labels. If missing, the row names of the second matrix is used as labels.
main character. Title of plot. If missing, a title is constructed by biplot.mvr.
... Further arguments passed on to biplot.default.

Details

biplot.mvr can also be called through the mvr plot method by specifying plottype = "biplot".

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

See Also

mvr, plot.mvr, biplot.default

Examples

data(oliveoil)
mod <- plsrm(sensory ~ chemical, data = oliveoil)
Not run:
These are equivalent
biplot(mod)
plot(mod, plottype = "biplot")

The four combinations of x and y points:
par(mfrow = c(2,2))
biplot(mod, which = "x") # Default
biplot(mod, which = "y")
biplot(mod, which = "scores")
biplot(mod, which = "loadings")

End(Not run)
Description

Functions to extract information from \textit{mvr} objects: Regression coefficients, fitted values, residuals, the model frame, the model matrix, names of the variables and components, and the X variance explained by the components.

Usage

\begin{verbatim}
S3 method for class 'mvr'
coef(object, ncomp = object$ncomp, comps, intercept = FALSE, ...)
S3 method for class 'mvr'
fitted(object, ...)
S3 method for class 'mvr'
residuals(object, ...)
S3 method for class 'mvr'
model.matrix(object, ...)
S3 method for class 'mvr'
model.frame(formula, ...)
prednames(object, intercept = FALSE)
respnames(object)
compnames(object, comps, explvar = FALSE, ...)
explvar(object)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{object}, \texttt{formula}
\hspace{1cm} an \textit{mvr} object. The fitted model.
\item \texttt{ncomp}, \texttt{comps}
\hspace{1cm} vector of positive integers. The components to include in the coefficients or to extract the names of. See below.
\item \texttt{intercept}
\hspace{1cm} logical. Whether coefficients for the intercept should be included. Ignored if \texttt{comps} is specified. Defaults to \texttt{FALSE}.
\item \texttt{explvar}
\hspace{1cm} logical. Whether the explained X variance should be appended to the component names.
\item \ldots
\hspace{1cm} other arguments sent to underlying functions. Currently only used for \texttt{model.frame.mvr} and \texttt{model.matrix.mvr}.
\end{itemize}

Details

These functions are mostly used inside other functions. (Functions \texttt{coef.mvr}, \texttt{fitted.mvr} and \texttt{residuals.mvr} are usually called through their generic functions \texttt{coef}, \texttt{fitted} and \texttt{residuals}, respectively.)
coef.mvr is used to extract the regression coefficients of a model, i.e. the B in $y = XB$ (for the Q in $y = TQ$ where T is the scores, see `yloadings`). An array of dimension $c(nxvar, nyvar, length(ncomp))$ or $c(nxvar, nyvar, length(comps))$ is returned.

If `comps` is missing (or is NULL), `coef()[, , ncomp[i]]` are the coefficients for models with `ncomp[i]` components, for $i = 1, ..., length(ncomp)$. Also, if `intercept = TRUE`, the first dimension is $nxvar + 1$, with the intercept coefficients as the first row.

If `comps` is given, however, `coef()[, , comps[i]]` are the coefficients for a model with only the component `comps[i]`, i.e. the contribution of the component `comps[i]` on the regression coefficients.

`fitted.mvr` and `residuals.mvr` return the fitted values and residuals, respectively. If the model was fitted with `na.action = na.exclude` (or after setting the default `na.action` to "na.exclude" with `options`), the fitted values (or residuals) corresponding to excluded observations are returned as NA; otherwise, they are omitted.

`model.frame.mvr` returns the model frame; i.e. a data frame with all variables necessary to generate the model matrix. See `model.frame` for details.

`model.matrix.mvr` returns the (possibly coded) matrix used as X in the fitting. See `model.matrix` for details.

`prednames`, `respnames` and `compnames` extract the names of the X variables, responses and components, respectively. With `intercept = TRUE` in `prednames`, the name of the intercept variable (i.e. "(Intercept)") is returned as well. `compnames` can also extract component names from score and loading matrices. If `explvar = TRUE` in `compnames`, the explained variance for each component (if available) is appended to the component names. For optimal formatting of the explained variances when not all components are to be used, one should specify the desired components with the argument `comps`.

`explvar` extracts the amount of X variance (in per cent) explained by each component in the model. It can also handle score and loading matrices returned by `scores` and `loadings`.

Value

`coef.mvr` returns an array of regression coefficients.
`fitted.mvr` returns an array with fitted values.
`residuals.mvr` returns an array with residuals.
`model.frame.mvr` returns a data frame.
`model.matrix.mvr` returns the X matrix.
`prednames`, `respnames` and `compnames` return a character vector with the corresponding names.
`explvar` returns a numeric vector with the explained variances, or NULL if not available.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

See Also

`mvr`, `coef`, `fitted`, `residuals`, `model.frame`, `model.matrix`, `na.omit`
coefplot

Plot Regression Coefficients of PLSR and PCR models

Description

Function to plot the regression coefficients of an mvr object.

Usage

coefplot(object, ncomp = object$ncomp, comps, intercept = FALSE, separate = FALSE, se.whiskers = FALSE, nCols, nRows, labels, type = "l", lty, lwd = NULL, pch, cex = NULL, col, legendpos, xlab = "variable", ylab = "regression coefficient", main, pretty.xlabels = TRUE, xlim, ylim, ask = nRows * nCols < nPlots && dev.interactive(), ...)

Arguments

object an mvr object. The fitted model.
ncomp, comps vector of positive integers. The components to plot. See coef.mvr for details.
se.whiskers logical. If TRUE, whiskers at plus/minus 1 estimated standard error are added to the plot. This is only available if the model was cross-validated with jackknife = TRUE. Also, in the current implementation, intercept must be FALSE, and separate must be TRUE if length(ncomp) > 1.
intercept logical. Whether coefficients for the intercept should be plotted. Ignored if comps is specified. Defaults to FALSE. See coef.mvr for details.
nCols, nRows integer. The number of columns and rows the plots will be laid out in. If not specified, coefplot tries to be intelligent.
labels optional. Alternative x axis labels. See Details.
type character. What type of plot to make. Defaults to "l" (lines). Alternative types include "p" (points) and "b" (both). See plot for a complete list of types.

Examples

data(yarn)
mod <- pcr(density ~ NIR, data = yarn[yarn$train[,]], ncomp = 5)
B <- coef(mod, ncomp = 3, intercept = TRUE)
A manual predict method:
stopifnot(drop(B[1,,] + yarn$NIR[yarn$train[,] %*% B[1,,]]) ==
drop(predict(mod, ncomp = 3, newdata = yarn[yarn$train[,]])))

Note the difference in formatting:
mod2 <- pcr(density ~ NIR, data = yarn[yarn$train[,]])
comprnames(mod2, explvar = TRUE)[1:3]
comprnames(mod2, comps = 1:3, explvar = TRUE)
coefplot handles multiple responses by making one plot for each response. If separate is TRUE, separate plots are made for each combination of model size and response. The plots are laid out in a rectangular fashion.

If legendpos is given, a legend is drawn at the given position (unless separate is TRUE).

The argument labels can be a vector of labels or one of "names" and "numbers". The labels are used as x axis labels. If labels is "names" or "numbers", the variable names are used as labels, the difference being that with "numbers", the variable names are converted to numbers, if possible. Variable names of the forms 'number' or 'number text' (where the space is optional), are handled.

The argument main can be used to specify the main title of the plot. It is handled in a non-standard way. If there is only on (sub) plot, main will be used as the main title of the plot. If there is more than one (sub) plot, however, the presence of main will produce a corresponding 'global' title on the page. Any graphical parametres, e.g., cex.main, supplied to coefplot will only affect the 'ordinary' plot titles, not the 'global' one. Its appearance can be changed by setting the parameters with par, which will affect both titles. (To have different settings for the two titles, one can override the par settings with arguments to coefplot.)

The argument pretty.labels is only used when labels is specified. If TRUE (default), the code tries to use a 'pretty' selection of labels. If labels is "numbers", it also uses the numerical values
of the labels for horizontal spacing. If one has excluded parts of the spectral region, one might therefore want to use pretty.xlabels = FALSE.

When separate is TRUE, the arguments lty, col, and pch default to their par() setting. Otherwise, the default for all of them is 1:nLines, where nLines is the number of model sizes specified, i.e., the length of ncomp or comps.

The function can also be called through the mvr plot method by specifying plottype = "coefficients".

Note

legend has many options. If you want greater control over the appearance of the legend, omit the legendpos argument and call legend manually.

The handling of labels and pretty.xlabels is experimental.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

See Also

mvr, plot.mvr, coef.mvr, plot.legend

Examples

data(yarn)
mod.nir <- plsr(density ~ NIR, ncomp = 8, data = yarn)
Not run:
coefplot(mod.nir, ncomp = 1:6)
plot(mod.nir, plottype = "coefficients", ncomp = 1:6) # Equivalent to the previous
Plot with legend:
coefplot(mod.nir, ncom = 1:6, legendpos = "bottomright")
End(Not run)

data(oliveoil)
mod.sens <- plsr(sensory ~ chemical, ncomp = 4, data = oliveoil)
Not run: coefplot(mod.sens, ncomp = 2:4, separate = TRUE)

cppls.fit

CPPLS (Indahl et al.)

Description

Fits a PLS model using the CPPLS algorithm.

Usage

cppls.fit(X, Y, ncomp, Y.add = NULL, center = TRUE,
stripped = FALSE, lower = 0.5, upper = 0.5,
trunc.pow = FALSE, weights = NULL, ...)

Arguments

- **X**
a matrix of observations. NAs and Infs are not allowed.

- **Y**
a vector or matrix of responses. NAs and Infs are not allowed.

- **ncomp**
the number of components to be used in the modelling.

- **Y.add**
a vector or matrix of additional responses containing relevant information about the observations.

- **center**
logical, determines if the X and Y matrices are mean centered or not. Default is to perform mean centering.

- **stripped**
logical. If TRUE the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to FALSE.

- **lower**
a vector of lower limits for power optimisation. Defaults to 0.5.

- **upper**
a vector of upper limits for power optimisation. Defaults to 0.5.

- **trunc.pow**
logical. If TRUE an experimental alternative power algorithm is used. (Optional)

- **weights**
a vector of individual weights for the observations. (Optional)

- **...**
other arguments. Currently ignored.

Details

This function should not be called directly, but through the generic functions cppls or mvr with the argument method="cppls". Canonical Powered PLS (CPPLS) is a generalisation of PLS incorporating discrete and continuous responses (also simultaneously), additional responses, individual weighting of observations and power methodology for sharpening focus on groups of variables. Depending on the input to cppls it can produce the following special cases:

- **PLS**: uni-response continuous Y
- **PPLS**: uni-response continuous Y, (lower || upper) ! = 0.5
- **PLS-DA (using correlation maximisation - B/W)**: dummy-coded discrete response Y
- **PPLS-DA**: dummy-coded discrete response Y, (lower || upper) ! = 0.5
- **CPLS**: multi-response Y (continuous, discrete or combination)
- **CPPLS**: multi-response Y (continuous, discrete or combination), (lower || upper) ! = 0.5

The name "canonical" comes from canonical correlation analysis which is used when calculating vectors of loading weights, while "powered" refers to a reparameterisation of the vectors of loading weights which can be optimised over a given interval.

