Package ‘plsRglm’

May 31, 2018

Version 1.2.1
Date 2018-05-30
Depends R (>= 2.4.0)
Imports mvtnorm, boot, bipartite, car
Enhances pls
Suggests MASS, plsdo, R.rsp, chemometrics, plsdepot
Title Partial Least Squares Regression for Generalized Linear Models
Author Frederic Bertrand <frederic.bertrand@math.unistra.fr>, Myriam Maumy-Bertrand <myriam.maumy-bertrand@math.unistra.fr>
Maintainer Frederic Bertrand <frederic.bertrand@math.unistra.fr>
Description Provides (weighted) Partial least squares Regression for generalized linear models and repeated k-fold cross-validation of such models using various criteria. It allows for missing data in the explanatory variables. Bootstrap confidence intervals constructions are also available.
License GPL-3
Encoding latin1
URL http://www-irma.u-strasbg.fr/~fbertran/
VignetteBuilder R.rsp
Classification/MSC 62J12, 62J99
NeedsCompilation no

R topics documented:

aic.dof ... 3
AICpls ... 4
aze .. 5
aze_compl ... 7
bootpls ... 8
bootplsglm ... 11
bordeaux ... 14
boxplots.bootpls ... 15
coef.plsRglmmodel .. 17
coef.plsrmodel ... 18
coefs.plsR ... 19
coefs.plsRglm .. 20
coefs.plsRglmnp ... 21
coefs.plsRnp .. 22
confints.bootpls ... 23
CorMat ... 24
Cornell ... 25
cv.plsR ... 26
cv.plsRglm ... 29
cvtable ... 39
dicho ... 40
fowlkes ... 41
infcrit.dof .. 42
kfolds2Chisq .. 43
kfolds2Chisqind ... 44
kfolds2coeff .. 46
kfolds2CVinfos_glm ... 47
kfolds2Mclassed .. 49
kfolds2Mclassedind .. 50
kfolds2Press .. 52
kfolds2Pressind ... 53
loglikpls ... 54
permcoefs.plsR ... 56
permcoefs.plsRglm .. 57
permcoefs.plsRglmnp .. 58
permcoefs.plsRnp ... 59
pine ... 60
pine_full .. 61
pine_sup .. 62
plot.table.summary.cv.plsRglmmodel 63
plot.table.summary.cv.plsRmodel 64
plots.confints.bootpls ... 65
plsR ... 67
plsR.dof .. 73
plsRglm ... 74
PLS_glm_wvc .. 82
PLS_lm_wvc .. 85
predict.plsRglmmodel ... 87
predict.plsRmodel ... 89
print.coef.plsRglmmodel .. 92
print.coef.plsRmodel .. 93
print.cv.plsRglmmodel .. 94
print.cv.plsRmodel .. 95
print.plsRglmmodel .. 96
print.plsRmodel ... 97
print.summary.plsRglmmodel 98
print.summary.plsRmodel ... 99
signpred .. 100
simul_data_complete ... 101
simul_data_UniYX ... 102
simul_data_UniYX_binom .. 104
simul_data_YX ... 105
summary.cv.plsRglmmodel .. 107
Description

This function computes the Akaike and Bayesian Information Criteria and the Generalized minimum description length.

Usage

```r
aic.dof(RSS, n, DoF, sigmahat)
bic.dof(RSS, n, DoF, sigmahat)
gmdl.dof(sigmahat, n, DoF, yhat)
```

Arguments

- `RSS` vector of residual sum of squares.
- `n` number of observations.
- `DoF` vector of Degrees of Freedom. The length of `DoF` is the same as the length of `RSS`.
- `sigmahat` Estimated model error. The length of `sigmahat` is the same as the length of `RSS`.
- `yhat` vector of squared norm of Yhat. The length of `yhat` is the same as the length of `sigmahat`.

Details

The `gmdl` criterion is defined as

\[
gmdl = \frac{n}{2} \log(S) + \frac{DoF}{2} \log(F) + \frac{1}{2} \log(n)
\]

with

\[S = \hat{\sigma}^2\]

Value

vector numerical values of the requested AIC, BIC or GMDL.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/
References

See Also

`plsR.dof` for degrees of freedom computation and `infcrit.dof` for computing information criteria directly from a previously fitted plsR model.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
dof.object <- plsR.dof(modpls)
aic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)
bic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)
gmdl.dof(dof.object$sigmahat,modpls$nr,dof.object$DoF,dof.object$yhat)
naive.object <- plsR.dof(modpls,naive=TRUE)
aic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)
bic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)
gmdl.dof(naive.object$sigmahat,modpls$nr,naive.object$DoF,naive.object$yhat)

AICpls

AIC function for plsR models

Description

This function provides AIC computation for a univariate plsR model.

Usage

AICpls(ncomp, residpls, weights=rep.int(1,length(residpls)))

Arguments

ncomp Number of components
residpls Residuals of a fitted univariate plsR model
weights Weights of observations

Details

AIC function for plsR models with univariate response.

Value

real AIC value
Microsatellites Dataset

Description

This database was collected on patients carrying a colon adenocarcinoma. It has 104 observations on 33 binary qualitative explanatory variables and one response variable y representing the cancer stage according to the to Astler-Coller classification (Astler and Coller, 1954). This dataset has some missing data due to technical limits. A microsatellite is a non-coding DNA sequence.

Usage

data(aze)
Format

A data frame with 104 observations on the following 34 variables.

- **y**: the response: a binary vector (Astler-Coller score).
- **D2S138**: a binary vector that indicates whether this microsatellite is altered or not.
- **D18S61**: a binary vector that indicates whether this microsatellite is altered or not.
- **D16S422**: a binary vector that indicates whether this microsatellite is altered or not.
- **D17S794**: a binary vector that indicates whether this microsatellite is altered or not.
- **D6S264**: a binary vector that indicates whether this microsatellite is altered or not.
- **D14S65**: a binary vector that indicates whether this microsatellite is altered or not.
- **D18S53**: a binary vector that indicates whether this microsatellite is altered or not.
- **D17S790**: a binary vector that indicates whether this microsatellite is altered or not.
- **D15S65**: a binary vector that indicates whether this microsatellite is altered or not.
- **D3S1282**: a binary vector that indicates whether this microsatellite is altered or not.
- **D9S179**: a binary vector that indicates whether this microsatellite is altered or not.
- **D5S430**: a binary vector that indicates whether this microsatellite is altered or not.
- **D8S283**: a binary vector that indicates whether this microsatellite is altered or not.
- **D11S916**: a binary vector that indicates whether this microsatellite is altered or not.
- **D2S159**: a binary vector that indicates whether this microsatellite is altered or not.
- **D16S408**: a binary vector that indicates whether this microsatellite is altered or not.
- **D5S346**: a binary vector that indicates whether this microsatellite is altered or not.
- **D10S191**: a binary vector that indicates whether this microsatellite is altered or not.
- **D13S173**: a binary vector that indicates whether this microsatellite is altered or not.
- **D6S275**: a binary vector that indicates whether this microsatellite is altered or not.
- **D15S127**: a binary vector that indicates whether this microsatellite is altered or not.
- **D13S305**: a binary vector that indicates whether this microsatellite is altered or not.
- **D4S394**: a binary vector that indicates whether this microsatellite is altered or not.
- **D20S107**: a binary vector that indicates whether this microsatellite is altered or not.
- **D1S197**: a binary vector that indicates whether this microsatellite is altered or not.
- **D1S207**: a binary vector that indicates whether this microsatellite is altered or not.
- **D10S192**: a binary vector that indicates whether this microsatellite is altered or not.
- **D3S1283**: a binary vector that indicates whether this microsatellite is altered or not.
- **D4S414**: a binary vector that indicates whether this microsatellite is altered or not.
- **D8S264**: a binary vector that indicates whether this microsatellite is altered or not.
- **D22S928**: a binary vector that indicates whether this microsatellite is altered or not.
- **TP53**: a binary vector that indicates whether this microsatellite is altered or not.
- **D9S171**: a binary vector that indicates whether this microsatellite is altered or not.

Source

References

Examples
data(aze)
str(aze)

aze_compl As aze without missing values

Description
This is a single imputation of the aze dataset which was collected on patients carrying a colon adenocarcinoma. It has 104 observations on 33 binary qualitative explanatory variables and one response variable y representing the cancer stage according to the to Astler-Coller classification (Astler and Coller, 1954). A microsatellite is a non-coding DNA sequence.

Usage
data(aze_compl)

Format
A data frame with 104 observations on the following 34 variables.
y the response: a binary vector (Astler-Coller score).
D2S138 a binary vector that indicates whether this microsatellite is altered or not.
D18S61 a binary vector that indicates whether this microsatellite is altered or not.
D16S422 a binary vector that indicates whether this microsatellite is altered or not.
D17S794 a binary vector that indicates whether this microsatellite is altered or not.
D6S264 a binary vector that indicates whether this microsatellite is altered or not.
D14S65 a binary vector that indicates whether this microsatellite is altered or not.
D17S790 a binary vector that indicates whether this microsatellite is altered or not.
D1S225 a binary vector that indicates whether this microsatellite is altered or not.
D3S1282 a binary vector that indicates whether this microsatellite is altered or not.
D9S179 a binary vector that indicates whether this microsatellite is altered or not.
D5S430 a binary vector that indicates whether this microsatellite is altered or not.
D8S283 a binary vector that indicates whether this microsatellite is altered or not.
D11S916 a binary vector that indicates whether this microsatellite is altered or not.
D2S159 a binary vector that indicates whether this microsatellite is altered or not.
D16S408 a binary vector that indicates whether this microsatellite is altered or not.
D5S346 a binary vector that indicates whether this microsatellite is altered or not.
D10S191 a binary vector that indicates whether this microsatellite is altered or not.
D13S173 a binary vector that indicates whether this microsatellite is altered or not.
D6S275 a binary vector that indicates whether this microsatellite is altered or not.
D15S127 a binary vector that indicates whether this microsatellite is altered or not.
D1S305 a binary vector that indicates whether this microsatellite is altered or not.
D4S394 a binary vector that indicates whether this microsatellite is altered or not.
D3S1283 a binary vector that indicates whether this microsatellite is altered or not.
D4S414 a binary vector that indicates whether this microsatellite is altered or not.
D8S264 a binary vector that indicates whether this microsatellite is altered or not.
D22S928 a binary vector that indicates whether this microsatellite is altered or not.
TP53 a binary vector that indicates whether this microsatellite is altered or not.
D9S171 a binary vector that indicates whether this microsatellite is altered or not.

Source

References

Examples
data(aze_compl)
str(aze_compl)

bootpls

Non-parametric Bootstrap for PLS models

Description
Provides a wrapper for the bootstrap function boot from the boot R package.
Implements non-parametric bootstraps for PLS Regression models by either (Y,X) or (Y,T) resampling.

Usage
```
bootpls(object, typeboot="plsmodel", R=250, statistic=coefs.plsR, sim="ordinary", stype="i", stabvalue=1e6, verbose=TRUE,...)
```
Arguments

object: An object of class `plsRmodel` to bootstrap.

typeboot: The type of bootstrap. Either (Y,X) bootstrap (`typeboot="plsmodel"`) or (Y,T) bootstrap (`typeboot="fmodel_np"`). Defaults to (Y,X) resampling.

R: The number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case R would be a vector of integers where each component gives the number of resamples from each of the rows of weights.

statistic: A function which when applied to data returns a vector containing the statistic(s) of interest. statistic must take at least two arguments. The first argument passed will always be the original data. The second will be a vector of indices, frequencies or weights which define the bootstrap sample. Further, if predictions are required, then a third argument is required which would be a vector of the random indices used to generate the bootstrap predictions. Any further arguments can be passed to statistic through the ... argument.

sim: A character string indicating the type of simulation required. Possible values are "ordinary" (the default), "balanced", "permutation", or "antithetic".

stype: A character string indicating what the second argument of statistic represents. Possible values of stype are "i" (indices - the default), "f" (frequencies), or "w" (weights).

stabvalue: A value to hard threshold bootstrap estimates computed from atypical resamplings. Especially useful for Generalized Linear Models.

verbose: Should info messages be displayed?

...: Other named arguments for statistic which are passed unchanged each time it is called. Any such arguments to statistic should follow the arguments which statistic is required to have for the simulation. Beware of partial matching to arguments of boot listed above.

Details

More details on bootstrap techniques are available in the help of the `boot` function.

Value

An object of class "boot". See the Value part of the help of the function `boot`.

Author(s)

Frederic Bertrand

 <frederic.bertrand@math.unistra.fr>

 <http://www-irma.u-strasbg.fr/~fbertran/>

References

See Also

boot

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

Lazraq-Cleroux PLS ordinary bootstrap
set.seed(250)
 modpls <- plsR(yCornell,XCornell,3)

#(Y,X) resampling
Cornell.bootYX <- bootpls(modpls, R=250)

#(Y,T) resampling
Cornell.bootYT <- bootpls(modpls, typeboot="fmodel_np", R=250)

Using the boxplots.bootpls function
boxplots.bootpls(Cornell.bootYX,indices=2:8)
Confidence intervals plotting
confints.bootpls(Cornell.bootYX,indices=2:8)
pplots.confints.bootpls(confints.bootpls(Cornell.bootYX,indices=2:8))
Graph similar to the one of Bastien et al. in CSDA 2005
boxplot(as.vector(Cornell.bootYX$t[,,-1])-factor(rep(1:7,rep(250,7))),
main="Bootstrap distributions of standardised bj (j = 1, ..., 7.)")
points(c(1:7),Cornell.bootYX$t0[-1],col="red",pch=19)

library(boot)
boot.ci(Cornell.bootYX, conf = c(0.90,0.95), type = c("norm","basic","perc","bca"), index=2)
plot(Cornell.bootYX, index=2)
jack.after.boot(Cornell.bootYX, index=2, useJ=TRUE, nt=3)
plot(Cornell.bootYX, index=2,jack=TRUE)
car::dataEllipse(Cornell.bootYX$t[,2], Cornell.bootYX$t[,3], cex=.3,
levels=c(.5, .95, .99), robust=TRUE)
rm(Cornell.bootYX)

PLS balanced bootstrap
set.seed(225)
Cornell.bootYX <- bootpls(modpls, sim="balanced", R=250)
boot.array(Cornell.bootYX, indices=TRUE)

Using the boxplots.bootpls function
boxplots.bootpls(Cornell.bootYX,indices=2:8)
Confidence intervals plotting
confints.bootpls(Cornell.bootYX,indices=2:8)
pplots.confints.bootpls(confints.bootpls(Cornell.bootYX,indices=2:8))
Graph similar to the one of Bastien et al. in CSDA 2005
boxplot(as.vector(Cornell.bootYX$t[,,-1])-factor(rep(1:7,rep(250,7))),
main="Bootstrap distributions of standardised bj (j = 1, ..., 7.)")
Non-parametric Bootstrap for PLS generalized linear models

Description

Provides a wrapper for the bootstrap function boot from the boot R package. Implements non-parametric bootstraps for PLS Generalized Linear Regression models by either \((Y,X)\) or \((Y,T)\) resampling.

Usage

```r
bootplsglm(object, typeboot="fmodel_np", R=250, statistic=coefs.plsRglmnp, sim="ordinary", stype="i", stabvalue=1e6, verbose=TRUE,...)
```

Arguments

- `object` An object of class `plsRglmmodel` to bootstrap
typeboot The type of bootstrap. Either (Y,X) bootstrap (typeboot="plsmodel") or (Y,T) bootstrap (typeboot="fmodel_np"). Defaults to (Y,T) resampling.

R The number of bootstrap replicates. Usually this will be a single positive integer. For importance resampling, some resamples may use one set of weights and others use a different set of weights. In this case R would be a vector of integers where each component gives the number of resamples from each of the rows of weights.

statistic A function which when applied to data returns a vector containing the statistic(s) of interest. statistic must take at least two arguments. The first argument passed will always be the original data. The second will be a vector of indices, frequencies or weights which define the bootstrap sample. Further, if predictions are required, then a third argument is required which would be a vector of the random indices used to generate the bootstrap predictions. Any further arguments can be passed to statistic through the ... argument.

sim A character string indicating the type of simulation required. Possible values are "ordinary" (the default), "balanced", "permutation", or "antithetic".

stype A character string indicating what the second argument of statistic represents. Possible values of stype are "i" (indices - the default), "f" (frequencies), or "w" (weights).

stabvalue A value to hard threshold bootstrap estimates computed from atypical resamplings. Especially useful for Generalized Linear Models.

verbose should info messages be displayed ?

... Other named arguments for statistic which are passed unchanged each time it is called. Any such arguments to statistic should follow the arguments which statistic is required to have for the simulation. Beware of partial matching to arguments of boot listed above.

Details

More details on bootstrap techniques are available in the help of the boot function.

Value

An object of class "boot". See the Value part of the help of the function boot.