Value

A list containing the following components is returned:

- **coefficients** an array of regression coefficients for 1, ..., ncomp components. The dimensions of coefficients are c(nvar, npred, ncomp) with nvar the number of X variables and npred the number of variables to be predicted in Y.

- **scores** a matrix of scores.
loadings a matrix of loadings.
loading.weights a matrix of loading weights.
Yscores a matrix of Y-scores.
Yloadings a matrix of Y-loadings.
projection the projection matrix used to convert X to scores.
Xmeans a vector of means of the X variables.
Ymeans a vector of means of the Y variables.
fitted.values an array of fitted values. The dimensions of fitted.values are c(nobj, npred, ncomp) with nobj the number samples and npred the number of Y variables.
residuals an array of regression residuals. It has the same dimensions as fitted.values.
Xvar a vector with the amount of X-variance explained by each component.
Xtotvar total variance in X.
gammas gamma-values obtained in power optimisation.
canonical.correlations Canonical correlation values from the calculations of loading weights.
A matrix containing vectors of weights a from canonical correlation (cor(Za, Yb)).
smallNorms vector of indices of explanatory variables of length close to or equal to 0.

If stripped is TRUE, only the components coefficients, Xmeans, Ymeans and gammas are returned.

Author(s)
Kristian Hovde Liland

References

See Also
mvnr plsr pcr widekernelpls.fit simples.fit oscorespls.fit

Examples

data(mayonnaise)
Create dummy response
mayonnaise$dummy <-
I(model.matrix(~y-1, data.frame(y = factor(mayonnaise$oil.type))))
Predict CPLS scores for test data
may.cpls <- cplsls(dummy ~ NIR, 10, data = mayonnaise, subset = train)
may.test <- predict(may.cpls, newdata = mayonnaise[[mayonnaise$train,], type = "score"])

Predict CPLS scores for test data (experimental used design as additional Y information)
may.cpls.yadd <- cplsls(dummy ~ NIR, 10, data = mayonnaise, subset = train, Y.add=design)
may.test.yadd <- predict(may.cpls.yadd, newdata = mayonnaise[[mayonnaise$train,], type = "score"])

Classification by linear discriminant analysis (LDA)
library(MASS)
error <- matrix(ncol = 10, nrow = 2)
dimnames(error) <- list(Model = c('CPLS', 'CPLS (Y.add)'), ncomp = 1:10)
for (i in 1:10) {
 fitdata1 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
 NIR.score = I(may.cpls$scores[,1:i,drop=FALSE]))
 testdata1 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
 NIR.score = I(may.test[,1:i,drop=FALSE]))
 error[1,i] <- (42 - sum(predict(lda(oil.type ~ NIR.score, data = fitdata1),
 newdata = testdata1$oil.type) == testdata1$oil.type) / 42
 fitdata2 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
 NIR.score = I(may.cpls.yadd$scores[,1:i,drop=FALSE]))
 testdata2 <- data.frame(oil.type = mayonnaise$oil.type[mayonnaise$train],
 NIR.score = I(may.test.yadd[,1:i,drop=FALSE]))
 error[2,i] <- (42 - sum(predict(lda(oil.type ~ NIR.score, data = fitdata2),
 newdata = testdata2$oil.type) == testdata2$oil.type) / 42
}
round(error,2)

crossval

Cross-validation of PLSR and PCR models

Description

A “stand alone” cross-validation function for mvr objects.

Usage

crossval(object, segments = 10,
 segment.type = c("random", "consecutive", "interleaved"),
 length.seg, jackknife = FALSE, trace = 15, ...)

Arguments

object an mvr object; the regression to cross-validate.
segments the number of segments to use, or a list with segments (see below).
segment.type the type of segments to use. Ignored if segments is a list.
length.seg Positive integer. The length of the segments to use. If specified, it overrides
segments unless segments is a list.
jackknife logical. Whether jackknifing of regression coefficients should be performed.
trace if TRUE, tracing is turned on. If numeric, it denotes a time limit (in seconds).
If the estimated total time of the cross-validation exceeds this limit, tracing is
turned on.
... additional arguments, sent to the underlying fit function.

Details

This function performs cross-validation on a model fit by mvr. It can handle models such as
plsr(y ~ msc(x), ...) or other models where the predictor variables need to be recalculated for
each segment. When recalculation is not needed, the result of crossval(mvr(...)) is identical to
mvr(..., validation = "CV"), but slower.

Note that to use crossval, the data must be specified with a data argument when fitting object.
If segments is a list, the arguments segment.type and length.seg are ignored. The elements
of the list should be integer vectors specifying the indices of the segments. See cvsegments for
details.

Otherwise, segments of type segment.type are generated. How many segments to generate is
selected by specifying the number of segments in segments, or giving the segment length in
length.seg. If both are specified, segments is ignored.
If jackknife is TRUE, jackknifed regression coefficients are returned, which can be used for
variance estimation (var.jack) or hypothesis testing (jack.test).

When tracing is turned on, the segment number is printed for each segment.

By default, the cross-validation will be performed serially. However, it can be done in parallel
using functionality in the parallel package by setting the option parallel in pls.options. See
pls.options for the different ways to specify the parallelism. See also Examples below.

Value

The supplied object is returned, with an additional component validation, which is a list with
components

method euqals "CV" for cross-validation.
pred an array with the cross-validated predictions.
coefficients (only if jackknife is TRUE) an array with the jackknifed regression coefficients.
The dimensions correspond to the predictors, responses, number of components,
and segments, respectively.
PRESS0 a vector of PRESS values (one for each response variable) for a model with zero
components, i.e., only the intercept.
PRESS a matrix of PRESS values for models with 1, ..., ncomp components. Each row
corresponds to one response variable.
adj a matrix of adjustment values for calculating bias corrected MSEP. MSEP uses this.
segments the list of segments used in the cross-validation.
crossval

ncomp the number of components.
gammas if method cppls is used, gamma values for the powers of each CV segment are returned.

Note
The PRESS0 is always cross-validated using leave-one-out cross-validation. This usually makes little difference in practice, but should be fixed for correctness.

The current implementation of the jackknife stores all jackknife-replicates of the regression coefficients, which can be very costly for large matrices. This might change in a future version.

Author(s)
Ron Wehrens and Bjørn-Helge Mevik

References

See Also
mvr mvrCv cvsegments MSEP var.jack jack.test

Examples
data(yarn)
yarn.pcr <- pcr(density ~ msc(NIR), 6, data = yarn)
yarn.cv <- crossval(yarn.pcr, segments = 10)
Not run: plot(MSEP(yarn.cv))

Not run:
Parallelised cross-validation, using transient cluster:
pls.options(parallel = 4) # use mclapply (not available on Windows)
pls.options(parallel = quote(parallel::makeCluster(4, type = "PSOCK"))) # parLapply
A new cluster is created and stopped for each cross-validation:
yarn.cv <- crossval(yarn.pcr)
yarn.loocv <- crossval(yarn.pcr, length.seg = 1)

Parallelised cross-validation, using persistent cluster:
library(parallel)
This creates the cluster:
pls.options(parallel = makeCluster(4, type = "FORK")) # not available on Windows
pls.options(parallel = makeCluster(4, type = "PSOCK"))
The cluster can be used several times:
yarn.cv <- crossval(yarn.pcr)
yarn.loocv <- crossval(yarn.pcr, length.seg = 1)
The cluster should be stopped manually afterwards:
stopCluster(pls.options())$parallel)
cvsegments

Generate segments for cross-validation

Description
The function generates a list of segments for cross-validation. It can generate random, consecutive and interleaved segments, and supports keeping replicates in the same segment.

Usage

```r
cvsegments(N, k, length.seg = ceiling(N / k), nrep = 1,
           type = c("random", "consecutive", "interleaved"))
```

Arguments

- **N**: Integer. The number of rows in the data set.
- **k**: Integer. The number of segments to return.
- **length.seg**: Integer. The length of the segments. If given, it overrides k.
- **nrep**: Integer. The number of (consecutive) rows that are replicates of the same object. Replicates will always be kept in the same segment.
- **type**: One of "random", "consecutive" and "interleaved". The type of segments to generate. Default is "random".

Details

If `length.seg` is specified, it is used to calculate the number of segments to generate. Otherwise `k` must be specified. If \(k \times length.seg \neq N \), the \(k \times length.seg - N \) last segments will contain only \(length.seg - 1 \) indices.

If `type` is "random", the indices are allocated to segments in random order. If it is "consecutive", the first segment will contain the first \(length.seg \) indices, and so on. If `type` is "interleaved", the first segment will contain the indices \(1, length.seg + 1, 2 \times length.seg + 1, \ldots, (k - 1) \times length.seg + 1 \), and so on.
If \(n_{\text{rep}} \rangle, \) it is assumed that each \(n_{\text{rep}} \) consecutive rows are replicates (repeated measurements) of the same object, and care is taken that replicates are never put in different segments.

Warning: If \(k \) does not divide \(n \), a specified \(\text{length}. \text{seg} \) does not divide \(n \), or \(n_{\text{rep}} \) does not divide \(\text{length}. \text{seg} \), the number of segments and/or the segment length will be adjusted as needed. Warnings are printed for some of these cases, and one should always inspect the resulting segments to make sure they are as expected.

Value

A list of vectors. Each vector contains the indices for one segment. The attribute "incomplete" contains the number of incomplete segments, and the attribute "type" contains the type of segments.

Author(s)

Bjørn-Helge Mevik and Ron Wehrens

Examples

```r
## Segments for 10-fold randomised cross-validation:
cvsegments(100, 10)

## Segments with four objects, taken consecutive:
cvsegments(60, length.seg = 4, type = "cons")

## Incomplete segments
segs <- cvsegments(50, length.seg = 3)
attr(segs, "incomplete")

## Leave-one-out cross-validation:
cvsegments(100, 100)
## Leave-one-out with variable/unknown data set size \( n \):
n <- 50
cvsegments(n, length.seg = 1)

## Data set with replicates
cvsegments(100, 25, nrep = 2)
## Note that rows 1 and 2 are in the same segment, rows 3 and 4 in the
## same segment, and so on.
```

gasoline

Octane numbers and NIR spectra of gasoline

Description

A data set with NIR spectra and octane numbers of 60 gasoline samples. The NIR spectra were measured using diffuse reflectance as \(\log(1/R) \) from 900 nm to 1700 nm in 2 nm intervals, giving 401 wavelengths. Many thanks to John H. Kalivas.
Usage
gasoline

Format
A data frame with 60 observations on the following 2 variables.

octane a numeric vector. The octane number.
NIR a matrix with 401 columns. The NIR spectrum.

Source

jack.test Jackknife approximate t tests of regression coefficients

Description
Performes approximate t tests of regression coefficients based on jackknife variance estimates.

Usage
jack.test(object, ncomp = object$ncomp, use.mean = TRUE)
S3 method for class 'jacktest'
print(x, P.values = TRUE, ...)

Arguments
object an mvr object. A cross-validated model fitted with jackknife = TRUE.
ncomp the number of components to use for estimating the variances
use.mean logical. If TRUE (default), the mean coefficients are used when estimating the (co)variances; otherwise the coefficients from a model fitted to the entire data set. See var.jack for details.
x an jacktest object, the result of jack.test.
P.values logical. Whether to print p values (default).
... Further arguments sent to the underlying print function printCoefmat.

Details
jack.test uses the variance estimates from var.jack to perform t tests of the regression coefficients. The resulting object has a print method, print.jacktest, which uses printCoefmat for the actual printing.
Value

`jack.test` returns an object of class "jacktest", with components

- `coefficients` The estimated regression coefficients
- `sd` The square root of the jackknife variance estimates
- `tvalues` The t statistics
- `df` The ‘degrees of freedom’ used for calculating p values
- `pvalues` The calculated p values

`print.jacktest` returns the "jacktest" object (invisibly).

Warning

The jackknife variance estimates are known to be biased (see `var.jack`). Also, the distribution of the regression coefficient estimates and the jackknife variance estimates are unknown (at least in PLSR/PCR). Consequently, the distribution (and in particular, the degrees of freedom) of the resulting t statistics is unknown. The present code simply assumes a t distribution with $m - 1$ degrees of freedom, where m is the number of cross-validation segments.

Therefore, the resulting p values should not be used uncritically, and should perhaps be regarded as mere indicator of (non-)significance.

Finally, also keep in mind that as the number of predictor variables increase, the problem of multiple tests increases correspondingly.

Author(s)

Bjørn-Helge Mevik

References

See Also

- `var.jack`, `mvrCv`

Examples

data(oliveoil)
mod <- pcr(sensory ~ chemical, data = oliveoil, validation = "LOO", jackknife = TRUE)
jack.test(mod, ncomp = 2)
Kernel PLS (Dayal and MacGregor)

Description
Fits a PLSR model with the kernel algorithm.

Usage
kernelpls.fit(xL yL ncompL center = TRUE, stripped = FALSE, ...)

Arguments
X a matrix of observations. NAs and Infs are not allowed.
Y a vector or matrix of responses. NAs and Infs are not allowed.
ncomp the number of components to be used in the modelling.
center logical, determines if the X and Y matrices are mean centered or not. Default is to perform mean centering.
stripped logical. If TRUE the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to FALSE.
... other arguments. Currently ignored.

Details
This function should not be called directly, but through the generic functions pls or mvr with the argument method="kernelpls" (default). Kernel PLS is particularly efficient when the number of objects is (much) larger than the number of variables. The results are equal to the NIPALS algorithm. Several different forms of kernel PLS have been described in literature, e.g. by De Jong and Ter Braak, and two algorithms by Dayal and MacGregor. This function implements the fastest of the latter, not calculating the crossproduct matrix of X. In the Dyal & MacGregor paper, this is "algorithm 1".

Value
A list containing the following components is returned:

coefficients an array of regression coefficients for 1,..., ncomp components. The dimensions of coefficients are c(nvar, npred, ncomp) with nvar the number of X variables and npred the number of variables to be predicted in Y.
scores a matrix of scores.
loadings a matrix of loadings.
loading.weights a matrix of loading weights.
yscores a matrix of Y-scores.
Yloadings a matrix of Y-loadings.
projection the projection matrix used to convert X to scores.
Xmeans a vector of means of the X variables.
Ymeans a vector of means of the Y variables.
fitted.values an array of fitted values. The dimensions of fitted.values are c(nobj, npred, ncomp) with nobj the number samples and npred the number of Y variables.
residuals an array of regression residuals. It has the same dimensions as fitted.values.
xvar a vector with the amount of X-variance explained by each component.
Xtotvar Total variance in X.

If stripped is TRUE, only the components coefficients, Xmeans and Ymeans are returned.

Author(s)
Ron Wehrens and Bjørn-Helge Mevik

References

See Also
mvr plsr cppls pcr widekernelpls.fit simpls.fit oscorespls.fit

mayonnaise

NIR measurements and oil types of mayonnaise

Description

Raw NIR measurements (351 wavelengths, 1100-2500 nm in steps of 4 nm) taken on 54 samples of mayonnaise based on six different oil types (soybean, sunflower, canola, olive, corn, and grapeseed). The resulting 54 samples were measured in triplicates, resulting in 54 x 3 = 162 different spectra (120/42 training/test).

Usage
data(mayonnaise)
Format

A data frame with 162 observations on the following 4 variables.

- **NIR**: a matrix with 351 columns
- **oil_type**: a numeric vector
- **design**: a matrix with 5 columns
- **train**: a logical vector

Source

Description

Performs multiplicative scatter/signal correction on a data matrix.

Usage

```r
msc(X, reference = NULL)
## S3 method for class 'msc'
predict(object, newdata, ...)
## S3 method for class 'msc'
makepredictcall(var, call)
```

Arguments

- **X, newdata**: numeric matrices. The data to scatter correct.
- **reference**: numeric vector. Spectre to use as reference. If NULL, the column means of X are used.
- **object**: an object inheriting from class "msc", normally the result of a call to msc with a single matrix argument.
- **var**: A variable.
- **call**: The term in the formula, as a call.
- **...**: other arguments. Currently ignored.

Details

`makepredictcall.msc` is an internal utility function; it is not meant for interactive use. See `makepredictcall` for details.
Value

Both `msc` and `predict.msc` return a multiplicative scatter corrected matrix, with attribute "reference" the vector used as reference spectre. The matrix is given class c("msc", "matrix"). For `predict.msc`, the "reference" attribute of object is used as reference spectre.

Author(s)

Bjørn-Helge Mevik and Ron Wehrens

References

See Also

`mvr`, `pcr`, `plsr`, `stdize`

Examples

data(yarn)

```r
# Direct correction:
Ztrain <- msc(yarn$NIR[yarn$train,])
Ztest <- predict(Ztrain, yarn$NIR[!yarn$train,])

# Used in formula:
mod <- plsr(density ~ msc(NIR), ncomp = 6, data = yarn[yarn$train,])
pred <- predict(mod, newdata = yarn[!yarn$train,]) # Automatically scatter corrected
```

mvr

Partial Least Squares and Principal Component Regression

Description

Functions to perform partial least squares regression (PLSR), canonical powered partial least squares (CPPLS) or principal component regression (PCR), with a formula interface. Cross-validation can be used. Prediction, model extraction, plot, print and summary methods exist.

Usage

```r
mvr(formula, ncomp, Y.add, data, subset, na.action,
    method = pls.options()$mvralg,
    scale = FALSE, center = TRUE, validation = c("none", "CV", "LOO"),
    model = TRUE, x = FALSE, y = FALSE, ...)
nplsr(..., method = pls.options()$nplralg)
ccppl(..., Y.add, weights, method = pls.options()$ccpplsalg)
plsr(..., method = pls.options()$plsralg)
```
Arguments

formula a model formula. Most of the \texttt{lm} formula constructs are supported. See below.
ncomp the number of components to include in the model (see below).
Y.add a vector or matrix of additional responses containing relevant information about
the observations. Only used for \texttt{cppls}.
data an optional data frame with the data to fit the model from.
subset a function which indicates what should happen when the data contain missing
values. The default is set by the \texttt{na.action} setting of \texttt{options}, and is \texttt{na.fail}
if that is unset. The ‘factory-fresh’ default is \texttt{na.omit}. Another possible value
is NULL, no action. Value \texttt{na.exclude} can be useful. See \texttt{na.omit} for other
alternatives.
method the multivariate regression method to be used. If "\texttt{model.frame}"), the model
frame is returned.
scale numeric vector, or logical. If numeric vector, X is scaled by dividing each
variable with the corresponding element of \texttt{scale}. If \texttt{scale} is \texttt{TRUE}, X is scaled
by dividing each variable by its sample standard deviation. If cross-validation is
selected, scaling by the standard deviation is done for every segment.
center logical, determines if the X and Y matrices are mean centered or not. Default
is to perform mean centering.
validation character. What kind of (internal) validation to use. See below.
model a logical. If \texttt{TRUE}, the model frame is returned.
x a logical. If \texttt{TRUE}, the model matrix is returned.
y a logical. If \texttt{TRUE}, the response is returned.
weights a vector of individual weights for the observations. Only used for \texttt{cppls}. (Opt-
ional)
... additional optional arguments, passed to the underlying fit functions, and \texttt{mvrcv}.
Currently, the fit functions \texttt{oscorespls.fit} and \texttt{widekernelpls.fit} implement
these extra arguments:
\texttt{tol}: numeric. Tolerance used for determining convergence.
\texttt{maxit}: positive integer. The maximal number of iterations used.
and \texttt{cppls.fit} implements:
\texttt{lower}: a vector of lower limits for power optimisation.
\texttt{upper}: a vector of upper limits for power optimisation.
\texttt{trunc.pow}: logical. Whether to use an experimental alternative power algo-

\texttt{mvrcv} implements several arguments; the following are probably the most useful
of them:
\texttt{segments}: the number of segments to use, or a list with segments.
\texttt{segment.type}: the type of segments to use.
\texttt{length.seg}: Positive integer. The length of the segments to use.
\texttt{jackknife}: logical. Whether to perform jackknifing of regression coefficients.
See the functions’ documentation for details.
Details

The functions fit PLSR, CPPLS or PCR models with 1, ..., ncomp number of components. Multi-
response models are fully supported.

The type of model to fit is specified with the method argument. Four PLSR algorithms are avail-
able: the kernel algorithm ("kernelpls"), the wide kernel algorithm ("widekernelpls"), SIMPLS
("simpls") and the classical orthogonal scores algorithm ("oscorespls"). One CPPLS algorithm
is available ("cppls") providing several extensions to PLS. One PCR algorithm is available: using
the singular value decomposition ("svdpc"). If method is "model.frame", the model frame
is returned. The functions pcr, plsr and cppls are wrappers for mvr, with different values for
method.

The formula argument should be a symbolic formula of the form response ~ terms, where
response is the name of the response vector or matrix (for multi-response models) and terms is the
name of one or more predictor matrices, usually separated by +, e.g., water ~ FTIR or y ~ X + Z.
See lm for a detailed description. The named variables should exist in the supplied data data frame
or in the global environment. Note: Do not use mvr(mydata$y ~ mydata$X, ...) instead
use mvr(y ~ X, data = mydata, ...). Otherwise, predict.mvr will not work properly. The
chapter 'Statistical models in R' of the manual 'An Introduction to R' distributed
with R is a good reference on formulas in R.

The number of components to fit is specified with the argument ncomp. It this is not supplied, the
maximal number of components is used (taking account of any cross-validation).

All implemented algorithms mean-center both predictor and response matrices. This can be turned
off by specifying center = FALSE. See Seasholtz and Kowalski for a discussion about centering in
PLS regression.

If validation = "CV", cross-validation is performed. The number and type of cross-validation
segments are specified with the arguments segments and segment.type. See mvrCv for details.
If validation = "LOO", leave-one-out cross-validation is performed. It is an error to specify the
segments when validation = "LOO" is specified.

By default, the cross-validation will be performed serially. However, it can be done in parallel
using functionality in the parallel package by setting the option parallel in pls.options. See
pls.options for the different ways to specify the parallelism. See also Examples below.

Note that the cross-validation is optimised for speed, and some generality has been sacrificed. Es-
specially, the model matrix is calculated only once for the complete cross-validation, so models like
y ~ msc(x) will not be properly cross-validated. However, scaling requested by scale = TRUE
is properly cross-validated. For proper cross-validation of models where the model matrix must be
updated/regenerated for each segment, use the separate function crossval.