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

Examples

```r
# Imputed aze dataset
data(aze_compl)
Xaze_compl <- aze_compl[, 2:34]
yaze_compl <- aze_compl$y
dataset <- cbind(y = yaze_compl, Xaze_compl)
modplsglm <- plsRglm(y ~ ., data = dataset, 3, modele = "pls-glm-logistic")

library(boot)
# Bastien (Y,T) PLS bootstrap
aze_compl.bootYT <- bootplsglm(modplsglm, R = 250)
boxplots.bootpls(aze_compl.bootYT)
confints.bootpls(aze_compl.bootYT)
plots.confints.bootpls(confints.bootpls(aze_compl.bootYT))

plot(aze_compl.bootYT, index = 2)
jack.after.boot(aze_compl.bootYT, index = 2, useJ = TRUE, nt = 3)
plot(aze_compl.bootYT, index = 2, jack = TRUE)
aze_compl.tilt.boot <- tilt.bootplsglm(modplsglm, statistic = coefs.plsRglm, R = c(499, 100, 100), alpha = c(0.025, 0.975), sim = "ordinary", stype = "i", index = 1)

# PLS bootstrap balanced
aze_compl.bootYT <- bootplsglm(modplsglm, sim = "balanced", R = 250)
boxplots.bootpls(aze_compl.bootYT)
confints.bootpls(aze_compl.bootYT)
plots.confints.bootpls(confints.bootpls(aze_compl.bootYT))

plot(aze_compl.bootYT)
jack.after.boot(aze_compl.bootYT, index = 1, useJ = TRUE, nt = 3)
plot(aze_compl.bootYT, jack = TRUE)
aze_compl.tilt.boot <- tilt.bootplsglm(modplsglm, statistic = coefs.plsR, R = c(499, 100, 100), alpha = c(0.025, 0.975), sim = "balanced", stype = "i", index = 1)

# PLS permutation bootstrap
aze_compl.bootYT <- bootplsglm(modplsglm, sim = "permutation", R = 250)
boxplots.bootpls(aze_compl.bootYT)
plot(aze_compl.bootYT)

# Original aze dataset with missing values
data(aze)
Xaze <- aze[, 2:34]
yaze <- aze$y

library(boot)
modplsglm2 <- plsRglm(yaze, Xaze, 3, modele = "pls-glm-logistic")
aze.bootYT <- bootplsglm(modplsglm2, R = 250)
```

See Also

boot
Ordinal logistic regression

data(bordeaux)
Xbordeaux <- bordeaux[,1:4]
ybordeaux <- factor(bordeaux$Quality, ordered = TRUE)

options(contrasts = c("contr.treatment", "contr.poly"))

modplsglm3 <- plsRglm(ybordeaux, Xbordeaux, 1, model = "pls-glm-polr")

bordeaux.bootYT <- bootplsglm(modplsglm3, sim = "permutation", R = 250)
boxplots.bootpls(bordeaux.bootYT)
boxplots.bootpls(bordeaux.bootYT, ranget0 = TRUE)

bordeaux.bootYT2 <- bootplsglm(modplsglm3, sim = "permutation", R = 250,
strata = unclass(ybordeaux))
boxplots.bootpls(bordeaux.bootYT2, ranget0 = TRUE)

if(require(chemometrics)){
data(hyptis)

hyptis <- factor(hyptis$Group, ordered = TRUE)
Xhyptis <- as.data.frame(hyptis[,c(1:6)])

dataset <- cbind(y = yhyptis, Xhyptis)

options(contrasts = c("contr.treatment", "contr.poly"))

modplsglm4 <- plsRglm(hyptis, Xhyptis, 3, model = "pls-glm-polr")

hyptis.bootYT3 <- bootplsglm(modplsglm4, sim = "permutation", R = 250)
rownames(hyptis.bootYT3$t0) <- c("Sabi\n\nene", "Pin\n\nene", "Cine\nolene", "Terpi\n\nene", "Fenc\nhone", "Terpi\n\nolene")

boxplots.bootpls(hyptis.bootYT3)
boxplots.bootpls(hyptis.bootYT3, xaxisticks = FALSE)
boxplots.bootpls(hyptis.bootYT3, ranget0 = TRUE, xaxisticks = FALSE)
}

Bordeaux

Quality of wine dataset

Description

Quality of Bordeaux wines (Quality) and four potentially predictive variables (Temperature, Sunshine, Heat and Rain).

Usage

data(bordeaux)
Format

A data frame with 34 observations on the following 5 variables.

- Temperature a numeric vector
- Sunshine a numeric vector
- Heat a numeric vector
- Rain a numeric vector
- Quality an ordered factor with levels 1 < 2 < 3

Source

References

Examples

data(bordeaux)
str(bordeaux)

boxplots.bootpls Boxplot bootstrap distributions

Description

Boxplots for bootstrap distributions.

Usage

`boxplots.bootpls(bootobject, indices = NULL, prednames = TRUE,
articlestyle = TRUE, xaxisticks=TRUE, ranget0= FALSE, las = par("las"),
mar, mgp, ...)`

Arguments

- `bootobject` a object of class "boot"
- `indices` vector of indices of the variables to plot. Defaults to NULL: all the predictors will be used.
- `prednames` do the original names of the predictors shall be plotted ? Defaults to TRUE: the names are plotted.
- `articlestyle` do the extra blank zones of the margin shall be removed from the plot ? Defaults to TRUE: the margins are removed.
- `xaxisticks` do ticks for the x axis shall be plotted ? Defaults to TRUE: the ticks are plotted.
ranget0 does the vertical range of the plot shall be computed to include the initial estimates of the coefficients? Defaults to FALSE: the vertical range is calculated only using the bootstrapped values of the statistics. Especially using for permutation bootstrap.

las numeric in 0,1,2,3; the style of axis labels. 0: always parallel to the axis [default], 1: always horizontal, 2: always perpendicular to the axis, 3: always vertical.

mar A numerical vector of the form c(bottom, left, top, right) which gives the number of lines of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2) + 0.1.

mgp The margin line (in mex units) for the axis title, axis labels and axis line. Note that mgp[1] affects title whereas mgp[2:3] affect axis. The default is c(3, 1, 0).

... further options to pass to the `boxplot` function.

Value NULL

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

See Also

`bootpls`

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

Lazraq-Cleroux PLS ordinary bootstrap
set.seed(250)
modpls <- plsR(yCornell,XCornell,3)
Cornell.bootYX <- bootpls(modpls, R=250)

Graph similar to the one of Bastien et al. in CSDA 2005
boxplots.bootpls(Cornell.bootYX,indices=2:8)

data(aze_compl)
modplsglm<-plsl glm(y~.,data=aze_compl,3,modele="pls-glm-logistic")
aze_compl.boot3 <- bootplsglm(modplsglm, R=250)
boxplots.bootpls(aze_compl.boot3)
boxplots.bootpls(aze_compl.boot3,las=3,mar=c(5,2,1,1))
boxplots.bootpls(aze_compl.boot3,indices=c(2,4,6),prednames=FALSE)
Description

This function provides a coef method for the class "plsRglmmodel"

Usage

```r
## S3 method for class 'plsRglmmodel'
coef(object, type=c("scaled", "original"), ...)
```

Arguments

- `object`: an object of the class "plsRglmmodel"
- `type`: if `scaled`, the coefficients of the predictors are given for the scaled predictors, if `original` the coefficients are to be used with the predictors on their original scale.
- `...`: not used

Value

An object of class `coef.plsRglmmodel`.

- `CoeffC`: Coefficients of the components.
- `Std.Coeffs`: Coefficients of the scaled predictors in the regression function.
- `Coeffs`: Coefficients of the untransformed predictors (on their original scale).

Author(s)

Frederic Bertrand
`<frederic.bertrand@math.unistra.fr>`
http://www-irma.u-strasbg.fr/~fbertran/

See Also

- `coef`

Examples

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
modpls <- plsRglm(yCornell, XCornell, 3, modele="pls-glm-family", family=gaussian())
class(modpls)
coef(modpls)
coef(modpls, type="scaled")
rm(list=c("XCornell", "yCornell", "modpls"))
```
Description

This function provides a coef method for the class "plsRmodel"

Usage

```r
## S3 method for class 'plsRmodel'
coef(object, type=c("scaled","original"), ...)
```

Arguments

- `object`: an object of the class "plsRmodel"
- `type`: if `scaled`, the coefficients of the predictors are given for the scaled predictors, if `original` the coefficients are to be used with the predictors on their original scale.
- `...`: not used

Value

An object of class `coef.plsRmodel`.

- `CoeffC`: Coefficients of the components.
- `Std.Coeffs`: Coefficients of the scaled predictors.
- `Coeffs`: Coefficients of the untransformed predictors (on their original scale).

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

See Also

ccoef

Examples

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
modpls <- plsRglm(yCornell,XCornell,3,modele="pls")
class(modpls)
coef(modpls)
coef(modpls,type="scaled")
rm(list=c("XCornell","yCornell","modpls"))
```
coefs.plsR Coefficients for bootstrap computations of PLSR models

Description
A function passed to boot to perform bootstrap.

Usage
coops.plsR(dataset, ind, nt, modele, maxcoefvalues, ifbootsfail, verbose)

Arguments
dataset dataset to resample
ind indices for resampling
nt number of components to use
modele type of modele to use, see plsR
maxcoefvalues maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
ifbootsfail value to return if the estimation fails on a bootstrap sample
verbose should info messages be displayed?

Value
estimates on a bootstrap sample or ifbootsfail value if the bootstrap computation fails.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also
See also bootpls.

Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

Lazraq-Cleroux PLS (Y,X) bootstrap
statistic=coefs.plsR is the default for (Y,X) resampling of PLSR models.
set.seed(250)
modpls <- plsR(yCornell, XCornell, 1)
Cornell.bootYX <- bootpls(modpls, R=250, statistic=coefs.plsR)
coefs.plsRglm

Coefficients for bootstrap computations of PLSGLR models

Description
A function passed to boot to perform bootstrap.

Usage
coefs.plsRglm(dataset, ind, nt, modele, family=NULL, maxcoefvalues, ifbootfail, verbose)

Arguments
- dataset: dataset to resample
- ind: indices for resampling
- nt: number of components to use
- modele: type of modele to use, see plsRglm
- family: glm family to use, see plsRglm
- maxcoefvalues: maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
- ifbootfail: value to return if the estimation fails on a bootstrap sample
- verbose: should info messages be displayed?

Value
estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also
See also bootplsglm.

Examples

data(Cornell)

(Y,X) bootstrap of a PLSGLR model
statistic=coefs.plsRglm is the default for (Y,X) bootstrap of a PLSGLR models.
set.seed(250)
modplsglm <- plsRglm(Y~., data=Cornell, 1, modele="pls-glm-family", family=gaussian)
Cornell.bootYX <- bootplsglm(modplsglm, R=250, typeboot="plsmodel", statistic=coefs.plsRglm)
Description

A function passed to boot to perform bootstrap.

Usage

coeefs.plsRglmnp(dataRepYtt, ind, nt, modele, family=NULL,
maxcoefvalues, wwetoile, ifbootfail)

Arguments

dataRepYtt components' coordinates to bootstrap
ind indices for resampling
nt number of components to use
modele type of modele to use, see plsRglm
family glm family to use, see plsRglm
maxcoefvalues maximum values allowed for the estimates of the coefficients to discard those
coming from singular bootstrap samples
wwetoile values of the Wstar matrix in the original fit
ifbootfail value to return if the estimation fails on a bootstrap sample

Value

estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Note

~~some notes~~

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also

See also bootplsglm

Examples

data(Cornell)

(Y,X) bootstrap of a PLGGLR model
statistic=coefs.plsRglm is the default for (Y,X) bootstrap of a PLGGLR models.
set.seed(250)
modplsglm <- plsRglm(Y~, data=Cornell[,1,modele="pls-glm-family",family=gaussian)
Cornell.bootYT <- bootplsglm(modplsglm, R=250, statistic=coefs.plsRglmnp)
coefs.plsRnp

Coefficients for bootstrap computations of PLSR models

Description
A function passed to boot to perform bootstrap.

Usage
coefs.plsRnp(dataRepYtt, ind, nt, modele, maxcoefvalues, wwetoile, ifbootfail)

Arguments
- dataRepYtt: components’ coordinates to bootstrap
- ind: indices for resampling
- nt: number of components to use
- modele: type of modele to use, see plsRglm
- maxcoefvalues: maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
- wwetoile: values of the Wstar matrix in the original fit
- ifbootfail: value to return if the estimation fails on a bootstrap sample

Value
estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also
See also bootpls

Examples
```r
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

# Lazraq-Cleroux PLS (Y,X) bootstrap
# statistic=coefs.plsR is the default for (Y,X) resampling of PLSR models.
set.seed(250)
modpls <- plsR(yCornell, XCornell, 1)
Cornell.bootYT <- bootpls(modpls, R=250, typeboot="fmodel_np", statistic=coefs.plsRnp)
```
Description

This function is a wrapper for `boot.ci` to derive bootstrap-based confidence intervals from a "boot" object.

Usage

```r
confints.bootpls(bootobject, indices = NULL, typeBCa=TRUE)
```

Arguments

- `bootobject`: an object of class "boot"
- `indices`: the indices of the predictor for which CIs should be calculated. Defaults to NULL: all the predictors will be used.
- `typeBCa`: shall BCa bootstrap based CI derived? Defaults to TRUE. This is a safety option since sometimes computing BCa bootstrap based CI fails whereas the other types of CI can still be derived.

Value

Matrix with the limits of bootstrap based CI for all (defaults) or only the selected predictors (indices option). The limits are given in that order: Normal Lower then Upper Limit, Basic Lower then Upper Limit, Percentile Lower then Upper Limit, BCa Lower then Upper Limit.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

See Also

See also `bootpls` and `bootplsglm`.

Examples

```r
data(Cornell)
# Lazraq-Cleroux PLS (Y,X) bootstrap
set.seed(250)
modpls <- plsR(Y~., data=Cornell, 3)
Cornell.bootYX <- bootpls(modpls, R=250)
confints.bootpls(Cornell.bootYX, 2:8)
confints.bootpls(Cornell.bootYX, 2:8, typeBCa=FALSE)
```
CorMat

Correlation matrix for simulating plsR datasets

Description
A correlation matrix to simulate datasets

Usage
data(CorMat)

Format
A data frame with 17 observations on the following 17 variables.
y a numeric vector
x11 a numeric vector
x12 a numeric vector
x13 a numeric vector
x21 a numeric vector
x22 a numeric vector
x31 a numeric vector
x32 a numeric vector
x33 a numeric vector
x34 a numeric vector
x41 a numeric vector
x42 a numeric vector
x51 a numeric vector
x61 a numeric vector
x62 a numeric vector
x63 a numeric vector
x64 a numeric vector

Source
Handmade.

References

Examples
data(CorMat)
str(CorMat)
Description

The famous Cornell dataset. A mixture experiment on X_1, X_2, X_3, X_4, X_5, X_6 and X_7 to analyse octane degree (Y) in gasoline.

Usage

data(Cornell)

Format

A data frame with 12 observations on the following 8 variables.

- X_1 a numeric vector
- X_2 a numeric vector
- X_3 a numeric vector
- X_4 a numeric vector
- X_5 a numeric vector
- X_6 a numeric vector
- X_7 a numeric vector
- Y response value: a numeric vector

Source

References

Examples

data(Cornell)
str(Cornell)
cv.plsR

Partial least squares regression models with k-fold cross-validation

Description
This function implements k-fold cross-validation on complete or incomplete datasets for partial least squares regression models.

Usage

```r
cv.plsR(x, ...) ## Default S3 method:
cv.plsRmodel(dataY, dataX, nt=2, limQ2set=0.0975, modele="pls",
K=5, NK=1, grouplist=NULL, random=TRUE, scaleX=TRUE,
scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE,
keepMclassed=FALSE, tol_Xi=10^{-12}, weights, verbose=TRUE)
## S3 method for class "formula"
cv.plsRmodel(formula, data=NULL, nt=2, limQ2set=0.0975, modele="pls",
K=5, NK=1, grouplist=NULL, random=TRUE, scaleX=TRUE,
scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE,
keepMclassed=FALSE, tol_Xi=10^{-12}, weights, subset, contrasts=NULL, verbose=TRUE)
PLS_lm_kfoldcv(dataY, dataX, nt = 2, limQ2set = 0.0975, modele = "pls",
K = 5, NK = 1, grouplist = NULL, random = TRUE, scaleX = TRUE,
scaleY = NULL, keepcoeffs = FALSE, keepfolds = FALSE, keepdataY = TRUE,
keepMclassed = FALSE, tol_Xi = 10^{-12}, weights, verbose=TRUE)
PLS_lm_kfoldcv_formula(formula, data=NULL, nt=2, limQ2set=0.0975, modele="pls",
K=5, NK=1, grouplist=NULL, random=TRUE, scaleX=TRUE,
scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE,
keepMclassed=FALSE, tol_Xi=10^{-12}, weights, subset, contrasts=NULL, verbose=TRUE)
```

Arguments

- `x` a formula or a response (training) dataset
- `dataY` response (training) dataset
- `dataX` predictor(s) (training) dataset
- `formula` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- `data` an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `plsRglm` is called.
- `nt` number of components to be extracted
- `limQ2set` limit value for the Q2
- `modele` name of the PLS model to be fitted, only "pls" available for this function.
- `K` number of groups. Defaults to 5.
- `NK` number of times the group division is made
- `grouplist` to specify the members of the K groups
- `random` if TRUE, the cross-validation is performed randomly
- `scaleX` if TRUE, the predictor(s) (training) dataset is scaled
- `scaleY` if TRUE, the response (training) dataset is scaled
- `keepcoeffs` if TRUE, the coefficients are kept for each fold
- `keepfolds` if TRUE, the folds are kept
- `keepdataY` if TRUE, the response (training) dataset is kept
- `keepMclassed` if TRUE, the membership of the classes is kept
- `tol_Xi` stopping criterion for the cross-validation
- `weights` a vector of weights
- `verbose` if TRUE, print messages
random should the K groups be made randomly. Defaults to TRUE.
scaleX scale the predictor(s) : must be set to TRUE for modele="pls" and should be for glms pls.
scaleY scale the response : Yes/No. Ignored since non always possible for glm responses.
keepcoeffs shall the coefficients for each model be returned
keepfolds shall the groups’ composition be returned
keepdataY shall the observed value of the response for each one of the predicted value be returned
keepMclassed shall the number of miss classed be returned
tol_Xi minimal value for Norm2(Xi) and det(pp′ × pp) if there is any missing value in the dataX. It defaults to 10^{-12}
weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be NULL or a numeric vector.
subset an optional vector specifying a subset of observations to be used in the fitting process.
contrasts an optional list. See the contrasts.arg of model.matrix.default.
verbose should info messages be displayed ?
... arguments to pass to cv.plsRmodel.default or to cv.plsRmodel.formula

Details

Predicts 1 group with the K-1 other groups. Leave one out cross validation is thus obtained for K==nrow(dataX).