Value

If method = "model.frame", the model frame is returned. Otherwise, an object of class mvr is
returned. The object contains all components returned by the underlying fit function. In addition, it
contains the following components:

validation if validation was requested, the results of the cross-validation. See mvrCv for
details.

fit.time the elapsed time for the fit. This is used by crossval to decide whether to turn
on tracing.
na.action if observations with missing values were removed, na.action contains a vector with their indices. The class of this vector is used by functions like fitted to decide how to treat the observations.

ncomp the number of components of the model.

method the method used to fit the model. See the argument method for possible values.

scale if scaling was requested (with scale), the scaling used.

call the function call.

terms the model terms.

model if model = TRUE, the model frame.

x if x = TRUE, the model matrix.

y if y = TRUE, the model response.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

References

See Also

kernelpls.fit, widekernelpls.fit, simpls.fit, oscorespls.fit, cppls.fit, svdpc.fit, mvrCv, crossval, loadings, scores, loading.weights, coef.mvr, predict.mvr, R2, MSEP, RMSEP, plot.mvr

Examples

data(yarn)

Default methods:
yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.pls <- pls(density ~ NIR, 6, data = yarn, validation = "CV")
yarn.ccppls <- ccppls(density ~ NIR, 6, data = yarn, validation = "CV")

Alternative methods:
yarn.oscorespls <- mvr(density ~ NIR, 6, data = yarn, validation = "CV",
 method = "oscorespls")
yarn.simpls <- mvr(density ~ NIR, 6, data = yarn, validation = "CV",
 method = "simpls")

Not run:
Parallellised cross-validation, using transient cluster:
plsr.options(parallel = 4) # use mclapply
plsr.options(parallel = quote(makeCluster(4, type = "PSOCK"))) # use parLapply
A new cluster is created and stopped for each cross-validation:
yarn.pls <- plsr(density ~ NIR, 6, data = yarn, validation = "CV")
mvrCv

Cross-validation

Performs the cross-validation calculations for `mvr`.

Usage

```r
mvrCv(X, Y, ncomp, Y.add = NULL, weights = NULL, 
      method = pls.options()$mvralg, scale = FALSE, 
      segments = 10, segment.type = c("random", "consecutive", "interleaved"), 
      length.seg, jackknife = FALSE, trace = FALSE, ...)
```
Arguments

- **X**: a matrix of observations. NAs and Infs are not allowed.
- **Y**: a vector or matrix of responses. NAs and Infs are not allowed.
- **ncomp**: the number of components to be used in the modelling.
- **Y.add**: a vector or matrix of additional responses containing relevant information about the observations. Only used for cppls.
- **weights**: a vector of individual weights for the observations. Only used for cppls. (Optional)
- **method**: the multivariate regression method to be used.
- **scale**: logical. If TRUE, the learning X data for each segment is scaled by dividing each variable by its sample standard deviation. The prediction data is scaled by the same amount.
- **segments**: the number of segments to use, or a list with segments (see below).
- **segment.type**: the type of segments to use. Ignored if segments is a list.
- **length.seg**: Positive integer. The length of the segments to use. If specified, it overrides segments unless segments is a list.
- **jackknife**: logical. Whether jackknifing of regression coefficients should be performed.
- **trace**: logical; if TRUE, the segment number is printed for each segment.
- **...**: additional arguments, sent to the underlying fit function.

Details

This function is not meant to be called directly, but through the generic functions pcr, plsr, cppls or mvr with the argument validation set to "CV" or "L00". All arguments to mvrCv can be specified in the generic function call.

If segments is a list, the arguments segment.type and length.seg are ignored. The elements of the list should be integer vectors specifying the indices of the segments. See cvsegments for details.

Otherwise, segments of type segment.type are generated. How many segments to generate is selected by specifying the number of segments in segments, or giving the segment length in length.seg. If both are specified, segments is ignored.

If jackknife is TRUE, jackknifed regression coefficients are returned, which can be used for for variance estimation (var.jack) or hypothesis testing (jack.test).

X and Y do not need to be centered.

Note that this function cannot be used in situations where X needs to be recalculated for each segment (except for scaling by the standard deviation), for instance with msc or other preprocessing. For such models, use the more general (but slower) function crossval.

Also note that if needed, the function will silently(!) reduce ncomp to the maximal number of components that can be cross-validated, which is \(n - l - 1 \), where \(n \) is the number of observations and \(l \) is the length of the longest segment. The (possibly reduced) number of components is returned as the component ncomp.

By default, the cross-validation will be performed serially. However, it can be done in parallel using functionality in the parallel package by setting the option parallel in pls.options. See pls.options for the different ways to specify the parallelism.
Value

A list with the following components:

- **method**: equals "CV" for cross-validation.
- **pred**: an array with the cross-validated predictions.
- **coefficients** (only if jackknife is TRUE) an array with the jackknifed regression coefficients. The dimensions correspond to the predictors, responses, number of components, and segments, respectively.
- **PRESS0**: a vector of PRESS values (one for each response variable) for a model with zero components, i.e., only the intercept.
- **PRESS**: a matrix of PRESS values for models with 1, ..., ncomp components. Each row corresponds to one response variable.
- **adj**: a matrix of adjustment values for calculating bias corrected MSEP. MSEP uses this.
- **segments**: the list of segments used in the cross-validation.
- **ncomp**: the actual number of components used.
- **gamma**: if method cppls is used, gamma values for the powers of each CV segment are returned.

Note

The PRESS0 is always cross-validated using leave-one-out cross-validation. This usually makes little difference in practice, but should be fixed for correctness.

The current implementation of the jackknife stores all jackknife-replicates of the regression coefficients, which can be very costly for large matrices. This might change in a future version.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

References

See Also

- `mvr` `crossval` `cvsegments` `MSEP` `varNjack` `jackNtest`

Examples

```r
data(yarn)
yarn.pcr <- pcr(density ~ nirL, 6, data = yarn, validation = "CV", segments = 10)
## Not run: plot(MSEP(yarn.pcr))
```
Description

Functions to estimate the mean squared error of prediction (MSEP), root mean squared error of prediction (RMSEP) and R^2 (A.K.A. coefficient of multiple determination) for fitted PCR and PLSR models. Test-set, cross-validation and calibration-set estimates are implemented.

Usage

MSEP(object, ...)
 ## S3 method for class 'mvr'
 MSEP(object, estimate, newdata, ncomp = 1:object$ncomp, comps,
 intercept = cumulative, se = FALSE, ...)

RMSEP(object, ...)
 ## S3 method for class 'mvr'
 RMSEP(object, ...)

R2(object, ...)
 ## S3 method for class 'mvr'
 R2(object, estimate, newdata, ncomp = 1:object$ncomp, comps,
 intercept = cumulative, se = FALSE, ...)

mvrValstats(object, estimate, newdata, ncomp = 1:object$ncomp, comps,
 intercept = cumulative, se = FALSE, ...)

Arguments

object an mvr object
estimate a character vector. Which estimators to use. Should be a subset of \{"all", "train", "CV", "adjCV",
 "adjCV" is only available for (R)MSEP. See below for how the estimators are chosen.
newdata a data frame with test set data.
ncomp, comps a vector of positive integers. The components or number of components to use. See below.
intercept logical. Whether estimates for a model with zero components should be returned as well.
se logical. Whether estimated standard errors of the estimates should be calculated. Not implemented yet.
... further arguments sent to underlying functions or (for RMSEP) to MSEP
Details

RMSEP simply calls MSE and takes the square root of the estimates. It therefore accepts the same arguments as MSE.

Several estimators can be used. "train" is the training or calibration data estimate, also called (R)MSEC. For R2, this is the unadjusted R^2. It is overoptimistic and should not be used for assessing models. "CV" is the cross-validation estimate, and "adjCV" (for RMSEP and MSE) is the bias-corrected cross-validation estimate. They can only be calculated if the model has been cross-validated. Finally, "test" is the test set estimate, using newdata as test set.

Which estimators to use is decided as follows (see below for mvrValstats). If estimate is not specified, the test set estimate is returned if newdata is specified, otherwise the CV and adjusted CV (for RMSEP and MSE) estimates if the model has been cross-validated, otherwise the training data estimate. If estimate is "all", all possible estimates are calculated. Otherwise, the specified estimates are calculated.

Several model sizes can also be specified. If comps is missing (or is NULL), length(ncomp) models are used, with ncomp[1] components, ..., ncomp[length(ncomp)] components. Otherwise, a single model with the components comps[1], ..., comps[length(comps)] is used. If intercept is TRUE, a model with zero components is also used (in addition to the above).

The R^2 values returned by "R2" are calculated as $1 - SSE/SST$, where SST is the (corrected) total sum of squares of the response, and SSE is the sum of squared errors for either the fitted values (i.e., the residual sum of squares), test set predictions or cross-validated predictions (i.e., the PRESS). For estimate = "train", this is equivalent to the squared correlation between the fitted values and the response. For estimate = "train", the estimate is often called the prediction R^2.

mvrValstats is a utility function that calculates the statistics needed by MSE and R2. It is not intended to be used interactively. It accepts the same arguments as MSE and R2. However, the estimate argument must be specified explicitly: no partial matching and no automatic choice is made. The function simply calculates the types of estimates it knows, and leaves the other untouched.

Value

mvrValstats returns a list with components

- **SSE** three-dimensional array of SSE values. The first dimension is the different estimators, the second is the response variables and the third is the models.
- **SST** matrix of SST values. The first dimension is the different estimators and the second is the response variables.
- **nobj** a numeric vector giving the number of objects used for each estimator.
- **comps** the components specified, with 0 prepended if intercept is TRUE.
- **cumulative** TRUE if comps was NULL or not specified.

The other functions return an object of class "mvrVal", with components

- **val** three-dimensional array of estimates. The first dimension is the different estimators, the second is the response variables and the third is the models.
- **type** "MSEP", "RMSEP" or "R2".
comps the components specified, with 0 prepended if intercept is TRUE.
cumulative TRUE if comps was NULL or not specified.
call the function call

Author(s)
Ron Wehrens and Bjørn-Helge Mevik

References

See Also
mvr, crossval, mvrCv, validationplot, plot.mvrVal

Examples
data(oliveoil)
mod <- plsr(sensory ~ chemical, ncomp = 4, data = oliveoil, validation = "LOO")
RMSEP(mod)
Not run: plot(R2(mod))

Description
A data set with scores on 6 attributes from a sensory panel and measurements of 5 physico-chemical quality parameters on 16 olive oil samples. The first five oils are Greek, the next five are Italian and the last six are Spanish.

Usage
oliveoil

Format
A data frame with 16 observations on the following 2 variables.
chemical a matrix with 5 columns. Measurements of acidity, peroxide, K232, K270, and DK.

Source
oscorespls.fit

Orthogonal scores PLSR

Description

Fits a PLSR model with the orthogonal scores algorithm (aka the NIPALS algorithm).

Usage

oscorespls.fit(X, Y, ncomp, center = TRUE, stripped = FALSE,
 tol = .Machine$double.eps^0.5, maxit = 100, ...)

Arguments

X
 a matrix of observations. NAs and Infs are not allowed.
Y
 a vector or matrix of responses. NAs and Infs are not allowed.
ncomp
 the number of components to be used in the modelling.
center
 logical, determines if the X and Y matrices are mean centered or not. Default is to perform mean centering.
stripped
 logical. If TRUE the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to FALSE.
tol
 numeric. The tolerance used for determining convergence in multi-response models.
maxit
 positive integer. The maximal number of iterations used in the internal Eigenvector calculation.
...
 other arguments. Currently ignored.

Details

This function should not be called directly, but through the generic functions plsr or mvr with the argument method="oscorespls". It implements the orthogonal scores algorithm, as described in Martens and Næs (1989). This is one of the two "classical" PLSR algorithms, the other being the orthogonal loadings algorithm.