A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.

Value

An object of class "cv.plsRmodel".

results_kfolds list of NK. Each element of the list sums up the results for a group division:

list of K matrices of size about nrow(dataX)/K * nt with the predicted values for a growing number of components

... ...
cv.plsR

list of K matrices of size about \(\frac{nrow(dataX)}{K} \times nt \) with the predicted values for a growing number of components

folds list of NK. Each element of the list sums up the results for a group division:

list of K vectors of length about \(nrow(dataX) \) with the numbers of the rows of dataX that were used as a training set

... ...

list of K vectors of length about \(nrow(dataX) \) with the numbers of the rows of dataX that were used as a training set
dataY_kfolds list of NK. Each element of the list sums up the results for a group division:

list of K matrices of size about \(\frac{nrow(dataX)}{K} \times 1 \) with the observed values of the response

... ...

list of K matrices of size about \(\frac{nrow(dataX)}{K} \times 1 \) with the observed values of the response
call the call of the function

Note

Work for complete and incomplete datasets.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

Summary method summary.cv.plsRmodel. kfolds2coeff, kfolds2Pressind, kfolds2Press, kfolds2Mclassedind, kfolds2Mclassed and kfolds2CVinfos_lm to extract and transform results from k-fold cross-validation.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

#Leave one out CV (K=nrow(Cornell)) one time (NK=1)
bbb <- cv.plsR(dataY=yCornell, dataX=XCornell, nt=6, K=nrow(Cornell), NK=1)
bbb2 <- cv.plsR(Y~., data=Cornell, nt=6, K=12, NK=1)
(sum1<-summary(bbb))

#6-fold CV (K=6) two times (NK=2)
#use random=TRUE to randomly create folds for repeated CV
cv.plsRglm <- cv.plsR(dataY=yCornell, dataX=XCornell, nt=6, K=6, NK=2)
bbb4 <- cv.plsR(Y~., data=Cornell, nt=6, K=6, NK=2)
(sum3<-summary(bbb3))
cvtable(sum1)
cvtable(sum3)
rm(list=c("XCornell","yCornell","bbb","bbb2","bbb3","bbb4"))

cv.plsRglm

Partial least squares regression glm models with k-fold cross validation

Description

This function implements k-fold cross-validation on complete or incomplete datasets for partial least squares regression generalized linear models

Usage

cv.plsRglm(x, ...)

Default S3 method:
cv.plsRglmmodel(dataY, dataX, nt=2, limQ2set=.0975, modele="pls", family=NULL, K=5, NK=1, grouplist=NULL, random=TRUE, scaleX=TRUE, scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE, keepMclassed=FALSE, tol_Xi=10^(-12), weights, method, verbose=TRUE)

S3 method for class "formula"
cv.plsRglmmodel(formula, data=NULL, nt=2, limQ2set=.0975, modele="pls", family=NULL, K=5, NK=1, grouplist=NULL, random=TRUE, scaleX=TRUE, scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE, keepMclassed=FALSE, tol_Xi=10^(-12), weights, subset, start=NULL, etastart, mustart, offset, method, control=list(), contrasts=NULL, verbose=TRUE)

PLS_glm_kfoldcv(dataY, dataX, nt = 2, limQ2set = 0.0975, modele = "pls", family = NULL, K = 5, NK = 1, grouplist = NULL, random = TRUE, scaleX = TRUE, scaleY = NULL, keepcoeffs = FALSE, keepfolds = FALSE, keepdataY = TRUE, keepMclassed=FALSE, tol_Xi = 10^(-12), weights, method, verbose=TRUE)

PLS_glm_kfoldcv_formula(formula, data=NULL, nt=2, limQ2set=.0975, modele="pls", family=NULL, K=5, NK=1, grouplist=NULL, random=TRUE, scaleX=TRUE, scaleY=NULL, keepcoeffs=FALSE, keepfolds=FALSE, keepdataY=TRUE, keepMclassed=FALSE, tol_Xi=10^(-12), weights, subset, start=NULL, etastart, mustart, offset, method, control=list(), contrasts=NULL, verbose=TRUE)

Arguments

- **x**: a formula or a response (training) dataset
- **dataY**: response (training) dataset
- **dataX**: predictor(s) (training) dataset
- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

data an optional data frame, list or environment (or object coercible by \texttt{as.data.frame} to a data frame) containing the variables in the model. If not found in \texttt{data}, the variables are taken from \texttt{environment(formula)} typically the environment from which \texttt{plsRglm} is called.

\texttt{nt} number of components to be extracted

\texttt{limQ2set} limit value for the Q2

\texttt{modele} name of the PLS glm model to be fitted ("pls", "pls-glm-Gamma", "pls-glm-gaussian", "pls-glm-inverse.gaussian", "pls-glm-logistic", "pls-glm-poisson", "pls-glm-poiir"). Use "modele=pls-glm-family" to enable the family option.

\texttt{family} a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See \texttt{family} for details of family functions.) To use the family option, please set \texttt{modele="pls-glm-family"}. User defined families can also be defined. See details.

\texttt{K} number of groups. Defaults to 5.

\texttt{NK} number of times the group division is made

\texttt{grouplist} to specify the members of the K groups

\texttt{random} should the K groups be made randomly. Defaults to TRUE

\texttt{scaleX} scale the predictor(s): must be set to TRUE for \texttt{modele="pls"} and should be for glms pls.

\texttt{scaleY} scale the response: Yes/No. Ignored since non always possible for glm responses.

\texttt{keepcoeffs} shall the coefficients for each model be returned

\texttt{keepfolds} shall the groups' composition be returned

\texttt{keepdataY} shall the observed value of the response for each one of the predicted value be returned

\texttt{keepMclassed} shall the number of miss classed be returned (unavailable)

\texttt{tol_Xi} minimal value for Norm2(Xi) and det(pp′ × pp) if there is any missing value in the dataX. It defaults to 10^{-12}

\texttt{weights} an optional vector of `prior weights` to be used in the fitting process. Should be NULL or a numeric vector.

\texttt{subset} an optional vector specifying a subset of observations to be used in the fitting process.

\texttt{start} starting values for the parameters in the linear predictor.

\texttt{etastart} starting values for the linear predictor.

\texttt{mustart} starting values for the vector of means.

\texttt{offset} this can be used to specify an \textit{a priori} known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more \texttt{offset} terms can be included in the formula instead or as well, and if more than one is specified their sum is used. See \texttt{model.offset}.

\texttt{method} for fitting glms with \texttt{glm} ("pls-glm-Gamma", "pls-glm-gaussian", "pls-glm-inverse.gaussian", "pls-glm-logistic", "pls-glm-poisson", "pls-glm-poiir"). The method to be used in fitting the model. The default method "glm.fit" uses iteratively reweighted least squares (IWLS). User-supplied fitting functions can be supplied either as a function or a character string naming a function, with a function which takes the same arguments as glm.fit. If "model.frame", the model frame is returned.
cv.plsRglm

- `pls-glm-polr` logistic, probit, complementary log-log or cauchit (corresponding to a Cauchy latent variable).

control
- A list of parameters for controlling the fitting process. For `glm.fit` this is passed to `glm.control`.

contrasts
- An optional list. See the `contrasts.arg` of `model.matrix.default`.

verbose
- Should info messages be displayed?

... arguments to pass to `cv.plsRglmmodel.default` or to `cv.plsRglmmodel.formula`.

Details

Predicts 1 group with the K-1 other groups. Leave one out cross validation is thus obtained for K=nrow(dataX).

There are seven different predefined models with predefined link functions available:

- "pls" ordinary pls models
- "pls-glm-Gamma" glm gaussian with inverse link pls models
- "pls-glm-gaussian" glm gaussian with identity link pls models
- "pls-glm-inverse-gamma" glm binomial with square inverse link pls models
- "pls-glm-logistic" glm binomial with logit link pls models
- "pls-glm-poisson" glm poisson with log link pls models
- "pls-glm-polr" glm polr with logit link pls models

Using the "family=" option and setting "modele=pls-glm-family" allows changing the family and link function the same way as for the `glm` function. As a consequence user-specified families can also be used.

The gaussian family accepts the links (as names) identity, log and inverse.

The binomial family accepts the links logit, probit, cauchit, (corresponding to logistic, normal and Cauchy CDFs respectively) log and cloglog (complementary log-log).

The Gamma family accepts the links inverse, identity and log.

The poisson family accepts the links log, identity, and sqrt.

The inverse.gaussian family accepts the links 1/mu^2, inverse, identity and log.

The quasi family accepts the links logit, probit, cloglog, identity, inverse, log, 1/mu^2 and sqrt.

The function power can be used to create a power link function.

... arguments to pass to `cv.plsRglmmodel.default` or to `cv.plsRglmmodel.formula`.

A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.
Value

An object of class "cv.plsRglmmodel".

results_kfolds list of NK. Each element of the list sums up the results for a group division:

 list of K matrices of size about nrow(dataX)/K * nt with the predicted values for a growing number of components

 list of K matrices of size about nrow(dataX)/K * nt with the predicted values for a growing number of components

folds list of NK. Each element of the list sums up the informations for a group division:

 list of K vectors of length about nrow(dataX) with the numbers of the rows of dataX that were used as a training set

 list of K vectors of length about nrow(dataX) with the numbers of the rows of dataX that were used as a training set

dataY_kfolds list of NK. Each element of the list sums up the results for a group division:

 list of K matrices of size about nrow(dataX)/K * 1 with the observed values of the response

 list of K matrices of size about nrow(dataX)/K * 1 with the observed values of the response

call the call of the function

Note

Work for complete and incomplete datasets.

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

Summary method `summary.cv.plsRglmmodel`. `kfolds2coeff`, `kfolds2Pressind`, `kfolds2Press`, `kfolds2Mclassedind`, `kfolds2Mclassed` and `summary` to extract and transform results from k-fold cross validation.
Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=10)
(sum1<-summary(bbb))
cvtable(sum1)

bbb2 <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,
modele="pls-glm-family",family=gaussian(),K=12)
(sum2<-summary(bbb2))
cvtable(sum2)

#random=TRUE is the default to randomly create folds for repeated CV
bbb3 <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,
modele="pls-glm-family",family=gaussian(),K=6,NK=10)
(sum3<-summary(bbb3))
plot(cvtable(sum3))

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsRglm(yaze_compl,Xaze_compl,nt=10,K=10,modele="pls",keepcoeffs=TRUE)

#For Jackknife computations
kfolds2coeff(bbb)
bbb2 <- cv.plsRglm(yaze_compl,Xaze_compl,nt=10,K=10,modele="pls-glm-family",
family=binomial(probit),keepcoeffs=TRUE)
bbb2 <- cv.plsRglm(yaze_compl,Xaze_compl,nt=10,K=10,
modele="pls-glm-logistic",keepcoeffs=TRUE)
summary(bbb,MClassed=TRUE)
summary(bbb2,MClassed=TRUE)
kfolds2coeff(bbb2)
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(dataY=round(ypine),dataX=Xpine,nt=10,modele="pls-glm-family",
family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- cv.plsRglm(dataY=round(ypine),dataX=Xpine,nt=10,
modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE)

#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm(ypine,Xpine,10,typeVC="standard")$InfCrit

XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbb2 <- cv.plsRglm(dataY=round(ypine),dataX=XpineNAX21,nt=10,
modele="pls-glm-family",family=poisson(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb2 <- cv.plsRglm(dataY=round(ypine),dataX=XpineNAX21,nt=10,
modele="pls-glm-poisson",K=10,keepcoeffs=TRUE,keepfolds=FALSE)

#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm(ypine,XpineNAX21,10,typeVC="standard")$InfCrit
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2"))

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(dataY=ypine,dataX=Xpine,nt=10,modele="pls-glm-family",
family=Gamma,K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bbb <- cv.plsRglm(dataY=ypine,dataX=Xpine,nt=10,modele="pls-glm-Gamma",
K=10,keepcoeffs=TRUE,keepfolds=FALSE)

#For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm(ypine,Xpine,10,typeVC="standard")$InfCrit
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2"))
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=10,NK=1,modele="pls")
summary(bbb)

bbb2 <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=10,modele="pls-glm-inverse.gaussian",K=6,NK=2)$results_kfolds

#For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])

#Different ways of model specifications
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=10,NK=1,modele="pls-glm-family",family=gaussian(),K=6,NK=2)$results_kfolds
bbb2 <- cv.plsRglm(Y~.,data=Cornell,nt=10,modele="pls-glm-family",family=gaussian(link=log),K=6,NK=2)$results_kfolds

#For Jackknife computations

```r
# For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(Y~.,data=Cornell,nt=10,typeVC="standard")$InfCrit
rm(list=c("bbb","bbb2"))
data(pine)
bpp <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-family",
family=gaussian(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bpp <- cv.plsRglm(x11~.,data=pine,nt=10,modele="pls-glm-family",family=gaussian(),
K=10,keepcoeffs=TRUE,keepfolds=FALSE)

# For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(x11~.,data=pine,nt=10,typeVC="standard")$InfCrit

pineNAX21 <- pine
pineNAX21[1,2] <- NA
bpp2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-family",family=gaussian(log),K=10,keepcoeffs=TRUE,keepfolds=FALSE)
bpp2 <- cv.plsRglm(x11~.,data=pineNAX21,nt=10,
modele="pls-glm-gaussian",K=10,keepcoeffs=TRUE,keepfolds=FALSE)

# For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(x11~.,data=pineNAX21,nt=10,typeVC="standard")$InfCrit

rm(list=c("pineNAX21","bbb","bbb2"))

data(aze_compl)
bpp <- cv.plsRglm(y~.,data=aze_compl,nt=10,K=10,modele="pls",
keepcoeffs=TRUE)

# For Jackknife computations
kfolds2coeff(bbb)
bpp2 <- cv.plsRglm(y~.,data=aze_compl,nt=3,K=10,
modele="pls-glm-family",family=binomial(probit),keepcoeffs=TRUE)
bpp2 <- cv.plsRglm(y~.,data=aze_compl,nt=3,K=10,
modele="pls-glm-logistic",keepcoeffs=TRUE)
summary(bbb,MClassed=TRUE)
summary(bbb2,MClassed=TRUE)
kfolds2coeff(bbb2)
```
cv.plsRglm

```r
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
rm(list=c("bbb", "bbb2"))

data(pine)
bbb <- cv.plsRglm(round(x11)~., data=pine, nt=10,
modele="pls-glm-family", family=poisson(log), K=10, keepcoeffs=TRUE, keepfolds=FALSE)
bbb <- cv.plsRglm(round(x11)~., data=pine, nt=10,
modele="pls-glm-poisson", K=10, keepcoeffs=TRUE, keepfolds=FALSE)

# For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm_formula(x11~., data=pine, 10, typeVC="standard")$InfCrit

pineNAX21 <- pine
pineNAX21[,2] <- NA
bbb2 <- cv.plsRglm(round(x11)~., data=pineNAX21, nt=10,
modele="pls-glm-family", family=poisson(log), K=10, keepcoeffs=TRUE, keepfolds=FALSE)
bbb2 <- cv.plsRglm(round(x11)~., data=pineNAX21, nt=10,
modele="pls-glm-poisson", K=10, keepcoeffs=TRUE, keepfolds=FALSE)

# For Jackknife computations
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
kfolds2Chisqind(bbb2)
kfolds2Chisq(bbb2)
summary(bbb2)
PLS_lm_formula(x11~., data=pineNAX21, 10, typeVC="standard")$InfCrit
rm(list=c("pineNAX21", "bbb", "bbb2"))

data(pine)
bbb <- cv.plsRglm(x11~., data=pine, nt=10, modele="pls-glm-family",
family=Gamma, K=10, keepcoeffs=TRUE, keepfolds=FALSE)
bbb <- cv.plsRglm(x11~., data=pine, nt=10, modele="pls-glm-Gamma",
K=10, keepcoeffs=TRUE, keepfolds=FALSE)

# For Jackknife computations
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,1])
kfolds2Chisqind(bbb)
kfolds2Chisq(bbb)
summary(bbb)
PLS_lm_formula(x11~., data=pine, 10, typeVC="standard")$InfCrit
	pineNAX21 <- pine
```
pineNAX21[,1:2] <- NA
bbb2 <- cv.plsRglm(x1~., data=pineNAX21, nt=10, modele="pls-glm-family", family=Gamma(), K=10, keepcoeffs=TRUE, keepfolds=FALSE)
bbb2 <- cv.plsRglm(x1~., data=pineNAX21, nt=10, modele="pls-glm-Gamma", K=10, keepcoeffs=TRUE, keepfolds=FALSE)

For Jackknife computations
kfolds2coeff(bbb2)
obxplot(kfolds2coeff(bbb2)[,1])

kfolds2Chisqind(bbb2) kfolds2Chisq(bbb2) summary(bbb2)
PLS_lm_formula(x1~., data=pineNAX21, 10, typeVC="standard")$InfCrit rm(list=c("pineNAX21", "bbb", "bbb2"))

data(Cornell)
bbb <- cv.plsRglm(Y~., data=Cornell, nt=10, NK=1, modele="pls") summary(bbb)

cv.plsRglm(Y~., data=Cornell, nt=3, modele="pls-glm-inverse.gaussian", K=12)
cv.plsRglm(Y~., data=Cornell, nt=3, modele="pls-glm-family", family=inverse.gaussian, K=12)
cv.plsRglm(Y~., data=Cornell, nt=3, modele="pls-glm-inverse.gaussian", K=6, NK=2)$results_kfolds
cv.plsRglm(Y~., data=Cornell, nt=3, modele="pls-glm-family", family=inverse.gaussian(), K=6, NK=2)$results_kfolds
cv.plsRglm(Y~., data=Cornell, nt=3, modele="pls-glm-inverse.gaussian", K=6, NK=2)$results_kfolds
cv.plsRglm(Y~., data=Cornell, nt=3, modele="pls-glm-family", family=inverse.gaussian(link = "1/mu^2"), K=6, NK=2)$results_kfolds

bbb2 <- cv.plsRglm(Y~., data=Cornell, nt=10, modele="pls-glm-inverse.gaussian", keepcoeffs=TRUE)

For Jackknife computations
kfolds2coeff(bbb2)
obxplot(kfolds2coeff(bbb2)[,1])

kfolds2Chisqind(bbb2) kfolds2Chisq(bbb2) summary(bbb2)
PLS_lm_formula(Y~., data=Cornell, 10, typeVC="standard")$InfCrit rm(list=c("bbb", "bbb2"))

data(bordeaux)
bbb <- cv.plsRglm(Quality~., data=bordeaux, 10, modele="pls-glm-polr", K=7) summary(bbb)

bordeauxNA <- bordeaux
bordeauxNA[,1] <- NA
bbbNA <- cv.plsRglm(Quality~Temperature+Sunshine+Heat+Rain, data=bordeauxNA, 10, modele="pls-glm-polr", K=10) summary(bbbNA)
rm(list=c("bbb","bbbNA"))

bbb2 <- cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="logistic")
bbb3 <- cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="probit")
bbb4 <- cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="cloglog")
bbb5 <- cv.plsRglm(Quality~.,data=bordeaux,nt=2,K=7,
modele="pls-glm-polr",method="cauchit")

summary(bbb2)
symbol(bbb3)
symbol(bbb4)
symbol(bbb5)
rm(list=c("bbb","bbbNA","bbb2","bbb3","bbb4","bbb5"))

cvtable

Table method for summary of cross validated PLSR and PLSGLR models

Description

The function `cvtable` is wrapper of `cvtable.plsR` and `cvtable.plsRglm` that provides a table summary for the classes "summary.cv.plsRmodel" and "summary.cv.plsRglmmodel"

Usage

```r
cvtable.plsR(x,verbose=TRUE, ...)
cvtable.plsRglm(x,verbose=TRUE, ...)
```

Arguments

- `x` an object of the class "summary.cv.plsRmodel"
- `verbose` should results be displayed ?
- `...` further arguments to be passed to or from methods.

Value

listList of Information Criteria computed for each fold.

Author(s)

Frederic Bertrand

`<frederic.bertrand@math.unistra.fr>`

http://www-irma.u-strasbg.fr/~fbertran/

References

dicho

See Also

- `summary`

Examples

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
cv.modpls <- cv.plsR(dataY=yCornell, dataX=XCornell, nt=6, K=6, NK=100)
res.cv.modpls <- cvtable(summary(cv.modpls))
plot(res.cv.modpls) # defaults to type="CVQ2"
rm(list=c("XCornell", "yCornell", "cv.modpls", "res.cv.modpls"))
```

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
cv.modplsglm <- cv.plsRglm(dataY=yCornell, dataX=XCornell, nt=6, K=6,
modele="pls-glm-gaussian", NK=100)
res.cv.modplsglm <- cvtable(summary(cv.modplsglm))
plot(res.cv.modplsglm) # defaults to type="CVQ2\Chi2"
rm(list=c("XCornell", "yCornell", "res.cv.modplsglm"))
```

dicho

Dichotomization

Description

This function takes a real value and converts it to 1 if it is positive and else to 0.

Usage

```r
dicho(val)
```

Arguments

- `val` A real value

Value

0 or 1.

Author(s)

Frédéric Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

See Also

- `ifelse`
Examples

dimX <- 6
Astar <- 4
(dataAstar4 <- t(replicate(10,simul_data_YX(dimX,Astar)))))

dicho(dataAstar4)

rm(list=c("dimX","Astar"))

fowlkes Fowlkes dataset

Description

A classic dataset from Fowlkes.

Usage

data(fowlkes)

Format

A data frame with 9949 observations on the following 13 variables.

Y binary response
MA a numeric vector
MW a numeric vector
NE a numeric vector
NW a numeric vector
PA a numeric vector
SO a numeric vector
SW a numeric vector
color a numeric vector
age1 a numeric vector
age2 a numeric vector
age3 a numeric vector
sexe a numeric vector

Examples

data(fowlkes)
str(fowlkes)
Description

This function computes information criteria for existing plsR model using Degrees of Freedom estimation.

Usage

infcrit.dof(modplsR, naive = FALSE)

Arguments

modplsR A plsR model i.e. an object returned by one of the functions plsR, plsRmodel.default, plsRmodel.formula, PLS_lm or PLS_lm_formula.

naive A boolean.

Details

If naive=FALSE returns AIC, BIC and gmdl values for estimated and naive degrees of freedom. If naive=TRUE returns NULL.

Value

matrix AIC, BIC and gmdl values or NULL.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

plsR.dof for degrees of freedom computation and infcrit.dof for computing information criteria directly from a previously fitted plsR model.
Examples

```r
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
infcrit.dof(modpls)
```

Description

This function computes Predicted Chisquare for k-fold cross validated partial least squares regression models.

Usage

```r
kfolds2Chisq(pls_kfolds)
```

Arguments

- `pls_kfolds`: a k-fold cross validated partial least squares regression glm model

Value

- list: Total Predicted Chisquare vs number of components for the first group partition
- ...: ...
- list: Total Predicted Chisquare vs number of components for the last group partition

Note

Use `cv.plsRglm` to create k-fold cross validated partial least squares regression glm models.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

- `kfolds2coeff`, `kfolds2Press`, `kfolds2Pressind`, `kfolds2Chisqind`, `kfolds2Mclassedind` and `kfolds2Mclassred` to extract and transforms results from k-fold cross validation.
Examples

```r
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=16)
bbb2 <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=5)
kfolds2Chisq(bbb)
kfolds2Chisq(bbb2)
rm(list=c("XCornell","yCornell","bbb","bbb2"))

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(dataY=ypine,dataX=Xpine,nt=4,modele="pls-glm-gaussian")
bbb2 <- cv.plsRglm(dataY=ypine,dataX=Xpine,nt=10,modele="pls-glm-gaussian",K=10)
kfolds2Chisq(bbb)
kfolds2Chisq(bbb2)
XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbbNA <- cv.plsRglm(dataY=ypine,dataX=XpineNAX21,nt=10,modele="pls",K=10)
kfolds2Press(bbbNA)
kfolds2Chisq(bbbNA)
bbbNA2 <- cv.plsRglm(dataY=ypine,dataX=XpineNAX21,nt=4,modele="pls-glm-gaussian")
bbbNA3 <- cv.plsRglm(dataY=ypine,dataX=XpineNAX21,nt=10,modele="pls-glm-gaussian",K=10)
kfolds2Chisq(bbbNA2)
kfolds2Chisq(bbbNA3)
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2","bbbNA","bbbNA2","bbbNA3"))

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsRglm(dataY=yaze_compl,dataX=Xaze_compl,nt=4,modele="pls-glm-family",family="binomial")
bbb <- cv.plsRglm(dataY=yaze_compl,dataX=Xaze_compl,nt=4,modele="pls-glm-logistic")
bbb2 <- cv.plsRglm(dataY=yaze_compl,dataX=Xaze_compl,nt=10,modele="pls-glm-family",family=binomial(),K=10)
bbb2 <- cv.plsRglm(dataY=yaze_compl,dataX=Xaze_compl,nt=10,modele="pls-glm-logistic",K=10)
kfolds2Chisq(bbb)
kfolds2Chisq(bbb2)
r overthrow(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))
```

kfolds2Chisqind

Computes individual Predicted Chisquare for k-fold cross validated partial least squares regression models.

Description

This function computes individual Predicted Chisquare for k-fold cross validated partial least squares regression models.
Usage

kfolds2Chisqind(pls_kfolds)

Arguments

pls_kfolds a k-fold cross validated partial least squares regression glm model

Value

list Individual PChisq vs number of components for the first group partition
...
list Individual PChisq vs number of components for the last group partition

Note

Use `cv.plsRglm` to create k-fold cross validated partial least squares regression glm models.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

`kfolds2coeff, kfolds2Press, kfolds2Pressind, kfolds2Chisq, kfolds2Mclassedind` and `kfolds2Mclassed` to extract and transforms results from k-fold cross-validation.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=16)
bbb2 <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",K=5)
kfolds2Chisqind(bbb)
kfolds2Chisqind(bbb2)
rm(list=c("XCornell","yCornell","bbb","bbb2"))

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsRglm(dataY=ypine,dataX=Xpine,nt=4,modele="pls-glm-gaussian")
bbb2 <- cv.plsRglm(dataY=ypine,dataX=Xpine,nt=10,modele="pls-glm-gaussian",K=10)
kfolds2Chisqind(bbb)
kfold2Chisqind(bbb2)

XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbbNA <- cv.plsRglm(dataY=ypine, dataX=XpineNAX21, nt=10, modele="pls", K=10)
kfold2Pressind(bbbNA)
kfold2Chisqind(bbbNA)
bbbNA2 <- cv.plsRglm(dataY=ypine, dataX=XpineNAX21, nt=4, modele="pls-glm-gaussian")
bbbNA3 <- cv.plsRglm(dataY=ypine, dataX=XpineNAX21, nt=10, modele="pls-glm-gaussian", K=10)
kfold2Chisqind(bbbNA2)
kfold2Chisqind(bbbNA3)
rm(list=c("Xpine","XpineNAX21","ypine","bbb","bbb2","bbbNA","bbbNA2","bbbNA3"))

Data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsRglm(dataY=yaze_compl, dataX=Xaze_compl, nt=4, modele="pls-glm-family", family=binomial())
bbb <- cv.plsRglm(dataY=yaze_compl, dataX=Xaze_compl, nt=4, modele="pls-glm-logistic")
bbb2 <- cv.plsRglm(dataY=yaze_compl, dataX=Xaze_compl, nt=10, modele="pls-glm-family", family=binomial(), K=10)
bbb2 <- cv.plsRglm(dataY=yaze_compl, dataX=Xaze_compl, nt=10, modele="pls-glm-logistic", K=10)
kfold2Chisqind(bbb)
kfold2Chisqind(bbb2)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))

kfold2coeff

Extracts coefficients from k-fold cross validated partial least squares regression models

Description

This function extracts coefficients from k-fold cross validated partial least squares regression models.

Usage

`kfold2coeff(pls_kfolds)`

Arguments

- `pls_kfolds`: an object that is a k-fold cross validated partial least squares regression models, either `lm` or `glm`.

Details

This function works for plsR and plsRglm models.

Value

- `coef.all`: matrix with the values of the coefficients for each leave one out step or NULL if another type of cross validation was used.
Note

Only for NK=1 and leave one out CV

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparing the linear and
the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal
cnrs.fr/index.php/J-SFdsS/article/view/47

See Also

kfolds2Pressind, kfolds2Press, kfolds2Mclassedind, kfolds2Mclassed and summary to ex-
tract and transform results from k-fold cross validation.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- PLS_lm_kfoldcv(dataY=yCornell,dataX=XCornell,nt=3,K=nrow(XCornell),keepcoeffs=TRUE)
kfolds2coeff(bbb)
boxplot(kfolds2coeff(bbb)[,2])
rm(list=c("XCornell","yCornell","Xpine","ypine","bbb"))

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb2 <- cv.plsR(dataY=ypine,dataX=Xpine,nt=4,K=nrow(Xpine),keepcoeffs=TRUE)
kfolds2coeff(bbb2)
boxplot(kfolds2coeff(bbb2)[,1])
rm(list=c("Xpine","ypine","Xpine","ypine","bbb2"))

kfolds2CVinfos_glm

Extracts and computes information criteria and fits statistics for k-fold
cross validated partial least squares glm models

Description

This function extracts and computes information criteria and fits statistics for k-fold cross validated
partial least squares glm models for both formula or classic specifications of the model.

Usage

kfolds2CVinfos_glm(pls_kfolds, MClassed = FALSE,verbose=TRUE)
Arguments

- `pls_kfolds` an object computed using `cv.plsRglm`
- `MClassed` should number of miss classed be computed?
- `verbose` should infos be displayed?

Details

The `MClassed` option should only set to `TRUE` if the response is binary.

Value

- `list` table of fit statistics for first group partition
- `...` ...
- `list` table of fit statistics for last group partition

Note

Use `summary` and `cv.plsRglm` instead.

Author(s)

Frederic Bertrand

`<frederic.bertrand@math.unistra.fr>`

`http://www-irma.u-strasbg.fr/~fbertran/`

References

See Also

`kfolds2coeff`, `kfolds2Pressind`, `kfolds2Press`, `kfolds2Mclassedind` and `kfolds2Mclassed` to extract and transforms results from k-fold cross-validation.

Examples

```r
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]), nt=6,K=12,NK=1,keepfolds=FALSE,keepdataY=TRUE,modele="pls")
summary(bbb,MClassed=TRUE)
rm(list=c("XCornell","yCornell","bbb"))
```

```r
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsR(yaze_compl,Xaze_compl,nt=10,K=8,modele="pls")
```
kfolds2Mclassed

Number of missclassified individuals for k-fold cross validated partial least squares regression models.

Description

This function indicates the total number of missclassified individuals for k-fold cross validated partial least squares regression models.

Usage

```
kfolds2Mclassed(pls_kfolds)
```

Arguments

- `pls_kfolds` a k-fold cross validated partial least squares regression model used on binary data
Value

list Total number of misclassified individuals vs number of components for the first group partition

... ...

list Total number of misclassified individuals vs number of components for the last group partition

Note

Use `cv.plsR` to create k-fold cross validated partial least squares regression models.

Author(s)

Frederic Bertrand

 <frederic.bertrand@math.unistra.fr>

 <http://www-irma.u-strasbg.fr/~fbertran/>

References

See Also

`kfolds2coef`, `kfolds2Press`, `kfolds2Pressind` and `kfolds2Mclassedind` to extract and transforms results from k-fold cross validation.

Examples

```r
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsR(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=1)
bbb2 <- cv.plsR(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=2)
kfolds2Mclassed(bbb)
kfolds2Mclassed(bbb2)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))
```

kfolds2Mclassedind

Number of misclassified individuals per group for k-fold cross validated partial least squares regression models.

Description

This function indicates the number of misclassified individuals per group for k-fold cross validated partial least squares regression models.
Usage

kfold2Mclassedind(pls_kfolds)

Arguments

pls_kfolds a k-fold cross validated partial least squares regression model used on binary data

Value

list Number of missclassified individuals per group vs number of components for the first group partition

... ...

list Number of missclassified individuals per group vs number of components for the last group partition

Note

Use cv.plsR or cv.plsRglm to create k-fold cross validated partial least squares regression models or generalized linear ones.

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

kfold2coeff, kfold2Press, kfold2Pressind and kfold2Mclassed to extract and transforms results from k-fold cross-validation.

Examples

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsR(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=1)
bbb2 <- cv.plsR(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=2)
kfold2Mclassedind(bbb)
kfold2Mclassedind(bbb2)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))
Computes PRESS for k-fold cross validated partial least squares regression models.

Usage

```r
kfolds2Press(pls_kfolds)
```

Arguments

- `pls_kfolds`: a k-fold cross validated partial least squares regression model

Value

- `list`: Press vs number of components for the first group partition
- `...`: ...
- `list`: Press vs number of components for the last group partition

Note

Use `cv.plsR` to create k-fold cross validated partial least squares regression models.

Author(s)

Frederic Bertrand

`<frederic.bertrand@math.unistra.fr>`

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

`kfolds2coeff`, `kfolds2Pressind`, `kfolds2Mclassedind` and `kfolds2Mclassed` to extract and transforms results from k-fold cross validation.