Value

A list containing the following components is returned:

coefficients an array of regression coefficients for 1, ..., ncomp components. The dimensions of coefficients are c(nvar, npred, ncomp) with nvar the number of X variables and npred the number of variables to be predicted in Y.
scores a matrix of scores.
loadings a matrix of loadings.
loading.weights
a matrix of loading weights.

Yscores
a matrix of Y-scores.

Yloadings
a matrix of Y-loadings.

projection
the projection matrix used to convert X to scores.

Xmeans
a vector of means of the X variables.

Ymeans
a vector of means of the Y variables.

fitted.values
an array of fitted values. The dimensions of fitted.values are c(nobj, npred, ncomp)
with nobj the number samples and npred the number of Y variables.

residuals
an array of regression residuals. It has the same dimensions as fitted.values.

Xvar
a vector with the amount of X-variance explained by each component.

Xtotvar
Total variance in X.

If stripped is TRUE, only the components coefficients, Xmeans and Ymeans are returned.

Author(s)
Ron Wehrens and Bjørn-Helge Mevik

References

See Also
mvr plsr pcr kernelpls.fit widekernelpls.fit simpls.fit

plot.mvr

Plot Method for MVR objects

Description
plot.mvr plots predictions, coefficients, scores, loadings, biplots, correlation loadings or validation plots (RMSEP curves, etc.).

Usage

```r
## S3 method for class 'mvr'
plot(x, plottype = c("prediction", "validation", "coefficients",
                      "scores", "loadings", "biplot", "correlation"), ...)
```

Arguments

- `x`: an object of class mvr. The fitted model to plot.
- `plottype`: character. What kind of plot to plot.
- `...`: further arguments, sent to the underlying plot functions.
Details

The function is simply a wrapper for the underlying plot functions used to make the selected plots. See `predplot.mvr`, `validationplot`, `coefplot`, `scoreplot`, `loadingplot`, `biplot.mvr` or `corrplot` for details. Note that all arguments except `x` and `plottype` must be named.

Value

`plot.mvr` returns whatever the underlying plot function returns.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

See Also

`mvr`, `predplot.mvr`, `validationplot`, `coefplot`, `scoreplot`, `loadingplot`, `biplot.mvr`, `corrplot`

Examples

```r
data(yarn)
nir.pcr <- pcr(density ~ NIR, ncomp = 9, data = yarn, validation = "CV")
## Not run:
plot(nir.pcr, ncomp = 5) # Plot of cross-validated predictions
plot(nir.pcr, "scores") # Score plot
plot(nir.pcr, "loadings", comp = 1:3) # The three first loadings
plot(nir.pcr, "coef", ncomp = 5) # Coefficients
plot(nir.pcr, "val") # RMSEP curves
plot(nir.pcr, "val", val.type = "MSEP", estimate = "CV") # CV MSEP

## End(Not run)
```

pls.options

Set or return options for the pls package

Description

A function to set options for the `pls` package, or to return the current options.

Usage

`pls.options(...)`

Arguments

... a single list, a single character vector, or any number of named arguments (name = value).
Details

If called with no arguments, or with an empty list as the single argument, `pls.options` returns the current options.

If called with a character vector as the single argument, a list with the arguments named in the vector are returned.

If called with a non-empty list as the single argument, the list elements should be named, and are treated as named arguments to the function.

Otherwise, `pls.options` should be called with one or more named arguments `name = value`. For each argument, the option named `name` will be given the value `value`.

The recognised options are:

- **mvralg**: The fit method to use in `mvr` and `mvrcv`. The value should be one of the allowed methods. Defaults to "kernelpls". Can be overridden with the argument method in `mvr` and `mvrcv`.

- **pcralg**: The fit method to use in `pcr`. The value should be one of the allowed methods. Defaults to "svdpc". Can be overridden with the argument method in `pcr`.

- **plsralg**: The fit method to use in `plsr`. The value should be one of the allowed methods. Defaults to "kernelpls". Can be overridden with the argument method in `plsr`.

- **cpplsalg**: The fit method to use in `cppls`. The value should be one of the allowed methods. Defaults to "cppls". Can be overridden with the argument method in `cppls`.

- **parallel**: Specification of how the cross-validation (CV) in `mvr` should be performed. If the specification is `NULL` (default) or `1`, the CV is done serially, otherwise it is done in parallel using functionality from the `parallel` package.

 If it is an integer greater than 1, the CV is done in parallel with the specified number of processes, using `mclapply`.

 If it is a cluster object created by `makeCluster`, the CV is done in parallel on that cluster, using `parLapply`. The user should stop the cluster herself when it is no longer needed, using `stopCluster`.

 Finally, if the specification is an unevaluated call to `makeCluster`, the call is evaluated, and the CV is done in parallel on the resulting cluster, using `parLapply`. In this case, the cluster will be stopped (with `stopCluster`) after the CV. Thus, in the final case, the cluster is created and destroyed for each CV, just like when using `mclapply`.

- **w.tol**: The tolerance used for removing values close to 0 in the vectors of loading weights in `cppls`. Defaults to `.Machine$double.eps`.

- **X.tol**: The tolerance used for removing predictor variables with L1 norms close to 0 in `cppls`. Defaults to `10^-12`.

Value

A list with the (possibly changed) options. If any named argument (or list element) was provided, the list is returned invisibly.

Note

The function is a slight modification of the function `sm.options` from the package `sm`.
predict.mvr

Author(s)

Bjørn-Helge Mevik and Ron Wehrens

Examples

```r
## Return current options:
pls.options()
pls.options("plsralg")
pls.options(c("plsralg", "pcralg"))

## Set options:
pls.options(plsralg = "simppls", mvralg = "simppls")
pls.options(list(plsralg = "simppls", mvralg = "simppls")) # Equivalent
pls.options()

## Restore 'factory settings':
rm(.pls.Options)
pls.options()
```

predict.mvr Predict Method for PLSR and PCR

Description

Prediction for mvr (PCR, PLSR) models. New responses or scores are predicted using a fitted model
and a new matrix of observations.

Usage

```r
## S3 method for class 'mvr'
predict(object, newdata, ncomp = 1:object$ncomp, comps,
        type = c("response", "scores"), na.action = na.pass, ...)
```

Arguments

- **object**: an mvr object. The fitted model
- **newdata**: a data frame. The new data. If missing, the training data is used.
- **ncomp, comps**: vector of positive integers. The components to use in the prediction. See below.
- **type**: character. Whether to predict scores or response values
- **na.action**: function determining what should be done with missing values in newdata. The
default is to predict NA. See `na.omit` for alternatives.
- **...**: further arguments. Currently not used
predict.mvr

Details
When type is "response" (default), predicted response values are returned. If comps is missing (or is NULL), predictions for length(ncomp) models with ncomp[1] components, ncomp[2] components, etc., are returned. Otherwise, predictions for a single model with the exact components in comps are returned. (Note that in both cases, the intercept is always included in the predictions. It can be removed by subtracting the ymeans component of the fitted model.)

When type is "scores", predicted score values are returned for the components given in comps. If comps is missing or NULL, ncomps is used instead.

It is also possible to supply a matrix instead of a data frame as newdata, which is then assumed to be the X data matrix. Note that the usual checks for the type of the data are then omitted. Also note that this is only possible with predict; it will not work in functions like predplot, RMSEP or R2, because they also need the response variable of the new data.

Value
When type is "response", a three dimensional array of predicted response values is returned. The dimensions correspond to the observations, the response variables and the model sizes, respectively.
When type is "scores", a score matrix is returned.

Note
A warning message like ‘'newdata’ had 10 rows but variable(s) found have 106 rows’ means that not all variables were found in the newdata data frame. This (usually) happens if the formula contains terms like yarn$NIR. Do not use such terms; use the data argument instead. See mvr for details.

Author(s)
Ron Wehrens and Bjørn-Helge Mevik

See Also
mvr, summary.mvr, coef.mvr, plot.mvr

Examples

data(yarn)
nir.mvr <- mvr(density ~ NIR, ncomp = 5, data = yarn[yarn$train,])

Predicted responses for models with 1, 2, 3 and 4 components
pred.resp <- predict(nir.mvr, ncomp = 1:4, newdata = yarn[!yarn$train,])

Predicted responses for a single model with components 1, 2, 3, 4
predict(nir.mvr, comps = 1:4, newdata = yarn[!yarn$train,])

Predicted scores
predict(nir.mvr, comps = 1:3, type = "scores", newdata = yarn[!yarn$train,])
Description

Functions to plot predicted values against measured values for a fitted model.

Usage

predplot(object, ...)
Default S3 method:
predplot(object, ...)
S3 method for class 'mvr'
predplot(object, ncomp = object$ncomp, which, newdata, nCols, nRows, xlab = "measured", ylab = "predicted", main, ask = nRows * nCols < nPlots && dev.interactive(), ..., font.main, cex.main)
predplotXY(x, y, line = FALSE, labels, type = "p", main = "Prediction plot", xlab = "measured response", ylab = "predicted response", line.col = par("col"), line.lty = NULL, line.lwd = NULL, ...)

Arguments

- **object**: a fitted model.
- **ncomp**: integer vector. The model sizes (numbers of components) to use for prediction.
- **which**: character vector. Which types of predictions to plot. Should be a subset of c("train", "validation", "test"). If not specified, plot.mvr selects test set predictions if newdata is supplied, otherwise cross-validated predictions if the model has been cross-validated, otherwise fitted values from the calibration data.
- **newdata**: data frame. New data to predict.
- **nCols, nRows**: integer. The number of columns and rows the plots will be laid out in. If not specified, plot.mvr tries to be intelligent.
- **xlab, ylab**: titles for x and y axes. Typically character strings, but can be expressions or lists. See title for details.
- **labels**: optional. Alternative plot labels to use. Either a vector of labels, or "names" or "numbers" to use the row names or row numbers of the data as labels.
- **type**: character. What type of plot to make. Defaults to "p" (points). See plot for a complete list of types. The argument is ignored if labels is specified.
- **main**: optional main title for the plot. See Details.
- **ask**: logical. Whether to ask the user before each page of a plot.
- **font.main**: font to use for main titles. See par for details. Also see Details below.
- **cex.main**: numeric. The magnification to be used for main titles relative to the current size. Also see Details below.
The observed response values.

numeric vector. The predicted response values.

logical. Whether a target line should be drawn.

color or numeric. The col, lty and lwd parameters for the target line. See \code{par} for details.

... further arguments sent to underlying plot functions.

\subsection*{Details}

\code{predplot} is a generic function for plotting predicted versus measured response values, with default and \code{mvr} methods currently implemented. The default method is very simple, and doesn’t handle multiple responses or new data.

The \code{mvr} method handles multiple responses, model sizes and types of predictions by making one plot for each combination. It can also be called through the plot method for \code{mvr}, by specifying \code{plottype = "prediction"} (the default).

The argument \code{main} can be used to specify the main title of the plot. It is handled in a non-standard way. If there is only one (sub) plot, \code{main} will be used as the main title of the plot. If there is more than one (sub) plot, however, the presence of \code{main} will produce a corresponding ‘global’ title on the page. Any graphical parameters, e.g., \code{cex.main}, supplied to \code{coefplot} will only affect the ‘ordinary’ plot titles, not the ‘global’ one. Its appearance can be changed by setting the parameters with \code{par}, which will affect both titles (with the exception of \code{font.main} and \code{cex.main}, which will only affect the ‘global’ title when there is more than one plot). (To have different settings for the two titles, one can override the \code{par} settings with arguments to \code{predplot}.)