Examples

```r
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsR(dataY=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),nt=6,K=12,NK=1)
bbb2 <- cv.plsR(dataY=yCornell,dataX=data.frame(scale(as.matrix(XCornell))[,]),nt=6,K=6,NK=1)
kfolds2Press(bbb)
```
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
bbb <- cv.plsR(dataY=ypine,dataX=Xpine,nt=10,NK=1)
bbb2 <- cv.plsR(dataY=ypine,dataX=Xpine,nt=10,NK=2)
kfolds2Press(bbb)
kfolds2Press(bbb2)

XpineNAX21 <- Xpine
XpineNAX21[1,2] <- NA
bbbNA <- cv.plsR(dataY=ypine,dataX=XpineNAX21,nt=10,NK=1)
bbbNA2 <- cv.plsR(dataY=ypine,dataX=XpineNAX21,nt=10,NK=2)
kfolds2Press(bbbNA)
kfolds2Press(bbbNA2)
rmlist=c("Xpine","XpineNAX21","ypine","bbb","bbb2","bbbNA","bbbNA2")

kfolds2Pressind

kfolds2Press(bbb2)
rm(list=c("XCornell","yCornell","bbb","bbb2"))

kfolds2Pressind Computes individual PRESS for k-fold cross validated partial least squares regression models.

Description
This function computes individual PRESS for k-fold cross validated partial least squares regression models.

Usage
kfolds2Pressind(pls_kfolds)

Arguments
pls_kfolds a k-fold cross validated partial least squares regression model

Value
list Individual Press vs number of components for the first group partition
...
list ... Individual Press vs number of components for the last group partition

Note
Use cv.plsR to create k-fold cross validated partial least squares regression models.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/
loglikpls

loglikelihood function for plsR models

Description

This function provides loglikelihood computation for an univariate plsR model.

Usage

loglikpls(residpls, weights=rep.int(1,length(residpls)))
loglikpls

Arguments
residpls Residuals of a fitted univariate plsR model
weights Weights of observations

Details
Loglikelihood functions for plsR models with univariate response.

Value
real Loglikelihood value

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also
AICpls for AIC computation and logLik for loglikelihood computations for linear models

Examples
data(pine)
ypine <- pine[,11]
Xpine <- pine[,1:10]
(Pinscaled <- as.data.frame(cbind(scale(ypine),scale(as.matrix(Xpine)))))
colnames(Pinscaled)[1] <- "yy"

lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)

modpls <- plsR(ypine,Xpine,10)
modpls$Std.Coeffs

lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)

AIC(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled))
print(logLik(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)))

sum(dnorm(modpls$RepY, modpls$Std.ValsPredictY, sqrt(mean(modpls$residY^2)), log=TRUE))
sum(dnorm(Pinscaled$yy,fitted(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)), sqrt(mean(residuals(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled))^2)), log=TRUE))
loglikpls(modpls$residY)

loglikpls(residuals(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)))
AICpls(10,residuals(lm(yy~x1+x2+x3+x4+x5+x6+x7+x8+x9+x10,data=Pinscaled)))
AICpls(10,modpls$residY)
permcoefs.plsR

Coefficients for permutation bootstrap computations of PLSR models

Description

A function passed to boot to perform bootstrap.

Usage

permcoefs.plsR(dataset,ind,nt,modele, maxcoefvalues,ifbootfail,verbose)

Arguments

dataset
dataset to resample

ind
indices for resampling

nt
number of components to use

modele
type of modele to use, see plsR

maxcoefvalues
maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples

ifbootfail
value to return if the estimation fails on a bootstrap sample

verbose
should info messages be displayed?

Value

estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also

See also bootpls.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

Lazraq-Cleroux PLS (Y,X) bootstrap
statistic=permcoefs.plsR is the default for (Y,X) permutation resampling of PLSR models.
set.seed(250)
modpls <- plsR(yCornell, XCornell, 1)
Cornell.bootYX <- bootpls(modpls, sim="permutation", R=250, statistic=permcoefs.plsR)
permcoefs.plsRglm

Coefficients for permutation bootstrap computations of PLSGLR models

Description
A function passed to boot to perform bootstrap.

Usage
permcoefs.plsRglm(dataset, ind, nt, modele, family=NULL, maxcoefvalues,ifbootfail,verbose)

Arguments
dataset dataset to resample
ind indices for resampling
nt number of components to use
modele type of modele to use, see plsRglm
family glm family to use, see plsRglm
maxcoefvalues maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
ifbootfail value to return if the estimation fails on a bootstrap sample
verbose should info messages be displayed ?

Value
estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also
See also bootplsglm.

Examples
data(Cornell)

(Y,X) bootstrap of a PLSGLR model
statistic=coefs.plsRglm is the default for (Y,X) bootstrap of a PLSGLR models.
set.seed(250)
modplsglm <- plsRglm(Y~.,data=Cornell,1,modele="pls-glm-family",family=gaussian)
Cornell.bootYX <- bootplsglm(modplsglm, R=250, typeboot="plsmode1", sim="permutation", statistic=permcoefs.plsRglm)
permcoefs.plsRglmnp

Coefficients for permutation bootstrap computations of PLSGLR models

Description

A function passed to boot to perform bootstrap.

Usage

permcoefs.plsRglmnp(dataRepYtt, ind, nt, modele, family=NULL,
maxcoefvalues, wwetoile, ifbootfail)

Arguments

dataRepYtt components’ coordinates to bootstrap
ind indices for resampling
nt number of components to use
modele type of modele to use, see plsRglm
family glm family to use, see plsRglm
maxcoefvalues maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
wwetoile values of the Wstar matrix in the original fit
ifbootfail value to return if the estimation fails on a bootstrap sample

Value

estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Note

~~some notes~~

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also

See also bootplsglm

Examples

data(Cornell)

(Y,X) bootstrap of a PLSGLR model
statistic=coefs.plsRglm is the default for (Y,X) bootstrap of a PLSGLR models.
set.seed(250)
modplsglm <- plsRglm(Y~.,data=Cornell,1,modele="pls-glm-family",family=gaussian)
Cornell.bootYT <- bootplsglm(modplsglm, R=250, statistic=permcoefs.plsRglmnp)
permcoefs.plsRnp Coefficients computation for permutation bootstrap

Description
A function passed to boot to perform bootstrap.

Usage
permcoefs.plsRnp(dataRepYtt, ind, nt, modele, maxcoefvalues, wwetoile, ifbootfail)

Arguments
- dataRepYtt: components’ coordinates to bootstrap
- ind: indices for resampling
- nt: number of components to use
- modele: type of modele to use, see plsRglm
- maxcoefvalues: maximum values allowed for the estimates of the coefficients to discard those coming from singular bootstrap samples
- wwetoile: values of the Wstar matrix in the original fit
- ifbootfail: value to return if the estimation fails on a bootstrap sample

Value
estimates on a bootstrap sample or ifbootfail value if the bootstrap computation fails.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also
See also bootpls

Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

Lazraq-Cleroux PLS (Y,X) bootstrap
statistic=coefs.plsR is the default for (Y,X) resampling of PLSR models.
set.seed(250)
modpls <- plsR(yCornell, XCornell, 1)
Cornell.bootYT <- bootpls(modpls, R=250, typeboot="fmodel_np", sim="permutation",
statistic=permcoefs.plsRnp)
Pine dataset

Description
The caterpillar dataset was extracted from a 1973 study on pine processionary caterpillars. It assesses the influence of some forest settlement characteristics on the development of caterpillar colonies. The response variable is the logarithmic transform of the average number of nests of caterpillars per tree in an area of 500 square meters (x11). There are k=10 potentially explanatory variables defined on n=33 areas.

Usage
data(pine)

Format
A data frame with 33 observations on the following 11 variables.

- x1 altitude (in meters)
- x2 slope (in degrees)
- x3 number of pines in the area
- x4 height (in meters) of the tree sampled at the center of the area
- x5 diameter (in meters) of the tree sampled at the center of the area
- x6 index of the settlement density
- x7 orientation of the area (from 1 if southbound to 2 otherwise)
- x8 height (in meters) of the dominant tree
- x9 number of vegetation strata
- x10 mix settlement index (from 1 if not mixed to 2 if mixed)
- x11 logarithmic transform of the average number of nests of caterpillars per tree

Details
These caterpillars got their names from their habit of moving over the ground in incredibly long head-to-tail processions when leaving their nest to create a new colony.

The pine_sup dataset can be used as a test set to assess model prediction error of a model trained on the pine dataset.

Source

References
Examples

data(pine)
str(pine)

Description

This is the complete caterpillar dataset from a 1973 study on pine_full processionary caterpillars. It assesses the influence of some forest settlement characteristics on the development of caterpillar colonies. The response variable is the logarithmic transform of the average number of nests of caterpillars per tree in an area of 500 square meters (x11). There are k=10 potentially explanatory variables defined on n=55 areas.

Usage

data(pine_full)

Format

A data frame with 55 observations on the following 11 variables.

- x1: altitude (in meters)
- x2: slope (in degrees)
- x3: number of pine_fulls in the area
- x4: height (in meters) of the tree sampled at the center of the area
- x5: diameter (in meters) of the tree sampled at the center of the area
- x6: index of the settlement density
- x7: orientation of the area (from 1 if southbound to 2 otherwise)
- x8: height (in meters) of the dominant tree
- x9: number of vegetation strata
- x10: mix settlement index (from 1 if not mixed to 2 if mixed)
- x11: logarithmic transform of the average number of nests of caterpillars per tree

Details

These caterpillars got their names from their habit of moving over the ground in incredibly long head-to-tail processions when leaving their nest to create a new colony.

Source

References

Examples

```r
data(pine_full)
str(pine_full)
```

Description

This is a supplementary dataset (used as a test set for the `pine` dataset) that was extracted from a 1973 study on pine processionary caterpillars. It assesses the influence of some forest settlement characteristics on the development of caterpillar colonies. The response variable is the logarithmic transform of the average number of nests of caterpillars per tree in an area of 500 square meters (\(x_{11}\)). There are \(k=10\) potentially explanatory variables defined on \(n=22\) areas.

Usage

```r
data(pine_sup)
```

Format

A data frame with 22 observations on the following 11 variables.

- \(x_1\) altitude (in meters)
- \(x_2\) slope (in degrees)
- \(x_3\) number of pine_sup in the area
- \(x_4\) height (in meters) of the tree sampled at the center of the area
- \(x_5\) diameter (in meters) of the tree sampled at the center of the area
- \(x_6\) index of the settlement density
- \(x_7\) orientation of the area (from 1 if southbound to 2 otherwise)
- \(x_8\) height (in meters) of the dominant tree
- \(x_9\) number of vegetation strata
- \(x_{10}\) mix settlement index (from 1 if not mixed to 2 if mixed)
- \(x_{11}\) logarithmic transform of the average number of nests of caterpillars per tree

Details

These caterpillars got their names from their habit of moving over the ground in incredibly long head-to-tail processions when leaving their nest to create a new colony.

The `pine_sup` dataset can be used as a test set to assess model prediction error of a model trained on the `pine` dataset.

Source

plot.table.summary.cv.plsRglmmodel

References

Examples

data(pine_sup)
str(pine_sup)

plot.table.summary.cv.plsRglmmodel

Plot method for table of summary of cross validated plsRglm models

Description

This function provides a table method for the class "summary.cv.plsRglmmodel"

Usage

S3 method for class 'table.summary.cv.plsRglmmodel'
plot(x, type=c("CVMC","CVQ2Chi2","CVPreChi2"), ...)

Arguments

x an object of the class "table.summary.cv.plsRglmmodel"

type the type of cross validation criterion to plot.

... further arguments to be passed to or from methods.

Value

NULL

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

summary
Examples

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=10,NK=1,
modele="pls-glm-family",family=gaussian())
plot(cvtable(summary(bbb)),type="CVQ2Chi2")
rm(list=c("XCornell","yCornell","bbb"))
```

plot.table.summary.cv.plsRmodel

Plot method for table of summary of cross validated plsR models

Description

This function provides a table method for the class "summary.cv.plsRmodel"

Usage

```r
## S3 method for class 'table.summary.cv.plsRmodel'
plot(x, type=c("CVMC","CVQ2","CVPress"), ...)
```

Arguments

- `x`: an object of the class "table.summary.cv.plsRmodel"
- `type`: the type of cross validation criterion to plot.
- `...`: further arguments to be passed to or from methods.

Value

NULL

Author(s)

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

See Also

`summary`
Examples

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
bbb <- cv.plsR(dataY=yCornell, dataX=XCornell, nt=6, K=6, NK=100)
plot(cvtable(summary(bbb)), type="CVQ2")
rm(list=c("XCornell", "yCornell", "bbb"))
```

Description

This function plots the confidence intervals derived using the function `confints.bootpls` from a `bootpls` based object.

Usage

```r
plots.confints.bootpls(ic_bootobject, indices = NULL, legendpos = "topleft",
                        prednames = TRUE, articlestyle = TRUE, xaxisticks=TRUE, ltyIC=c(2, 4, 5, 1),
                        colIC=c("darkgreen", "blue", "red", "black"), typeIC, las = par("las"),
                        mar, mgp, ...)```

**Arguments**

- `ic_bootobject`: an object created with the `confints.bootpls` function.
- `indices`: vector of indices of the variables to plot. Defaults to NULL: all the predictors will be used.
- `legendpos`: position of the legend as in `legend`, defaults to "topleft".
- `prednames`: do the original names of the predictors shall be plotted? Defaults to TRUE: the names are plotted.
- `articlestyle`: do the extra blank zones of the margin shall be removed from the plot? Defaults to TRUE: the margins are removed.
- `xaxisticks`: do ticks for the x axis shall be plotted? Defaults to TRUE: the ticks are plotted.
- `ltyIC`: lty as in `plot`
- `colIC`: col as in `plot`
- `typeIC`: type of CI to plot. Defaults to `typeIC=c("Normal", "Basic", "Percentile", "BCa")` if BCa intervals limits were computed and to `typeIC=c("Normal", "Basic", "Percentile")` otherwise.
- `las`: numeric in 0,1,2,3; the style of axis labels. 0: always parallel to the axis [default], 1: always horizontal, 2: always perpendicular to the axis, 3: always vertical.
- `mar`: A numerical vector of the form `c(bottom, left, top, right)` which gives the number of lines of margin to be specified on the four sides of the plot. The default is `c(5, 4, 4, 2) + 0.1`.
- `mgp`: The margin line (in mex units) for the axis title, axis labels and axis line. Note that `mgp[1]` affects title whereas `mgp[2:3]` affect axis. The default is `c(3, 1, 0)`.
- `...`: further options to pass to the `plot` function.
Value

NULL

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

See Also

confints.bootpls

Examples

data(Cornell)
modpls <- plsR(Y~.,data=Cornell,3)

# Lazraq-Cleroux PLS (Y,X) bootstrap
set.seed(250)
Cornell.bootYX <- bootpls(modpls, R=250)
temp.ci <- confints.bootpls(Cornell.bootYX,2:8)

plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE,
main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:3,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomright")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE,
main="Bootstrap confidence intervals for some of the bj")

temp.ci <- confints.bootpls(Cornell.bootYX,typeBCa=FALSE)
plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,2:8)
plots.confints.bootpls(temp.ci,prednames=FALSE)

# Bastien CSDA 2005 (Y,T) bootstrap
Cornell.boot <- bootpls(modpls, typeboot="fmodel_np", R=250)
temp.ci <- confints.bootpls(Cornell.boot,2:8)

plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE,
main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:3,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomright")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE,
main="Bootstrap confidence intervals for some of the bj")

temp.ci <- confints.bootpls(Cornell.boot,typeBCa=FALSE)
plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,2:8)
plots.confints.bootpls(temp.ci,prednames=FALSE)
```r
Lazraq-Cleroux PLS (Y,X) bootstrap
should be run with R=1000 but takes much longer time
aze_compl.bootYX3 <- bootplsglm(modplsglm, typeboot="plsmodel", R=250)
temp.ci <- confints.bootpls(aze_compl.bootYX3)
plots.confints.bootpls(temp.ci)
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE,
main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomleft")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE,
main="Bootstrap confidence intervals for some of the bj")
plots.confints.bootpls(temp.ci,indices=1:34,prednames=FALSE)
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE,ltyIC=1,colIC=c(1,2))

temp.ci <- confints.bootpls(aze_compl.bootYX3,1:34,typeBCa=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE)
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomleft")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE,
main="Bootstrap confidence intervals for some of the bj")
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE,
main="Bootstrap confidence intervals for the bj")
plots.confints.bootpls(temp.ci,indices=1:33,prednames=FALSE)
plots.confints.bootpls(temp.ci,c(2,4,6),"bottomleft")
plots.confints.bootpls(temp.ci,c(2,4,6),articlestyle=FALSE,
main="Bootstrap confidence intervals for some of the bj")
plots.confints.bootpls(temp.ci,prednames=FALSE,articlestyle=FALSE,
main="Bootstrap confidence intervals for the bj")

temp.ci <- confints.bootpls(aze_compl.bootYT3,1:33,typeBCa=FALSE)
plots.confints.bootpls(temp.ci,prednames=FALSE)
```

### Description

This function implements Partial least squares Regression models with leave one out cross validation for complete or incomplete datasets.
Usage

```r
class(plsR) <- c("plsR", class(x))
class(plsRmodel) <- "plsRmodel"

Default S3 method:
plsRmodel(dataY, dataX, nt = 2, limQ2set = 0.0975,
dataPredictY = dataX, modele = "pls", family = NULL, typeVC = "none",
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
sparse = FALSE, sparseStop = TRUE, naive = FALSE, verbose=TRUE)

S3 method for class 'formula'
plsRmodel(formula, data, nt = 2, limQ2set = 0.0975,
dataPredictY, modele = "pls", family = NULL, typeVC = "none",
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
subset, contrasts = NULL, sparse = FALSE, sparseStop = TRUE, naive = FALSE,
verbose=TRUE)

PLS_lm(dataY, dataX, nt = 2, limQ2set = 0.0975, dataPredictY = dataX,
modele = "pls", family = NULL, typeVC = "none", EstimXNA = FALSE,
scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = 0.05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
sparse = FALSE, sparseStop = TRUE, naive = FALSE, verbose=TRUE)

PLS_lm(formula, data=NULL, nt=2, limQ2set=0.0975, dataPredictY=dataX,
modele="pls", family=NULL, typeVC="none", EstimXNA=FALSE,
scaleX=TRUE, scaleY=NULL, pvals.expli=FALSE, alpha.pvals.expli=0.05, MClassed=FALSE,
tol_Xi=10^(-12), weights, subset, contrasts=FALSE, sparse=FALSE,
sparseStop=FALSE, naive=FALSE, verbose=TRUE)
```

Arguments

- **x**: a formula or a response (training) dataset.
- **dataY**: response (training) dataset.
- **dataX**: predictor(s) (training) dataset.
- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `plsR` is called.
- **nt**: number of components to be extracted.
- **limQ2set**: limit value for the Q2.
- **dataPredictY**: predictor(s) (testing) dataset.
- **modele**: name of the PLS model to be fitted, only "pls" available for this function.
- **family**: for the present moment the family argument is ignored and set thanks to the value of modele.
- **typeVC**: type of leave one out cross validation. Several procedures are available. If cross validation is required, one needs to selects the way of predicting the response for left out observations. For complete rows, without any missing value, there are two different ways of computing these predictions. As a consequence, for mixed datasets, with complete and incomplete rows, there are two ways of computing prediction: either predicts any row as if there were missing values in it.
(missingdata) or selects the prediction method accordingly to the completeness of the row (adaptative).

none no cross validation

standard as in SIMCA for datasets without any missing value. For datasets with any missing value, it is the as using missingdata

missingdata all values predicted as those with missing values for datasets with any missing values

adaptative predict a response value for an x with any missing value as those with missing values and for an x without any missing value as those without missing values.

EstimXNA only for modele="pls". Set whether the missing X values have to be estimated.

scaleX scale the predictor(s): must be set to TRUE for modele="pls" and should be for glm pls.

scaleY scale the response: Yes/No. Ignored since non always possible for glm responses.

pvals.expli should individual p-values be reported to tune model selection?

alpha.pvals.expli level of significance for predictors when pvals.expli=TRUE

MClassed number of misclassified cases, should only be used for binary responses

tol_Xi minimal value for Norm2(Xi) and det(pp′ × pp) if there is any missing value in the dataX. It defaults to 10^{−12}

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting process.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

sparse should the coefficients of non-significant predictors (<alpha.pvals.expli) be set to 0

sparseStop should component extraction stop when no significant predictors (<alpha.pvals.expli) are found

naive Use the naive estimates for the Degrees of Freedom in plsR? Default is FALSE.

verbose should info messages be displayed?

... arguments to pass to plsRmodel.default or to plsRmodel.formula

Details

There are several ways to deal with missing values that leads to different computations of leave one out cross validation criteria.

A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.
Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers \(w_i\), that each response \(y_i\) is the mean of \(w_i\) unit-weight observations.

The default estimator for Degrees of Freedom is the Kramer and Sugiyama’s one. Information criteria are computed accordingly to these estimations. Naive Degrees of Freedom and Information Criteria are also provided for comparison purposes. For more details, see N. Kraemer and M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. *Journal of the American Statistical Association*, 106(494), 697-705, 2011.

### Value

- **nr**: Number of observations
- **nc**: Number of predictors
- **nt**: Number of requested components
- **ww**: raw weights (before L2-normalization)
- **wwnorm**: L2 normed weights (to be used with deflated matrices of predictor variables)
- **wwetoile**: modified weights (to be used with original matrix of predictor variables)
- **tt**: PLS components
- **pp**: loadings of the predictor variables
- **CoeffC**: coefficients of the PLS components
- **uscores**: scores of the response variable
- **YChapeau**: predicted response values for the dataX set
- **residYChapeau**: residuals of the deflated response on the standardized scale
- **RepY**: scaled response vector
- **na.miss.Y**: is there any NA value in the response vector
- **YNA**: indicatrix vector of missing values in RepY
- **residY**: deflated scaled response vector
- **ExpliX**: scaled matrix of predictors
- **na.miss.X**: is there any NA value in the predictor matrix
- **XXNA**: indicator of non-NA values in the predictor matrix
- **residXX**: deflated predictor matrix
- **PredictY**: response values with NA replaced with 0
- **press.ind**: individual PRESS value for each observation (scaled scale)
- **press.tot**: total PRESS value for all observations (scaled scale)
- **family**: glm family used to fit PLSGLR model
- **ttPredictY**: PLS components for the dataset on which prediction was requested
- **typeVC**: type of leave one out cross-validation used
- **dataX**: predictor values
- **dataY**: response values
- **computed_nt**: number of components that were computed
- **CoeffCFull**: matrix of the coefficients of the predictors
- **CoeffConstante**: value of the intercept (scaled scale)
Std.Coeffs Vector of standardized regression coefficients
press.ind2 individual PRESS value for each observation (original scale)
RSSresidY residual sum of squares (scaled scale)
Coeffs Vector of regression coefficients (used with the original data scale)
Yresidus residuals of the PLS model
RSS residual sum of squares (original scale)
residusY residuals of the deflated response on the standardized scale
AIC.std AIC.std vs number of components (AIC computed for the standardized model
AIC AIC vs number of components
optional If the response is assumed to be binary:
  i.e. MClassed=TRUE.
MissClassed Number of miss classed results
Probs "Probability" predicted by the model. These are not true probabilities
  since they may lay outside of [0,1]
Probs.trc Probability predicted by the model and constrained to belong to
  [0,1]
ttPredictFittedMissingY Description of 'comp2'
optional If cross validation was requested:
  i.e. typeVC="standard", typeVC="missingdata" or typeVC="adaptative".
R2residY R2 coefficient value on the standardized scale
R2 R2 coefficient value on the original scale
press.tot2 total PRESS value for all observations (original scale)
Q2 Q2 value (standardized scale)
limQ2 limit of the Q2 value
Q2_2 Q2 value (original scale)
Q2cum cumulated Q2 (standardized scale)
Q2cum_2 cumulated Q2 (original scale)
InfCrit table of Information Criteria
Std.ValsPredictY predicted response values for supplementary dataset (standardized scale)
ValsPredictY predicted response values for supplementary dataset (original scale)
Std.XChapeau estimated values for missing values in the predictor matrix (standardized scale)
XXwotNA predictor matrix with missing values replaced with 0

Note

Use cv.plsR to cross-validate the plsRglm models and bootpls to bootstrap them.

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/
References


See Also

See also *plsRglm* to fit PLGLR models.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

#maximum 6 components could be extracted from this dataset
#trying 10 to trigger automatic stopping criterion
modpls10<-plsR(yCornell,XCornell,10)
modpls10

#With iterative leave one out CV PRESS
modpls6cv<-plsR(yCornell,XCornell,6,typeVC="standard")
modpls6cv
cv.modpls<--cv.plsR(yCornell,XCornell,6,NK=100)
res.cv.modpls<--cvtable(summary(cv.modpls))
plot(res.cv.modpls)
rm(list=c("XCornell","yCornell","modpls10","modpls6cv"))

#A binary response example
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
modpls.aze <- plsR(yaze_compl,Xaze_compl,10,MClassed=TRUE,typeVC="standard")
modpls.aze

#Direct access to not cross validated values
modpls.aze$AIC
modpls.aze$AIC.std
modpls.aze$MissClassed

#Raw predicted values (not really probably since not constrained in [0,1]
modpls.aze$Probs
#Truncated to [0;1] predicted values (true probabilities)
modpls.aze$Probs.trc
modpls.aze$Probs-trc

#Repeated cross validation of the model (NK=100 times)
cv.modpls.aze<--cv.plsR(yaze_compl,Xaze_compl,10,NK=100)
res.cv.modpls.aze<--cvtable(summary(cv.modpls.aze,MClassed=TRUE))
#High discrepancy in the number of component choice using repeated cross validation
#and missclassed criterion
plot(res.cv.modpls.aze)
#24 predictors
dimX <- 24
#2 components
Astar <- 2
simul_data_UniYX(dimX,Astar)
dataAstar2 <- t(replicate(250,simul_data_UniYX(dimX,Astar)))
XdataAstar2 <- dataAstar2[,1]
ydataAstar2 <- dataAstar2[,2:(dimX+1)]
modpls.A2 <- plsR(ydataAstar2,XdataAstar2,10,typeVC="standard")
res.cv.modpls.A2 <- cvtable(summary(cv.modpls.A2))

#Perfect choice for the Q2 criterion in PLSR
plot(res.cv.modpls.A2)

#Binarized response
ysimbin1 <- dicho(ydataAstar2)
#Binarized predictors
Xsimbin1 <- dicho(XdataAstar2)
modpls.B2 <- plsR(ysimbin1,Xsimbin1,10,typeVC="standard",MClassed=TRUE)
modpls.B2$Probs
modpls.B2$Probs.trc
modpls.B2$MissClassed

#Only one component found by repeated CV misclassified criterion
plot(res.cv.modpls.B2)

rm(list=c("dimX","Astar","ydataAstar2","XdataAstar2","ydataAstar2","ydataAstar2","modpls.A2","cv.modpls.A2",

---

### plsR.dof

**Computation of the Degrees of Freedom**

**Description**

This function computes the Degrees of Freedom using the Krylov representation of PLS and other quantities that are used to get information criteria values. For the time present, it only works with complete datasets.

**Usage**

`plsR.dof(modplsR, naive = FALSE)`

**Arguments**

- `modplsR`: A plsR model i.e. an object returned by one of the functions `plsR`, `plsRmodel.default`, `plsRmodel.formula`, `PLS_lm` or `PLS_lm_formula`.
- `naive`: A boolean.
Details

If naive=FALSE returns values for estimated degrees of freedom and error dispersion. If naive=TRUE returns values for naive degrees of freedom and error dispersion. The original code from Nicole Kraemer and Mikio L. Braun was unable to handle models with only one component.

Value

<table>
<thead>
<tr>
<th>DoF</th>
<th>Degrees of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigmahat</td>
<td>Estimates of dispersion</td>
</tr>
<tr>
<td>Yhat</td>
<td>Predicted values</td>
</tr>
<tr>
<td>yhat</td>
<td>Square Euclidean norms of the predicted values</td>
</tr>
<tr>
<td>RSS</td>
<td>Residual Sums of Squares</td>
</tr>
</tbody>
</table>

Author(s)

Nicole Kraemer, Mikio L. Braun with improvements from Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

aic.dof and infcrit.dof for computing information criteria directly from a previously fitted plsR model.

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
plsR.dof(modpls)
plsR.dof(modpls,naive=TRUE)

Description

This function implements Partial least squares Regression generalized linear models complete or incomplete datasets.
Usage

plsRglm(x, ...)  
## Default S3 method:
plsRglm(model, dataY, dataX, nt = 2, limQ2set = .0975,
dataPredictY = dataX, modele = "pls", family = NULL, typeVC = "none",
EstimXNA = FALSE, scaleX = TRUE, scaleY = NULL, pvals.expli = FALSE,
alpha.pvals.expli = .05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
sparse = FALSE, sparseStop = TRUE, naive = FALSE, verbose = TRUE)
## S3 method for class 'formula'
plsRglm(formula, data = NULL, nt = 2, limQ2set = .0975,
dataPredictY = dataX, modele = "pls", family = NULL, typeVC = "none",
alpha.pvals.expli = .05, MClassed = FALSE, tol_Xi = 10^(-12), weights,
start = NULL, etastart, mustart, offset, method = "glm.fit", control = list(),
contrasts = NULL, sparse = FALSE, sparseStop = TRUE, naive = FALSE, verbose = TRUE)

Arguments

- **x**: a formula or a response (training) dataset
- **dataY**: response (training) dataset
- **dataX**: predictor(s) (training) dataset
- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `plsRglm` is called.
- **nt**: number of components to be extracted
- **limQ2set**: limit value for the Q2
- **dataPredictY**: predictor(s) (testing) dataset
- **modele**: name of the PLS glm model to be fitted ("pls", "pls-glm-Gamma", "pls-glm-gaussian", "pls-glm-inverse.gaussian", "pls-glm-logistic", "pls-glm-poisson", "pls-glm-poir"). Use `modele=pls-glm-family` to enable the family option.
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.) To use the family option, please set `modele="pls-glm-family"`. User defined families can also be defined. See details.
typeVC type of leave one out cross validation. For back compatibility purpose.
none no cross validation
EstimXNA only for model="pls". Set whether the missing X values have to be estimated.
scaleX scale the predictor(s) : must be set to TRUE for model="pls" and should be
for glm pls.
scaleY scale the response : Yes/No. Ignored since non always possible for glm responses.
pvals.expli should individual p-values be reported to tune model selection ?
alpha.pvals.expli level of significance for predictors when pvals.expli=TRUE
MClassed number of misclassified cases, should only be used for binary responses
tol_Xi minimal value for Norm2(Xi) and det(pp′ × pp) if there is any missing value in
the dataX. It defaults to 10^{-12}
weights an optional vector of 'prior weights' to be used in the fitting process. Should be
NULL or a numeric vector.
subset an optional vector specifying a subset of observations to be used in the fitting
process.
start starting values for the parameters in the linear predictor.
etastart starting values for the linear predictor.
mustart starting values for the vector of means.
offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.
method For a glm model (modele="pls-glm-family"), the method to be used in fit-
ting the model. The default method "glm.fit" uses iteratively reweighted least
squares (IWLS). User-supplied fitting functions can be supplied either as a func-
tion or a character string naming a function, with a function which takes the same
arguments as glm.fit. For a polr model (modele="pls-glm-polr"), logistic
or probit or (complementary) log-log (loglog or cloglog) or cauchit (corre-
sponding to a Cauchy latent variable).
control a list of parameters for controlling the fitting process. For glm.fit this is passed
to glm.control.
contrasts an optional list. See the contrasts.arg of model.matrix.default.
sparse should the coefficients of non-significant predictors (<alpha.pvals.expli) be
set to 0
sparseStop should component extraction stop when no significant predictors (<alpha.pvals.expli)
are found
naive Use the naive estimates for the Degrees of Freedom in plsR? Default is FALSE.
verbose Should details be displayed ?
... arguments to pass to plsRmodel.default or to plsRmodel.formula
Details

There are seven different predefined models with predefined link functions available:

- "pls" ordinary pls models
- "pls-glm-Gamma" glm gaussian with inverse link pls models
- "pls-glm-gaussian" glm gaussian with identity link pls models
- "pls-glm-inverse-gamma" glm binomial with square inverse link pls models
- "pls-glm-logistic" glm binomial with logit link pls models
- "pls-glm-poisson" glm poisson with log link pls models
- "pls-glm-polr" glm polr with logit link pls models

Using the "family=" option and setting "modele=pls-glm-family" allows changing the family and link function the same way as for the glm function. As a consequence user-specified families can also be used.

The **gaussian family** accepts the links (as names) identity, log and inverse.

The **binomial family** accepts the links logit, probit, cauchit, (corresponding to logistic, normal and Cauchy CDFs respectively) log and cloglog (complementary log-log).

The **Gamma family** accepts the links inverse, identity and log.

The **poisson family** accepts the links log, identity, and sqrt.

The **inverse.gaussian family** accepts the links 1/mu^2, inverse, identity and log.

The **quasi family** accepts the links logit, probit, cloglog, identity, inverse, log, 1/mu^2 and sqrt.

The function **power** can be used to create a power link function.

A typical predictor has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with any duplicates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.

The default estimator for Degrees of Freedom is the Kramer and Sugiyama’s one which only works for classical plsR models. For these models, Information criteria are computed accordingly to these estimations. Naïve Degrees of Freedom and Information Criteria are also provided for comparison purposes. For more details, see N. Kraemer and M. Sugiyama. (2011). The Degrees of Freedom of Partial Least Squares Regression. *Journal of the American Statistical Association*, 106(494), 697-705, 2011.
Value

Depends on the model that was used to fit the model. You can generally at least find these items.

- **nr**: Number of observations
- **nc**: Number of predictors
- **nt**: Number of requested components
- **ww**: raw weights (before L2-normalization)
- **wwnorm**: L2 normed weights (to be used with deflated matrices of predictor variables)
- **wwetoile**: modified weights (to be used with original matrix of predictor variables)
- **tt**: PLS components
- **pp**: loadings of the predictor variables
- **CoeffC**: coefficients of the PLS components
- **uscores**: scores of the response variable
- **YChapeau**: predicted response values for the dataX set
- **residYChapeau**: residuals of the deflated response on the standardized scale
- **RepY**: scaled response vector
- **na.miss.Y**: is there any NA value in the response vector
- **YNA**: indicatrix vector of missing values in RepY
- **residY**: deflated scaled response vector
- **ExpliX**: scaled matrix of predictors
- **na.miss.X**: is there any NA value in the predictor matrix
- **XXNA**: indicator of non-NA values in the predictor matrix
- **residXX**: deflated predictor matrix
- **PredictY**: response values with NA replaced with 0
- **RSS**: residual sum of squares (original scale)
- **RSSresidY**: residual sum of squares (scaled scale)
- **R2residY**: R2 coefficient value on the standardized scale
- **R2**: R2 coefficient value on the original scale
- **press.ind**: individual PRESS value for each observation (scaled scale)
- **press.tot**: total PRESS value for all observations (scaled scale)
- **Q2cum**: cumulated Q2 (standardized scale)
- **family**: glm family used to fit PLSGLR model
- **ttPredictY**: PLS components for the dataset on which prediction was requested
- **typeVC**: type of leave one out cross-validation used
- **dataX**: predictor values
- **dataY**: response values
- **weights**: weights of the observations
- **computed_nt**: number of components that were computed
- **AIC**: AIC vs number of components
- **BIC**: BIC vs number of components
`plsrglm`  

- `CoeffsModel.Vals`  
- `ChisqPearson`  
- `CoeffCFull`  
- `CoeffConstant`  
- `Std.Coeffs`  
- `Coeffs`  
- `Yresidus`  
- `residusY`  
- `InfCrit`  

**Coeffs**
- Matrix of the coefficients of the predictors
- Value of the intercept (scaled scale)
- Vector of standardized regression coefficients
- Vector of regression coefficients (used with the original data scale)
- Residuals of the PLS model
- Residuals of the deflated response on the standardized scale
- Table of Information Criteria:
  - AIC: AIC vs number of components
  - BIC: BIC vs number of components
  - MissClassed: Number of miss classified results
  - Ch12_Pearson_Y: Q2 value (standardized scale)
  - RSS: Residual sum of squares (original scale)
  - R2: R2 coefficient value on the original scale
  - R2residY: R2 coefficient value on the standardized scale
  - RSSresidY: Residual sum of squares (scaled scale)

**Std.ValsPredictY**
- Predicted response values for supplementary dataset (standardized scale)

**ValsPredictY**
- Predicted response values for supplementary dataset (original scale)

**Std.XChapeau**
- Estimated values for missing values in the predictor matrix (standardized scale)

**FinalModel**
- Final GLR model on the PLS components

**XXwotNA**
- Predictor matrix with missing values replaced with 0

**call**
- Call

**AICstd**
- AIC.std vs number of components (AIC computed for the standardized model)

**Note**

Use `cv.plsrglm` to cross-validate the `plsrglm` models and `bootpls` to bootstrap them.

**Author(s)**

Frederic Bertrand  
<frederic.bertrand@math.unistra.fr>  
[http://www-irma.u-strasbg.fr/~fbertran/](http://www-irma.u-strasbg.fr/~fbertran/)

**References**


**See Also**

See also `plsR`.
Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

modplsglm <- plsRglm(yCornell,XCornell,10,modele="pls-glm-gaussian")

#To retrieve the final GLR model on the PLS components
finalmod <- plsRglm(yCornell,XCornell,10,modele="pls-glm-gaussian")$FinalModel
#It is a glm object.
plot(finalmod)

#Cross validation
cv.modplsglm<-cv.plsRglm(yCornell,XCornell,10,modele="pls-glm-gaussian")
res.cv.modplsglm<-cvtable(summary(cv.modplsglm))
plot(res.cv.modplsglm)

#If no model specified, classic PLSR model
modpls <- plsRglm(yCornell,XCornell,6)
modpls
modpls$tt
modpls$uscores
modpls$pp
modpls$Coeffs

#rm(list=c("XCornell","yCornell",modpls,cv.modplsglm,res.cv.modplsglm))

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y

plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls",MClassed=TRUE)$InfCrit
modpls <- plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls-glm-logistic",MClassed=TRUE,pvals.expli=TRUE)
modpls
colSums(modpls$pvalstep)
modpls$Coeffsmodel_vals

plot(plsRglm(yaze_compl,Xaze_compl,4,modele="pls-glm-logistic")$FinalModel)
plsRglm(yaze_compl[-c(99,72)],Xaze_compl[-c(99,72)],4,
modele="pls-glm-logistic",pvals.expli=TRUE)$pvalstep
plot(plsRglm(yaze_compl[-c(99,72)],Xaze_compl[-c(99,72)],4,
modele="pls-glm-logistic",pvals.expli=TRUE)$FinalModel)
rm(list=c("Xaze_compl","yaze_compl","modpls"))

data(bordeaux)
Xbordeaux<-bordeaux[,1:4]
ybordeaux<-factor(bordeaux$Quality,ordered=TRUE)
modpls <- plsRglm(ybordeaux,Xbordeaux,10,modele="pls-glm-polr",pvals.expli=TRUE)
modpls
colSums(modpls$pvalstep)

XbordeauxNA<-Xbordeaux
```r
XbordeauxNA[1,1] <- NA
modplsNA <- plsRglm(ybordeaux, XbordeauxNA, 10, modele="pls-glm-polr", pvals.expli=TRUE)
modpls
colSums(modpls$pvalstep)
rm(list=c("Xbordeaux", "XbordeauxNA", "ybordeaux", "modplsNA"))