\code{predplotxy} is an internal function and is not meant for interactive use. It is called by the \code{predplot} methods, and its arguments, e.g., \code{line}, can be given in the \code{predplot} call.

\subsection*{Value}

The functions invisibly return a matrix with the (last) plotted data.

\subsection*{Note}

The \code{font.main} and \code{cex.main} must be (completely) named. This is to avoid that any argument \code{cex} or \code{font} matches them.

Tip: If the labels specified with \code{labels} are too long, they get clipped at the border of the plot region. This can be avoided by supplying the graphical parameter \code{xpd = TRUE} in the plot call.

\subsection*{Author(s)}

Ron Wehrens and Bjørn-Helge Mevik

\subsection*{See Also}

\code{mvr}, \code{plot.mvr}
Examples

data(yarn)
mod <- pls(density ~ NIR, ncomp = 10, data = yarn[,], validation = "CV")
Not run:
predplot(mod, ncomp = 1:6)
plot(mod, ncomp = 1:6) # Equivalent to the previous
Both cross-validated and test set predictions:
predplot(mod, ncomp = 4:6, which = c("validation", "test"),
 newdata = yarn[!]yclic,])
End(Not run)

data(oliveoil)
mod.sens <- pls(sensory ~ chemical, ncomp = 4, data = oliveoil)
Not run: plot(mod.sens, ncomp = 2:4) # Several responses gives several plots

scoreplot

Plots of Scores, Loadings and Correlation Loadings

Description

Functions to make scatter plots of scores or correlation loadings, and scatter or line plots of loadings.

Usage

scoreplot(object, ...)
Default S3 method:
scoreplot(object, comps = 1:2, labels, identify = FALSE, type = "p",
 xlab, ylab, ...)
S3 method for class 'scores'
plot(x, ...)

loadingplot(object, ...)
Default S3 method:
loadingplot(object, comps = 1:2, scatter = FALSE, labels,
 identify = FALSE, type, lty, lwd = NULL, pch, cex = NULL,
 col, legendpos, xlab, ylab, pretty.xlabels = TRUE, xlim, ...)
S3 method for class 'loadings'
plot(x, ...)

corrplot(object, comps = 1:2, labels, plotx = TRUE, ploty = FALSE,
 radii = c(sqrt(1/2), 1), identify = FALSE, type = "p",
 xlab, ylab, col, ...)

Arguments

object an R object. The fitted model.
comps integer vector. The components to plot.
scatter logical. Whether the loadings should be plotted as a scatter instead of as lines.
labels optional. Alternative plot labels or x axis labels. See Details.
plotx logical. Whether to plot the X correlation loadings. Defaults to TRUE.
ploty logical. Whether to plot the Y correlation loadings. Defaults to FALSE.
radii numeric vector, giving the radii of the circles drawn in corrplot. The default radii represent 50% and 100% explained variance of the X variables by the chosen components.
identify logical. Whether to use identify to interactively identify points. See below.
type character. What type of plot to make. Defaults to "p" (points) for scatter plots and "l" (lines) for line plots. See plot for a complete list of types (not all types are possible/meaningful for all plots).
lty vector of line types (recycled as neccessary). Line types can be specified as integers or character strings (see par for the details).
lwd vector of positive numbers (recycled as neccessary), giving the width of the lines.
pch plot character. A character string or a vector of single characters or integers (recycled as neccessary). See points for all alternatives.
cex numeric vector of character expansion sizes (recycled as neccessary) for the plotted symbols.
col character or integer vector of colors for plotted lines and symbols (recycled as neccessary). See par for the details.
legendpos Legend position. Optional. Ignored if scatter is TRUE. If present, a legend is drawn at the given position. The position can be specified symbolically (e.g., legendpos = "topright"). This requires R >= 2.1.0. Alternatively, the position can be specified explicitly (legendpos = t(c(xLyII)) or interactively (legendpos = locator()).
xlab,ylab titles for x and y axes. Typically character strings, but can be expressions or lists. See title for details.
pretty.xlabels logical. If TRUE, loadingplot tries to plot the x labels more nicely. See Details.
xlim optional vector of length two, with the x limits of the plot.
x a scores or loadings object. The scores or loadings to plot.
... further arguments sent to the underlying plot function(s).

Details

plot.scores is simply a wrapper calling scoreplot, passing all arguments. Similarly for plot.loadings.

scoreplot is generic, currently with a default method that works for matrices and any object for which scores returns a matrix. The default scoreplot method makes one or more scatter plots of the scores, depending on how many components are selected. If one or two components are selected, and identify is TRUE, the function identify is used to interactively identify points.

Also loadingplot is generic, with a default method that works for matrices and any object where loadings returns a matrix. If scatter is TRUE, the default method works exactly like the default scoreplot method. Otherwise, it makes a lineplot of the selected loading vectors, and if identify
is TRUE, uses identify to interactively identify points. Also, if legendpos is given, a legend is drawn at the position indicated.

corrplot works exactly like the default scoreplot method, except that at least two components must be selected. The “correlation loadings”, i.e. the correlations between each variable and the selected components (see References), are plotted as pairwise scatter plots, with concentric circles of radii given by radii. Each point corresponds to a variable. The squared distance between the point and origin equals the fraction of the variance of the variable explained by the components in the panel. The default radii corresponds to 50% and 100% explained variance. By default, only the correlation loadings of the X variables are plotted, but if ploty is TRUE, also the Y correlation loadings are plotted.

scoreplot, loadingplot and corrplot can also be called through the plot method for mvr objects, by specifying plottype as "scores", "loadings" or "correlation", respectively. See plot.mvr.

The argument labels can be a vector of labels or one of "names" and "numbers".

If a scatter plot is produced (i.e., scoreplot, corrplot, or loadingplot with scatter = TRUE), the labels are used instead of plot symbols for the points plotted. If labels is "names" or "numbers", the row names or row numbers of the matrix (scores, loadings or correlation loadings) are used.

If a line plot is produced (i.e., loadingplot), the labels are used as x axis labels. If labels is "names" or "numbers", the variable names are used as labels, the difference being that with "numbers", the variable names are converted to numbers, if possible. Variable names of the forms "number" or "number text" (where the space is optional), are handled.

The argument pretty.xlabels is only used when labels is specified for a line plot. If TRUE (default), the code tries to use a ‘pretty’ selection of labels. If labels is "numbers", it also uses the numerical values of the labels for horizontal spacing. If one has excluded parts of the spectral region, one might therefore want to use pretty.xlabels = FALSE.

Value

The functions return whatever the underlying plot function (or identify) returns.

Note

legend has many options. If you want greater control over the appearance of the legend, omit the legendpos argument and call legend manually.

Graphical parameters (such as pch and cex) can also be used with scoreplot and corrplot. They are not listed in the argument list simply because they are not handled specifically in the function (unlike in loadingplot), but passed directly to the underlying plot functions by .

Tip: If the labels specified with labels are too long, they get clipped at the border of the plot region. This can be avoided by supplying the graphical parameter xpd = TRUE in the plot call.

The handling of labels and pretty.xlabels in coefplot is experimental.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik
References

See Also
mvr, plot.mvr, scores, loadings, identify, legend

Examples
```r
data(yarn)
mod <- plsr(density ~ NIR, ncomp = 10, data = yarn)
## These three are equivalent:
## Not run:
scoreplot(mod, comps = 1:5)
plot(scores(mod), comps = 1:5)
plot(mod, plottype = "scores", comps = 1:5)

loadingplot(mod, comps = 1:5)
loadingplot(mod, comps = 1:5, legendpos = "topright") # With legend
loadingplot(mod, comps = 1:5, scatter = TRUE) # Plot as scatterplots

corrplot(mod, comps = 1:2)
corrplot(mod, comps = 1:3)
## End(Not run)
```

scores

Extract Scores and Loadings from PLSR and PCR Models

Description

These functions extract score and loading matrices from fitted mvr models.

Usage

```r
scores(object, ...)
## Default S3 method:
scores(object, ...)

loadings(object, ...)
## Default S3 method:
loadings(object, ...)

loading.weights(object)
Yscores(object)
```
Yloadings(object)

Arguments

object a fitted model to extract from.
... extra arguments, currently not used.

Details

All functions extract the indicated matrix from the fitted model, and will work with any object having a suitably named component.

The default scores and loadings methods also handle prcomp objects (their scores and loadings components are called x and rotation, resp.), and add an attribute "explvar" with the variance explained by each component, if this is available. (See explvar for details.)

Value

A matrix with scores or loadings.

Note

There is a loadings function in package stats. It simply returns any element named "loadings". See loadings for details. The function can be accessed as stats::loadings(...).

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

See Also

mvr, coef.mvr

Examples

data(yarn)
plsmod <- plsR(density ~ NIR, 6, data = yarn)
scores(plsmod)
loadings(plsmod)[,1:4]
selectNcomp

Suggestions for the optimal number of components in PCR and PLSR models

Description

Choosing the best number of components in PCR and PLSR models is difficult and usually done on the basis of visual inspection of the validation plots. In cases where large numbers of models are built this choice needs to be automated. This function implements two proposals, one based on randomization (permutation) testing, and an approach based on the standard error of the cross-validation residuals.

Usage

selectNcomp(object, method = c("randomization", "onesigma"),
 nperm = 999, alpha = 0.01, ncomp = object$ncomp,
 plot = FALSE, ...)

Arguments

object
 an mvr object. The fitted model. It should contain a validation element.

method
 character string, indicating the heuristic to use.

nperm
 number of permutations in the "randomization" approach - not used in the "onesigma" approach.

alpha
 cutoff for p values in the "randomization" approach - not used in the "onesigma" approach.

ncomp
 maximum number of components to consider when determining the global minimum in the cross-validation curve.

plot
 whether or not to show a cross-validation plot. The plot for the "randomization" approach shows models that do not differ significantly from the global RMSEP minimum with open circles; the "onesigma" approach shows the one-sigma bands around the RMSEP values. In both cases, the selection is indicated with a blue dashed line.

... Further plotting arguments, e.g., to add a title to the plot, or to limit the plotting range.

Details

In both approaches the results of cross-validation are used, so the model should have been calculated with some form of cross-validation. First, the absolute minimum in the CV curve is determined (considering only the first ncomp components), leading to the reference model. The randomization test approach (Van der Voet, 1994) checks whether the squared prediction errors of models with fewer components are significantly larger than in the reference model. This leads for each model considered to a p value; the smallest model not significantly worse than the reference model is returned as the selected one.
The approach "onesigma" simply returns the first model where the optimal CV is within one standard error of the absolute optimum (Hastie, Tibshirani and Friedman, 2009). Note that here we simply use the standard deviation of the cross-validation residuals, in line with the procedure used to calculate the error measure itself. Some other packages implementing similar procedures (such as glmnet) calculate an error measure for each validation segment separately and use the average as the final estimate. In such cases the standard error across segments is the relevant measure of spread. For LOO, the two procedures are identical. In other forms of validation, small differences will occur.

Value

A number indicating the suggested number of components in the model.