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
modpls1 <- plsRglm(ypine, Xpine, 1)
modpls1$Std.Coeffs
modpls4 <- plsRglm(ypine, Xpine, 4)
modpls4$Std.Coeffs
modpls4$PredictY[1,]
modpls4NA <- plsRglm(ypine, XpineNAX21, 4)
modpls4NA$Std.Coeffs
modpls4NA$YChapeau[1,]
modpls4NA$CoeffC
plsRglm(ypine, XpineNAX21, 4, EstimXNA=TRUE)$XChapeau
plsRglm(ypine, XpineNAX21, 4, EstimXNA=TRUE)$XChapeauNA

compare pls-glm-gaussian with classic plsR
modplsglm4 <- plsRglm(ypine, Xpine, 4, modele="pls-glm-gaussian")
cbind(modpls4$Std.Coeffs, modplsglm4$Std.Coeffs)

without missing data
cbind(ypine, modpls4$ValsPredictY, modplsglm4$ValsPredictY)

with missing data
modplsglm4NA <- plsRglm(ypine, XpineNAX21, 4, modele="pls-glm-gaussian")
cbind(ypine, modplsglm4NA$ValsPredictY, modplsglm4NA$ValsPredictY)
rm(list=c("Xfowlkes", "yfowlkes", "modpls4", "modplsglm4NA"))
data(fowlkes)
Xfowlkes <- fowlkes[,2:13]
yfowlkes <- fowlkes[,1]
modpls <- plsRglm(yfowlkes, Xfowlkes, 4, modele="pls-glm-logistic", pvals.expli=TRUE)
modpls
colSums(modpls$pvalstep)
rm(list=c("Xfowlkes", "yfowlkes", "modpls"))

if(require(chemometrics)){
data(hyptis)
yhyptis <- factor(hyptis$Group, ordered=TRUE)
Xhyptis <- as.data.frame(hyptis[,1:6])
options(contrasts = c("contr.treatment", "contr.poly"))
modpls2 <- plsRglm(yhyptis, Xhyptis, 6, modele="pls-glm-polr")
modpls2$Coeffs$model_vals
```
modpls2$InfCrit
modpls2$Coeffs
modpls2$Std.Coeffs

table(yhyptis,predict(modpls2$FinalModel,type="class"))
rm(list=c("yhyptis","Xhyptis","modpls2"))

} dimX <- 24 Astar <- 6 dataAstar6 <- t(replicate(250,simul_data_UniYX(dimX,Astar))) ysimbin1 <- dicho(dataAstar6[,1]) Xsimbin1 <- dicho(dataAstar6[,2:(dimX+1)]) modplsglm <- plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic") modplsglm cv.modplsglm <- cv.plsRglm(ysimbin1,Xsimbin1,10,modele="pls-glm-logistic",NK=100) res.cv.modplsglm <- cvtable(summary(cv.modplsglm,MClassed=TRUE)) plot(res.cv.modplsglm) #defaults to type="CVMC"
rm(list=c("dimX","Astar","dataAstar6","ysimbin1","Xsimbin1","modplsglm","cv.modplsglm"))

PLS_glm_wvc

**Light version of PLS_glm for cross validation purposes**

**Description**

Light version of PLS_glm for cross validation purposes either on complete or incomplete datasets.

**Usage**

```r
PLS_glm_wvc(dataY, dataX, nt = 2, dataPredictY = dataX, modele = "pls", family = NULL, scaleX = TRUE, scaleY = NULL, keepcoeffs = FALSE, keepstd.coeffs=FALSE, tol_Xi = 10^(-12), weights, method = "logistic", verbose = TRUE)
```

**Arguments**

- **dataY**: response (training) dataset
- **dataX**: predictor(s) (training) dataset
- **nt**: number of components to be extracted
- **dataPredictY**: predictor(s) (testing) dataset
- **modele**: name of the PLS glm model to be fitted ("pls", "pls-glm-Gamma", "pls-glm-gaussian", "pls-glm-inverse.gaussian", "pls-glm-logistic", "pls-glm-poisson", "pls-glm-polr"). Use `modele=pls-glm-family` to enable the family option.
- **family**: a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See `family` for details of family functions.)

To use the family option, please set `modele="pls-glm-family"`. User defined families can also be defined. See details.
scaleX  scale the predictor(s): must be set to TRUE for modele="pls" and should be for glms pls.
scaleY  scale the response: Yes/No. Ignored since non always possible for glm responses.
keepcoeffs  whether the coefficients of the linear fit on link scale of unstandardized explanatory variables should be returned or not.
keystd.coeffs  whether the coefficients of the linear fit on link scale of standardized explanatory variables should be returned or not.
tol_Xi  minimal value for Norm2(Xi) and det(pp' x pp) if there is any missing value in the dataX. It defaults to 10^-12
weights  an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.
method  logistic, probit, complementary log-log or cauchit (corresponding to a Cauchy latent variable).
verbose  should info messages be displayed?

Details

This function is called by PLS_glm_kfoldcv_formula in order to perform cross-validation either on complete or incomplete datasets.

There are seven different predefined models with predefined link functions available:

- "pls" ordinary pls models
- "pls-glm-Gamma" glm gaussian with inverse link pls models
- "pls-glm-gaussian" glm gaussian with identity link pls models
- "pls-glm-inverse-gamma" glm binomial with square inverse link pls models
- "pls-glm-logistic" glm binomial with logit link pls models
- "pls-glm-poisson" glm poisson with log link pls models
- "pls-glm-polr" glm polr with logit link pls models

Using the "family=" option and setting "modele=pls-glm-family" allows changing the family and link function the same way as for the glm function. As a consequence user-specified families can also be used.

The gaussian family accepts the links (as names) identity, log and inverse.
The binomial family accepts the links logit, probit, cauchit, (corresponding to logistic, normal and Cauchy CDFs respectively) log and cloglog (complementary log-log).
The Gamma family accepts the links inverse, identity and log.
The poisson family accepts the links log, identity, and sqrt.
The inverse.gaussian family accepts the links 1/mu^2, inverse, identity and log.
The quasi family accepts the links logit, probit, cloglog, identity, inverse, log, 1/mu^2 and sqrt.

The function power can be used to create a power link function.

Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers w_i, that each response y_i is the mean of w_i unit-weight observations.
Value

valsPredict nrow(dataPredictY) * nt matrix of the predicted values
coeffs If the coefficients of the explanatory variables were requested:
i.e. keepcoeffs=TRUE.
ncol(dataX) * 1 matrix of the coefficients of the explanatory variables

Author(s)

Frederic Bertrand

Author(s)

<frederic.bertrand@math.unistra.fr>

http://www-irma.u-strasbg.fr/~fbertran/

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparing the linear and
the logistic PLS regression with qualitative predictors: application to allelotyping data. *Journal
cnrs.fr/index.php/J-SFdS/article/view/47

See Also

*PLS_glm* for more detailed results, *PLS_glm_kfoldcv* for cross-validating models and *PLS_lm_wvc*
for the same function dedicated to plsR models

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
PLS_glm_wvc(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-gaussian",
dataPredictY=XCornell[,1])
PLS_glm_wvc(dataY=yCornell,dataX=XCornell,nt=3,modele="pls-glm-family",
family=gaussian(),dataPredictY=XCornell[,1])
PLS_glm_wvc(dataY=yCornell[-1],dataX=XCornell[-1,],nt=3,modele="pls-glm-gaussian",
dataPredictY=XCornell[,1])
PLS_glm_wvc(dataY=yCornell[-1],dataX=XCornell[-1,],nt=3,modele="pls-glm-family",
family=gaussian(),dataPredictY=XCornell[,1])
rm("XCornell","yCornell")

## With an incomplete dataset (X[1,2] is NA)
data(pine)
ypine <- pine[,11]
data(XpineNAX21)
PLS_glm_wvc(dataY=ypine,dataX=XpineNAX21,nt=10,modele="pls-glm-gaussian")
rm("XpineNAX21","ypine")

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
PLS_glm_wvc(ypine,Xpine,10,modele="pls")
PLS_glm_wvc(ypine,Xpine,10,modele="pls-glm-Gamma")
PLS_glm_wvc(ypine,Xpine,10,modele="pls-glm-family",family=Gamma())
PLS_glm_wvc(ypine,Xpine,10,modele="pls-glm-gaussian")
PLS_glm_wvc(ypine,Xpine,10,modele="pls-glm-family",family=gaussian(log))
PLS_glm_wvc(round(ypine), Xpine, 10, modele="pls-glm-poisson")
rm(list=c("pine", "ypine", "Xpine"))

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
PLS_glm_wvc(yCornell, XCornell, 10, modele="pls-glm-inverse.gaussian")
rm(list=c("XCornell", "yCornell"))

PLS_glm_wvc(yCornell, XCornell, 10, modele="pls-glm-family",
family=inverse.gaussian())
rm(list=c("XCornell", "yCornell"))

PLS_glm_wvc(dataY=yCornell, dataX=XCornell, nt=3, modele="pls-glm-gaussian",
dataPredictY=XCornell[1,])
PLS_glm_wvc(dataY=yCornell[-1], dataX=XCornell[-1,], nt=3, modele="pls-glm-gaussian",
dataPredictY=XCornell[1,])
rm("XCornell", "yCornell")

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
PLS_glm(yaze_compl, Xaze_compl, 10, modele="pls-glm-logistic", typeVC="none")$InfCrit
PLS_glm_wvc(yaze_compl, Xaze_compl, 10, modele="pls-glm-logistic", keepcoeffs=TRUE)
rm("Xaze_compl", "yaze_compl")

---

### PLS_lm_wvc

Light version of PLS_lm for cross validation purposes

#### Description

Light version of PLS_lm for cross validation purposes either on complete or incomplete datasets.

#### Usage

```r
PLS_lm_wvc(dataY, dataX, nt = 2, dataPredictY = dataX, modele = "pls",
scaleX = TRUE, scaleY = NULL, keepcoeffs = FALSE,
keepsd.coeffs = FALSE, tol_Xi = 10^(-12), weights, verbose=TRUE)
```

#### Arguments

- `dataY`: response (training) dataset
- `dataX`: predictor(s) (training) dataset
- `nt`: number of components to be extracted
- `dataPredictY`: predictor(s) (testing) dataset
- `modele`: name of the PLS model to be fitted, only ("pls" available for this fonction.)
scaleX scale the predictor(s): must be set to TRUE for modele="pls" and should be for glm plm.
scaleY scale the response: Yes/No. Ignored since non always possible for glm responses.
keepcoeffs whether the coefficients of unstandardized explanatory variables should be returned or not.
keepstd.coefs whether the coefficients of standardized explanatory variables should be returned or not.
tol_Xi minimal value for $\text{Norm}^2(X_i)$ and $\det(pp')$ if there is any missing value in the dataX. It defaults to $10^{-12}$
weights an optional vector of 'prior weights' to be used in the fitting process. Should be NULL or a numeric vector.
verbose should info messages be displayed?

Details
This function is called by PLS_lm_kfoldcv in order to perform cross-validation either on complete or incomplete datasets.
Non-NULL weights can be used to indicate that different observations have different dispersions (with the values in weights being inversely proportional to the dispersions); or equivalently, when the elements of weights are positive integers $w_i$, that each response $y_i$ is the mean of $w_i$ unit-weight observations.

Value
valsPredict nrow(dataPredictY) * nt matrix of the predicted values
coeffs If the coefficients of the explanatory variables were requested: i.e. keepcoeffs=TRUE.
ncol(dataX) * 1 matrix of the coefficients of the explanatory variables

Note
Use PLS_lm_kfoldcv for a wrapper in view of cross-validation.

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also
PLS_lm for more detailed results, PLS_lm_kfoldcv for cross-validating models and PLS_glm_wvc for the same function dedicated to plsRglm models
Examples

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
PLS_lm_wvc(dataY=yCornell, dataX=XCornell, nt=3, dataPredictY=XCornell[,1])
PLS_lm_wvc(dataY=yCornell[-c(1,2)], dataX=XCornell[-c(1,2),], nt=3, dataPredictY=XCornell[,c(1,2)], keepcoeffs=TRUE)
rm("XCornell","yCornell")

With an incomplete dataset (X[1,2] is NA)
data(pine)
ypine <- pine[,11]
data(XpineNAX21)
PLS_lm_wvc(dataY=ypine[-1], dataX=XpineNAX21[-1,], nt=3)
PLS_lm_wvc(dataY=ypine[-1], dataX=XpineNAX21[-1,], nt=3, dataPredictY=XpineNAX21[1,])
PLS_lm_wvc(dataY=ypine[-2], dataX=XpineNAX21[-2,], nt=3, dataPredictY=XpineNAX21[2,])
PLS_lm_wvc(dataY=ypine, dataX=XpineNAX21, nt=3)
rm("XpineNAX21","ypine")
```

predict.plsRglmmodel  
*Print method for plsRcox models*

Description

This function provides a predict method for the class "plsRglmmodel".