Author(s)

Ron Wehrens, Hilko van der Voet and Gerie van der Heijden

References

See Also

mvr, summary.mvr

Examples

```r
data(yarn)
yarn.pls <- pls(density ~ NIR, data = yarn, scale = TRUE, ncomp = 20, validation = "LOO")
selectNcomp(yarn.pls, "onesigma", plot = TRUE, ylim = c(0, 3))
selectNcomp(yarn.pls, "randomization", plot = TRUE)
selectNcomp(yarn.pls, "randomization", plot = TRUE, ncomp = 10, ylim = c(0, 3))
```

simpls.fit

Sijmen de Jong’s SIMPLS

Description

Fits a PLSR model with the SIMPLS algorithm.

Usage

`simpls.fit(X, Y, ncomp, center = TRUE, stripped = FALSE, ...)`
Arguments

- **X** a matrix of observations. NAs and Infs are not allowed.
- **Y** a vector or matrix of responses. NAs and Infs are not allowed.
- **ncomp** the number of components to be used in the modelling.
- **center** logical, determines if the X and Y matrices are mean centered or not. Default is to perform mean centering.
- **stripped** logical. If TRUE the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to FALSE.
- **...** other arguments. Currently ignored.

Details

This function should not be called directly, but through the generic functions `plsr` or `mvr` with the argument `method="simpls"`. SIMPLS is much faster than the NIPALS algorithm, especially when the number of X variables increases, but gives slightly different results in the case of multivariate Y. SIMPLS truly maximises the covariance criterion. According to de Jong, the standard PLS2 algorithms lie closer to ordinary least-squares regression where a precise fit is sought; SIMPLS lies closer to PCR with stable predictions.

Value

A list containing the following components is returned:

- **coefficients** an array of regression coefficients for 1, ..., ncomp components. The dimensions of coefficients are c(nvar, npred, ncomp) with nvar the number of X variables and npred the number of variables to be predicted in Y.
- **scores** a matrix of scores.
- **loadings** a matrix of loadings.
- **Yscores** a matrix of Y-scores.
- **Yloadings** a matrix of Y-loadings.
- **projection** the projection matrix used to convert X to scores.
- **Xmeans** a vector of means of the X variables.
- **Ymeans** a vector of means of the Y variables.
- **fitted.values** an array of fitted values. The dimensions of fitted.values are c(nobj, npred, ncomp) with nobj the number samples and npred the number of Y variables.
- **residuals** an array of regression residuals. It has the same dimensions as fitted.values.
- **Xvar** a vector with the amount of X-variance explained by each component.
- **Xtotvar** Total variance in X.

If stripped is TRUE, only the components coefficients, Xmeans and Ymeans are returned.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik
stdize

References

See Also

mvr plsr pcr kernelpls.fit widekernelpls.fit oscorespls.fit

stdize

Standardization of Data Matrices

Description

Performs standardization (centering and scaling) of a data matrix.

Usage

stdize(x, center = TRUE, scale = TRUE)
S3 method for class 'stdized'
predict(object, newdata, ...)
S3 method for class 'stdized'
makepredictcall(var, call)

Arguments

- x, newdata: numeric matrices. The data to standardize.
- center: logical value or numeric vector of length equal to the number of columns of x.
- scale: logical value or numeric vector of length equal to the number of columns of x.
- object: an object inheriting from class "stdized", normally the result of a call to stdize.
- var: A variable.
- call: The term in the formula, as a call.
- ...: other arguments. Currently ignored.

Details

makepredictcall.stdized is an internal utility function; it is not meant for interactive use. See makepredictcall for details.

If center is TRUE, x is centered by subtracting the column mean from each column. If center is a numeric vector, it is used in place of the column means.

If scale is TRUE, x is scaled by dividing each column by its sample standard deviation. If scale is a numeric vector, it is used in place of the standard deviations.
Value

Both stdize and predict.stdized return a scaled and/or centered matrix, with attributes "stdized:center" and/or "stdized:scale" the vector used for centering and/or scaling. The matrix is given class c("stdized", "matrix").

Note

stdize is very similar to scale. The difference is that when scale = TRUE, stdize divides the columns by their standard deviation, while scale uses the root-mean-square of the columns. If center is TRUE, this is equivalent, but in general it is not.

Author(s)

Bjørn-Helge Mevik and Ron Wehrens

See Also

mvr, pcr, plsr, msc, scale

Examples

data(yarn)
Direct standardization:
Ztrain <- stdize(yarn$NIR[yarn$train,])
Ztest <- predict(Ztrain, yarn$NIR[!yarn$train,])

Used in formula:
mod <- plsr(density ~ stdize(NIR), ncomp = 6, data = yarn[yarn$train,])
pred <- predict(mod, newdata = yarn[!yarn$train,]) # Automatically standardized

summary.mvr

Summary and Print Methods for PLSR and PCR objects

Description

Summary and print methods for mvr and mvrVal objects.

Usage

S3 method for class 'mvr'
summary(object, what = c("all", "validation", "training"),
 digits = 4, print.gap = 2, ...)
S3 method for class 'mvr'
print(x, ...)
S3 method for class 'mvrVal'
print(x, digits = 4, print.gap = 2, ...)
svdpc.fit

Principal Component Regression

Description

Fits a PCR model using the singular value decomposition.

Usage

`svdpc.fit(X, Y, ncomp, center = TRUE, stripped = FALSE, ...)`
Arguments

- **X** a matrix of observations. NAs and Infs are not allowed.
- **Y** a vector or matrix of responses. NAs and Infs are not allowed.
- **ncomp** the number of components to be used in the modelling.
- **center** logical, determines if the X and Y matrices are mean centered or not. Default is to perform mean centering.
- **stripped** logical. If TRUE the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to FALSE.
- ... other arguments. Currently ignored.

Details

This function should not be called directly, but through the generic functions pcr or mvr with the argument method="svdpc". The singular value decomposition is used to calculate the principal components.

Value

A list containing the following components is returned:

- **coefficients** an array of regression coefficients for 1,..., ncomp components. The dimensions of coefficients are c(nvar, npred, ncomp) with nvar the number of X variables and npred the number of variables to be predicted in Y.
- **scores** a matrix of scores.
- **loadings** a matrix of loadings.
- **Yloadings** a matrix of Y-loadings.
- **projection** the projection matrix used to convert X to scores.
- **Xmeans** a vector of means of the X variables.
- **Ymeans** a vector of means of the Y variables.
- **fitted.values** an array of fitted values. The dimensions of fitted.values are c(nobj, npred, ncomp) with nobj the number samples and npred the number of Y variables.
- **residuals** an array of regression residuals. It has the same dimensions as fitted.values.
- **Xvar** a vector with the amount of X-variance explained by each component.
- **Xtotvar** Total variance in X.

If stripped is TRUE, only the components coefficients, Xmeans and Ymeans are returned.

Author(s)

Ron Wehrens and Bjørn-Helge Mevik

References

See Also

`mvr plsr pcr cppls`

validationplot

Validation Plots

Description

Functions to plot validation statistics, such as RMSEP or R^2, as a function of the number of components.

Usage

```r
validationplot(object, valNtype = c("RMSEP", "MSEP", "R2"), estimate,
newdata, ncomp, comps, intercept, ...)
```

Arguments

- `object`: an `mvr` object.
- `valNtype`: character. What type of validation statistic to plot.
- `estimate`: character. Which estimates of the statistic to calculate. See `RMSEP`.
- `newdata`: data frame. Optional new data used to calculate statistic.
- `ncomp, comps`: integer vector. The model sizes to compute the statistic for. See `RMSEP`.
- `intercept`: logical. Whether estimates for a model with zero components should be calculated as well.
- `x`: an `mvrVal` object. Usually the result of a `RMSEP`, `MSEP` or `R2` call.
- `nCols, nRows`: integers. The number of columns and rows the plots will be laid out in. If not specified, `plot.mvrVal` tries to be intelligent.
- `type`: character. What type of plots to create. Defaults to "1" (lines). Alternative types include "p" (points) and "b" (both). See `plot` for a complete list of types.
- `lty`: vector of line types (recycled as necceessary). Line types can be specified as integers or character strings (see `par` for the details).
- `lwd`: vector of positive numbers (recycled as necceessary), giving the width of the lines.
- `pch`: plot character. A character string or a vector of single characters or integers (recycled as necceessary). See `points` for all alternatives.
- `cex`: numeric vector of character expansion sizes (recycled as necceessary) for the plotted symbols.
validationplot

col
character or integer vector of colors for plotted lines and symbols (recycled as necessary). See `par` for the details.

legendpos
Legend position. Optional. If present, a legend is drawn at the given position. The position can be specified symbolically (e.g., `legendpos = “topright”`). This requires R >= 2.1.0. Alternatively, the position can be specified explicitly (`legendpos = t(c(x,y))`) or interactively (`legendpos = locator()`). This only works well for plots of single-response models.

xlab, ylab
titles for x and y axes. Typically character strings, but can be expressions (e.g., `expression(r ~ R^2)`) or lists. See `title` for details.

main
optional main title for the plot. See Details.

ask
logical. Whether to ask the user before each page of a plot.

... Further arguments sent to underlying plot functions.

Details
validationplot calls the proper validation function (currently `MSEP`, `RMSEP` or `R2`) and plots the results with `plot.mvrVal`. validationplot can be called through the `mvr` plot method, by specifying `plottype = “validation”`.

`plot.mvrVal` creates one plot for each response variable in the model, laid out in a rectangle. It uses `matplot` for performing the actual plotting. If `legendpos` is given, a legend is drawn at the given position.

The argument `main` can be used to specify the main title of the plot. It is handled in a non-standard way. If there is only on (sub) plot, `main` will be used as the main title of the plot. If there is more than one (sub) plot, however, the presence of `main` will produce a corresponding ‘global’ title on the page. Any graphical parameters, e.g., `cex.main`, supplied to `coefplot` will only affect the ‘ordinary’ plot titles, not the ‘global’ one. Its appearance can be changed by setting the parameters with `par`, which will affect both titles. (To have different settings for the two titles, one can override the `par` settings with arguments to the plot function.)

Note
`legend` has many options. If you want greater control over the appearance of the legend, omit the `legendpos` argument and call `legend` manually.

Author(s)
Ron Wehrens and Bjørn-Helge Mevik

See Also
`mvr`, `plot.mvr`, `RMSEP`, `MSEP`, `R2`, `matplot`, `legend`

Examples
```
data(oliveoil)
mod <- plsR(sensory ~ chemical, data = oliveoil, validation = “LOO”)
## Not run:
## These three are equivalent:
```
var.jack

Jackknife Variance Estimates of Regression Coefficients

Description
Calculates jackknife variance or covariance estimates of regression coefficients.

Usage

```r
var.jack(object, ncomp = object$ncomp, covariance = FALSE, use.mean = TRUE)
```

Arguments

- `object`: an `mvr` object. A cross-validated model fitted with `jackknife = TRUE`.
- `ncomp`: the number of components to use for estimating the (co)variances.
- `covariance`: logical. If `TRUE`, covariances are calculated; otherwise only variances. The default is `FALSE`.
- `use.mean`: logical. If `TRUE` (default), the mean coefficients are used when estimating the (co)variances; otherwise the coefficients from a model fitted to the entire data set. See Details.

Details

The original (Tukey) jackknife variance estimator is defined as

\[\frac{(g - 1)}{g} \sum_{i=1}^{g} (\hat{\beta}_{-i} - \bar{\beta})^2 \]

where

- \(g \) is the number of segments,
- \(\hat{\beta}_{-i} \) is the estimated coefficient when segment \(i \) is left out (called the jackknife replicates), and
- \(\bar{\beta} \) is the mean of the \(\hat{\beta}_{-i} \). The most common case is delete-one jackknife, with \(g = n \), the number of observations.

This is the definition `var.jack` uses by default.

However, Martens and Martens (2000) defined the estimator as

\[\frac{(g - 1)}{g} \sum_{i=1}^{g} (\hat{\beta}_{-i} - \hat{\beta})^2 \]

where \(\hat{\beta} \) is the coefficient estimate using the entire data set. I.e., they use the original fitted coefficients instead of the mean of the jackknife replicates. Most (all?) other jackknife implementations for PLSR use this estimator. `var.jack` can be made to use this definition with `use.mean = FALSE`. In practice, the difference should be small if the number of observations is sufficiently large. Note, however, that all theoretical results about the jackknife refer to the ‘proper’ definition. (Also note that this option might disappear in a future version.)
Value

If `covariance` is `FALSE`, an \(p \times q \times c \) array of variance estimates, where \(p \) is the number of predictors, \(q \) is the number of responses, and \(c \) is the number of components.

If `covariance` is `TRUE`, an \(pq \times pq \times c \) array of variance-covariance estimates.

Warning

Note that the Tukey jackknife variance estimator is not unbiased for the variance of regression coefficients (Hinkley 1977). The bias depends on the \(X \) matrix. For ordinary least squares regression (OLSR), the bias can be calculated, and depends on the number of observations \(n \) and the number of parameters \(k \) in the mode. For the common case of an orthogonal design matrix with \(\pm 1 \) levels, the delete-one jackknife estimate equals \((n - 1)/(n - k) \) times the classical variance estimate for the regression coefficients in OLSR. Similar expressions hold for delete-\(d \) estimates. Modifications have been proposed to reduce or eliminate the bias for the OLSR case, however, they depend on the number of parameters used in the model. See e.g. Hinkley (1977) or Wu (1986).

Thus, the results of `var.jack` should be used with caution.

Author(s)

Bjørn-Helge Mevik

References

See Also

`mvrcv`, `jack.test`

Examples

data(oliveoil)
mod <- pcr(sensory ~ chemical, data = oliveoil, validation = "LOO",
 jackknife = TRUE)
var.jack(mod, ncomp = 2)
Description

Fits a PLSR model with the wide kernel algorithm.

Usage

```r
widekernelpls.fit(x, y, ncomp, center = TRUE, stripped = FALSE,
                   tol = .Machine$double.eps^0.5, maxit = 100, ...)
```

Arguments

- `x`: a matrix of observations. NAs and Infs are not allowed.
- `y`: a vector or matrix of responses. NAs and Infs are not allowed.
- `ncomp`: the number of components to be used in the modelling.
- `center`: logical, determines if the `X` and `Y` matrices are mean centered or not. Default is to perform mean centering.
- `stripped`: logical. If TRUE the calculations are stripped as much as possible for speed; this is meant for use with cross-validation or simulations when only the coefficients are needed. Defaults to FALSE.
- `tol`: numeric. The tolerance used for determining convergence in the algorithm.
- `maxit`: positive integer. The maximal number of iterations used in the internal Eigen-vector calculation.
- `...`: other arguments. Currently ignored.

Details

This function should not be called directly, but through the generic functions `plsr` or `mvr` with the argument `method="widekernelpls"`. The wide kernel PLS algorithm is efficient when the number of variables is (much) larger than the number of observations. For very wide `X`, for instance 12x18000, it can be twice as fast as `kernelpls.fit` and `simpls.fit`. For other matrices, however, it can be much slower. The results are equal to the results of the NIPALS algorithm.

Value

A list containing the following components is returned:

- `coefficients`: an array of regression coefficients for 1,..., `ncomp` components. The dimensions of `coefficients` are `c(nvar, npred, ncomp)` with `nvar` the number of `X` variables and `npred` the number of variables to be predicted in `Y`.
- `scores`: a matrix of scores.
- `loadings`: a matrix of loadings.
loading.weights
 a matrix of loading weights.
Yscores
 a matrix of Y-scores.
Yloadings
 a matrix of Y-loadings.
projection
 the projection matrix used to convert X to scores.
Xmeans
 a vector of means of the X variables.
Ymeans
 a vector of means of the Y variables.
fitted.values
 an array of fitted values. The dimensions of fitted.values are c(nobj, npred, ncomp) with nobj the number samples and npred the number of Y variables.
residuals
 an array of regression residuals. It has the same dimensions as fitted.values.
Xvar
 a vector with the amount of X-variance explained by each component.
Xtotvar
 Total variance in X.

If stripped is TRUE, only the components coefficients, Xmeans and Ymeans are returned.

Note

The current implementation has not undergone extensive testing yet, and should perhaps be regarded as experimental. Specifically, the internal Eigenvector calculation does not always converge in extreme cases where the Eigenvalue is close to zero. However, when it does converge, it always converges to the same results as kernelpls.fit, up to numerical inaccuracies.

The algorithm also has a bit of overhead, so when the number of observations is moderately high, kernelpls.fit can be faster even if the number of predictors is much higher. The relative speed of the algorithms can also depend greatly on which BLAS and/or LAPACK library R is linked against.

Author(s)

Bjørn-Helge Mevik

References

See Also

mvr plsr cppls pcr kernelpls.fit simpls.fit oscorespls.fit
Description

A training set consisting of 21 NIR spectra of PET yarns, measured at 268 wavelengths, and 21 corresponding densities. A test set of 7 samples is also provided. Many thanks to Erik Swierenga.

Usage

yarn

Format

A data frame with components

- **NIR** Numeric matrix of NIR measurements
- **density** Numeric vector of densities
- **train** Logical vector with TRUE for the training samples and FALSE for the test samples

Source

Index

*Topic classification
 cppls.fit, 8

*Topic datasets
 gasoline, 15
 mayonnaise, 19
 oliveoil, 30
 yarn, 57

*Topic hplot
 biplot.mvr, 2
 coefplot, 6
 plot.mvr, 32
 predplot, 37
 scoreplot, 39
 validationplot, 51

*Topic htest
 jack.test, 16

*Topic models
 cvsegments, 14

*Topic multivariate
 biplot.mvr, 2
 coef.mvr, 4
 coefplot, 6
 cppls.fit, 8
 crossval, 11
 kernelpls.fit, 18
 msc, 20
 mvr, 21
 mvrCv, 25
 mvrVal, 28
 oscorespls.fit, 31
 plot.mvr, 32
 pls.options, 33
 predict.mvr, 35
 predplot, 37
 scoreplot, 39
 scores, 42
 selectNcomp, 44
 simpls.fit, 45
 stdize, 47
 summary.mvr, 48
 svdpc.fit, 49
 validationplot, 51
 widekernelpls.fit, 55

*Topic regression
 biplot.mvr, 2
 coef.mvr, 4
 coefplot, 6
 cppls.fit, 8
 crossval, 11
 kernelpls.fit, 18
 msc, 20
 mvr, 21
 mvrCv, 25
 mvrVal, 28
 oscorespls.fit, 31
 plot.mvr, 32
 pls.options, 33
 predict.mvr, 35
 predplot, 37
 scoreplot, 39
 scores, 42
 selectNcomp, 44
 simpls.fit, 45
 stdize, 47
 summary.mvr, 48
 svdpc.fit, 49
 validationplot, 51
 widekernelpls.fit, 55

*Topic univar
 var.jack, 53

 biplot.default, 3
 biplot.mvr, 2, 33

 coef, 4, 5
 coef.mvr, 4, 6, 8, 24, 36, 43
 coefplot, 6, 33
 compnames(coef.mvr), 4
 corrplot, 33
INDEX

```
corplot (scoreplot), 39
ccpl, 19, 34, 51, 56
ccpl (mv), 21
ccpl.fit, 8, 22, 24
crossval, 11, 23, 24, 26, 27, 30
cvsegments, 12, 13, 14, 26, 27
explvar, 43
explvar (coef.mvr), 4
fitted, 4, 5
fitted.mvr (coef.mvr), 4
gasoline, 15
identify, 40–42
jack.test, 12, 13, 16, 26, 27, 54
kernelpls.fit, 18, 24, 32, 47, 55, 56
legend, 8, 41, 42, 52
lm, 22, 23
loading.weights, 24
loading.weights (scores), 42
loadings.plot, 33
loadings.plot (scoreplot), 39
loadings, 5, 24, 40, 42, 42
loadings (scores), 42
locator, 7, 40, 52
makeCluster, 34
makepredictcall, 20, 47
makepredictcall.msc (msc), 20
makepredictcall.stdized (stdize), 47
matplot, 52
mayonnaise, 19
mclapply, 34
model.frame, 5
model.frame.mvr (coef.mvr), 4
model.matrix, 5
model.matrix.mvr (coef.mvr), 4
msc, 20, 48
MSEP, 13, 24, 27, 49, 51, 52
MSEP (mv), 28
mv, 3, 5, 8, 10, 13, 19, 21, 21, 27, 30, 32–34,
   36, 38, 42, 43, 45, 47–49, 51, 52, 56
mvCv, 13, 17, 22–24, 25, 30, 34, 54
mv (mv), 28
mv (mvVal), 28
mvVal.stats (mv), 28
na.exclude, 22
na.fail, 22
na.omit, 5, 22, 35
oliveoil, 30
options, 5, 22
oscorespls.fit, 10, 19, 22, 24, 31, 47, 56
par, 7, 37, 38, 40, 51, 52
parallel, 12, 23, 26, 34
par.lapply, 34
pcr, 10, 19, 21, 32, 34, 47–49, 51, 56
pcr (mv), 21
plot, 6, 8, 37, 40, 51
plot.loadings (scoreplot), 39
plot.mvr, 3, 8, 24, 32, 36, 38, 41, 42, 52
plot.mvrVal, 30
plot.mvrVal (validationplot), 51
plot.mvrVal (scores.plot), 39
pl.s.options, 12, 23, 26, 33
pls.options, 12, 23, 26, 33
plsr, 10, 19, 21, 32, 34, 47–49, 51, 56
plsr (mv), 21
points, 7, 40, 51
predict.msc (msc), 20
predict.mvr, 23, 24, 35
predict.stdized (stdize), 47
prednames (coef.mvr), 4
predplot, 36, 37
predplot.mvr, 33
predplotxy (predplot), 37
print.jacktest (jack.test), 16
print.mvr (summary.mvr), 48
print.mvrVal (summary.mvr), 48
printCoeffmat, 16
R2, 24, 36, 51, 52
R2 (mvVal), 28
residuals, 4, 5
residuals.mvr (coef.mvr), 4
resplans (coef.mvr), 4
RMSEP, 24, 36, 49, 51, 52
RMSEP (mv), 28
scale, 48
scoreplot, 33, 39
scores, 5, 24, 40, 42, 42
selectNcomp, 44
simplic.fit, 10, 19, 24, 32, 45, 55, 56
sm.options, 34
```
stdize, 21, 47
stopCluster, 34
summary.mvr, 36, 45, 48
svdpc.fit, 24, 49

title, 7, 37, 40, 52

validationplot, 30, 33, 51
var.jack, 12, 13, 16, 17, 26, 27, 53

widekernelpls.fit, 10, 19, 22, 24, 32, 47, 55

yarn, 57
Yloadings, 5
Yloadings(scores), 42
Yscores(scores), 42