Usage

```r
S3 method for class 'plsRglmmodel'
predict(object, newdata, comps=object$computed_nt,
type=c("link", "response", "terms", "scores", "class", "probs"),
se.fit=FALSE, weights, dispersion = NULL, methodNA="adaptative", verbose=TRUE,...)
```

Arguments

- **object**  
  An object of the class "plsRmodel".

- **newdata**  
  An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.

- **comps**  
  A value with a single value of component to use for prediction.

- **type**  
  Type of predicted value. Available choices are the glms ones ("link", "response", "terms"), the polr ones ("class", "probs") or the scores ("scores").

- **se.fit**  
  If TRUE, pointwise standard errors are produced for the predictions using the Cox model.

- **weights**  
  Vector of case weights. If weights is a vector of integers, then the estimated coefficients are equivalent to estimating the model from data with the individual cases replicated as many times as indicated by weights.

- **dispersion**  
  The dispersion of the GLM fit to be assumed in computing the standard errors. If omitted, that returned by summary applied to the object is used.
predict.plsRglmmodel

methodNA

Selects the way of predicting the response or the scores of the new data. For complete rows, without any missing value, there are two different ways of computing the prediction. As a consequence, for mixed datasets, with complete and incomplete rows, there are two ways of computing prediction: either predicts any row as if there were missing values in it (missingdata) or selects the prediction method accordingly to the completeness of the row (adaptative).

verbose

should info messages be displayed?

Arguments to be passed on to stats::glm and plsRglm::plsRglm.

Value

When type is "response", a matrix of predicted response values is returned.
When type is "scores", a score matrix is returned.

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

See Also predict.glm

Examples

data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
data(pine_sup)
Xpine_sup<-pine_sup[,1:10]
Xpine_supNA<-Xpine_sup
Xpine_supNA[1,1]<-NA
modpls=plsRglm(dataY=ypine,dataX=Xpine,nt=6,modele="pls-glm-family",family="gaussian")
modplsform=plsRglm(x11~.,data=pine,nt=6,modele="pls-glm-family",family="gaussian")
modpls2=plsRglm(dataY=ypine,dataX=Xpine,nt=6,modele="pls-glm-family",
dataPredictY=Xpine_sup,family="gaussian")
modpls2NA=plsRglm(dataY=ypine,dataX=Xpine,nt=6,modele="pls-glm-family",
dataPredictY=Xpine_supNA,family="gaussian")

#Identical to predict(modpls,type="link") or modpls$Std.ValsPredictY
cbind(modpls$Std.ValsPredictY,modplsform$Std.ValsPredictY,
predict(modpls),predict(modplsform))

#Identical to predict(modpls,type="response") or modpls$ValsPredictY
cbind(modpls$ValsPredictY,modplsform$ValsPredictY,
predict(modpls,type="response"),predict(modplsform,type="response"))
predict.plsRmodel

# Identical to modpls$ttPredictY
predict(modpls,type="scores")
predict(modplsform,type="scores")

# Identical to modpls2$ValsPredictY
cbind(predict(modpls,newdata=Xpine_sup,type="response"),
predict(modplsform,newdata=Xpine_sup,type="response"))

# Select the number of components to use to derive the prediction
predict(modpls,newdata=Xpine_sup,type="response",comps=1)
predict(modpls,newdata=Xpine_sup,type="response",comps=3)
predict(modpls,newdata=Xpine_sup,type="response",comps=6)
try(predict(modpls,newdata=Xpine_sup,type="response",comps=8))

# Identical to modpls2$ttValsPredictY
predict(modpls,newdata=Xpine_sup,type="scores")

# Select the number of components in the scores matrix
predict(modpls,newdata=Xpine_sup,type="scores",comps=1)
predict(modpls,newdata=Xpine_sup,type="scores",comps=3)
predict(modpls,newdata=Xpine_sup,type="scores",comps=6)
try(predict(modpls,newdata=Xpine_sup,type="scores",comps=8))

# Identical to modpls2NA$ValsPredictY
predict(modpls,newdata=Xpine_supNA,type="response",methodNA="missingdata")
cbind(predict(modpls,newdata=Xpine_supNA,type="response"),
predict(modplsform,newdata=Xpine_supNA,type="response"))

predict(modpls,newdata=Xpine_supNA,type="response",comps=1)
predict(modpls,newdata=Xpine_supNA,type="response",comps=3)
predict(modpls,newdata=Xpine_supNA,type="response",comps=6)
try(predict(modpls,newdata=Xpine_supNA,type="response",comps=8))

# Identical to modpls2NA$ttPredictY
predict(modpls,newdata=Xpine_supNA,type="scores",methodNA="missingdata")
predict(modplsform,newdata=Xpine_supNA,type="scores",methodNA="missingdata")

predict(modpls,newdata=Xpine_supNA,type="scores")
predict(modplsform,newdata=Xpine_supNA,type="scores")
predict(modpls,newdata=Xpine_supNA,type="scores",comps=1)
predict(modpls,newdata=Xpine_supNA,type="scores",comps=3)
predict(modpls,newdata=Xpine_supNA,type="scores",comps=6)
try(predict(modpls,newdata=Xpine_supNA,type="scores",comps=8))
Usage

```r
S3 method for class 'plsRmodel'
predict(object, newdata, comps = object$computed_nt,
 type = c("response", "scores"), weights, methodNA = "adaptative", verbose = TRUE, ...)
```

Arguments

- `object`: An object of the class "plsRmodel".
- `newdata`: An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
- `comps`: A value with a single value of component to use for prediction.
- `type`: Type of predicted value. Available choices are the response values ("response") or the scores ("scores").
- `weights`: Vector of case weights. If `weights` is a vector of integers, then the estimated coefficients are equivalent to estimating the model from data with the individual cases replicated as many times as indicated by `weights`.
- `methodNA`: Selects the way of predicting the response or the scores of the new data. For complete rows, without any missing value, there are two different ways of computing the prediction. As a consequence, for mixed datasets, with complete and incomplete rows, there are two ways of computing prediction: either predicts any row as if there were missing values in it (`missingdata`) or selects the prediction method accordingly to the completeness of the row (`adaptative`).
- `verbose`: should info messages be displayed?
- `...`: Arguments to be passed on to `plsRglm::plsR`.

Value

- When type is "response", a matrix of predicted response values is returned.
- When type is "scores", a score matrix is returned.

Author(s)

Frederic Bertrand
<br>
`<frederic.bertrand@math.unistra.fr>`
<br>
[http://www-irma.u-strasbg.fr/~fbertran/](http://www-irma.u-strasbg.fr/~fbertran/)

References


Examples

```r
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]
data(pine_sup)
Xpine_sup<-pine_sup[,1:10]
Xpine_supNA<-Xpine_sup
```
Xpine_supNA[1,1]<-NA
modpls plsR(dataY=ypine,dataX=Xpine,nt=6,modele="pls")
modplsform=plsR(x11~,data=pine,nt=6,modele="pls")
modpls2=plsR(dataY=ypine,dataX=Xpine,nt=6,modele="pls",dataPredictY=Xpine_sup)
modpls2NA=plsR(dataY=ypine,dataX=Xpine,nt=6,modele="pls",dataPredictY=Xpine_supNA)

#Identical to predict(modpls,type="response") or modpls$ValsPredictY
cbind(predict(modpls),predict(modplsform))

#Identical to modpls$ttPredictY
predict(modpls,type="scores")
predict(modplsform,type="scores")

cbind(predict(modpls,newdata=Xpine_sup,type="response"),
predict(modplsform,newdata=Xpine_sup,type="response"))

#Select the number of components to use to derive the prediction
predict(modpls,newdata=Xpine_sup,type="response",comps=1)
predict(modpls,newdata=Xpine_sup,type="response",comps=3)
predict(modpls,newdata=Xpine_sup,type="response",comps=6)
try(predict(modpls,newdata=Xpine_sup,type="response",comps=8))

#Identical to modpls2$ttValsPredictY
predict(modpls,newdata=Xpine_sup,type="scores")

cbind(predict(modpls,newdata=Xpine_sup,type="scores"),
predict(modplsform,newdata=Xpine_sup,type="scores"))

#Select the number of components in the scores matrix
predict(modpls,newdata=Xpine_sup,type="scores",comps=1)
predict(modpls,newdata=Xpine_sup,type="scores",comps=3)
predict(modpls,newdata=Xpine_sup,type="scores",comps=6)
try(predict(modpls,newdata=Xpine_sup,type="scores",comps=8))

#Identical to modpls2NA$ValsPredictY
predict(modpls,newdata=Xpine_supNA,type="response",methodNA="missingdata")

cbind(predict(modpls,newdata=Xpine_supNA,type="response"),
predict(modplsform,newdata=Xpine_supNA,type="response"))

predict(modpls,newdata=Xpine_supNA,type="response",comps=1)
predict(modpls,newdata=Xpine_supNA,type="response",comps=3)
predict(modpls,newdata=Xpine_supNA,type="response",comps=6)
try(predict(modpls,newdata=Xpine_supNA,type="response",comps=8))

#Identical to modpls2NA$ttPredictY
predict(modpls,newdata=Xpine_supNA,type="scores",methodNA="missingdata")
predict(modplsform,newdata=Xpine_supNA,type="scores",methodNA="missingdata")

predict(modpls,newdata=Xpine_supNA,type="scores")
predict(modplsform,newdata=Xpine_supNA,type="scores")
predict(modpls,newdata=Xpine_supNA,type="scores",comps=1)
predict(modpls,newdata=Xpine_supNA,type="scores",comps=3)
predict(modpls,newdata=Xpine_supNA,type="scores",comps=6)
try(predict(modpls,newdata=Xpine_supNA,type="scores",comps=8))
print.coef.plsRglmmodel

Print method for plsRglm models

Description
This function provides a print method for the class "coef.plsRglmmodel"

Usage
## S3 method for class 'coef.plsRglmmodel'
print(x, ...)

Arguments
x an object of the class "coef.plsRglmmodel"
...

Value
NULL

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also
print

Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modplsglm <- plsRglm(yCornell,XCornell,3,modele="pls-glm-family",family=gaussian())
class(modplsglm)
print(coef(modplsglm))
rm(list=c("XCornell","yCornell","modplsglm"))
print.coef.plsRmodel  
*Print method for plsR models*

**Description**

This function provides a print method for the class "coef.plsRmodel"

**Usage**

```r
S3 method for class 'coef.plsRmodel'
print(x, ...)
```

**Arguments**

- `x`: an object of the class "coef.plsRmodel"
- `...`: not used

**Value**

NULL

**Author(s)**

Frederic Bertrand  
<br> <frederic.bertrand@math.unistra.fr>  
<br> [http://www-irma.u-strasbg.fr/~fbertran/](http://www-irma.u-strasbg.fr/~fbertran/)

**References**


**See Also**

`print`

**Examples**

```r
data(Cornell)
XCornell <- Cornell[,1:7]
yCornell <- Cornell[,8]
modpls <- plsRglm(yCornell,XCornell,3,modele="pls")
class(modpls)
print(coef(modpls))
rm(list=c("XCornell","yCornell","modpls"))
```
print.cv.plsRglmmodel  

Print method for plsRglm models

Description

This function provides a print method for the class "cv.plsRglmmodel"

Usage

## S3 method for class 'cv.plsRglmmodel'
print(x, ...)

Arguments

x  an object of the class "cv.plsRglmmodel"
...
not used

Value

NULL

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

print

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=10,NK=1,
   modele="pls-glm-family",family=gaussian())
print(bbb)
rm(list=c("XCornell","yCornell","bbb"))
print.cv.plsRmodel  
Print method for plsR models

Description
This function provides a print method for the class "cv.plsRmodel"

Usage
## S3 method for class 'cv.plsRmodel'
print(x, ...)

Arguments
x  an object of the class "cv.plsRmodel"
... not used

Value
NULL

Author(s)
Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also
print

Examples
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsR(dataY=yCornell,dataX=XCornell,nt=10,K=6)
print(bbb)
rm(list=c("XCornell","yCornell","bbb"))
Description

This function provides a print method for the class "plsRglmmodel"

Usage

## S3 method for class 'plsRglmmodel'
print(x, ...)

Arguments

x an object of the class "plsRglmmodel"

... not used

Value

NULL

Author(s)

Frédéric Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

print

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modplsglm <- plsRglm(yCornell,XCornell,3,modele="glm-gaussian")
class(modplsglm)
print(modplsglm)
rm(list=c("XCornell","yCornell","modplsglm"))
print.plsRmodel

Print method for plsR models

Description

This function provides a print method for the class "plsRmodel"

Usage

## S3 method for class 'plsRmodel'
print(x, ...)

Arguments

x  
an object of the class "plsRmodel"

...  
not used

Value

NULL

Author(s)

Frédéric Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

print

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsRglm(yCornell,XCornell,3,modele="pls")
class(modpls)
print(modpls)
rm(list=c("XCornell","yCornell","modpls"))
print.summary.plsRglmmodel

Print method for summaries of plsRglm models

Description

This function provides a print method for the class "summary.plsRglmmodel"

Usage

## S3 method for class 'summary.plsRglmmodel'
print(x, ...)

Arguments

x an object of the class "summary.plsRglmmodel"
... not used

Value

language call of the model

Author(s)

Frédéric Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

print and summary

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modplsglm <- plsRglm(yCornell,XCornell,3,modele="pls-glm-gaussian")
class(modplsglm)
print(summary(modplsglm))
rm(list=c("XCornell","yCornell","modplsglm"))
Print method for summaries of plsR models

Description
This function provides a print method for the class "summary.plsRmodel"

Usage
## S3 method for class 'summary.plsRmodel'
print(x, ...)

Arguments

x an object of the class "summary.plsRmodel"
...
not used

Value
language call of the model

Author(s)
Frédéric Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References

See Also
print and summary

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsRglm(yCornell, XCornell, 3, modele="pls")
class(modpls)
print(summary(modpls))
rm(list=c("XCornell","yCornell","modpls"))
**signpred**

*Graphical assessment of the stability of selected variables*

**Description**

This function plots, for each of the model, the

**Usage**

```r
signpred(matbin, pred.lablength = max(sapply(rownames(matbin), nchar)),
 labsize = 1, plotsize = 12)
```

**Arguments**

- `matbin` Matrix with 0 or 1 entries. Each row per predictor and a column for every model. 0 means the predictor is not significant in the model and 1 that, on the contrary, it is significant.
- `pred.lablength` Maximum length of the predictors labels. Defaults to full label length.
- `labsize` Size of the predictors labels.
- `plotsize` Global size of the graph.

**Details**

This function is based on the `visweb` function from the bipartite package.

**Value**

A plot window.

**Author(s)**

Bernd Gruber with minor modifications from Frederic Bertrand
<br>`<frederic.bertrand@math.unistra.fr>`
<br>`http://www-irma.u-strasbg.fr/~fbertran/`

**References**


**See Also**

See Also `visweb`

**Examples**

```r
signpred(matrix(rbinom(160,1,.2),ncol=8,dimnames=list(as.character(1:20),as.character(1:8))))
```
**Data generating detailed process for multivariate plsR models**

**Description**

This function generates a single multivariate response value $Y$ and a vector of explanatory variables $(X_1, \ldots, X_{\text{totdim}})$ drawn from a model with a given number of latent components.

**Usage**

```r
simul_data_complete(totdim, ncomp)
```

**Arguments**

- `totdim`: Number of columns of the X vector (from `ncomp` to hardware limits)
- `ncomp`: Number of latent components in the model (from 2 to 6)

**Details**

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a R port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

**Value**

- `simX`: Vector of explanatory variables
- `HH`: Dimension of the response $Y$
- `eta`: See Li et al.
- `r`: See Li et al.
- `epsilon`: See Li et al.
- `ksi`: See Li et al.
- `f`: See Li et al.
- `z`: See Li et al.
- `Y`: See Li et al.

**Note**

The value of $r$ depends on the value of `ncomp`:

<table>
<thead>
<tr>
<th><code>ncomp</code></th>
<th><code>r</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

**Author(s)**

Frederic Bertrand

<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


Baibing Li, Julian Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89.
http://dx.doi.org/10.1016/S0169-7439(02)00051-5

See Also

simul_data_YX for data simulation purpose

Examples

```r
simul_data_complete(20,6)

dimX <- 6
Astar <- 2
simul_data_complete(dimX,Astar)

dimX <- 6
Astar <- 3
simul_data_complete(dimX,Astar)

dimX <- 6
Astar <- 4
simul_data_complete(dimX,Astar)

rm(list=c("dimX","Astar"))
```

**simul_data_UniYX**

Data generating function for univariate plsR models

Description

This function generates a single univariate response value \( Y \) and a vector of explanatory variables \( (X_1, \ldots, X_{\text{totdim}}) \) drawn from a model with a given number of latent components.

Usage

```r
simul_data_UniYX(totdim, ncomp)
```

Arguments

- **totdim**: Number of columns of the X vector (from \( ncomp \) to hardware limits)
- **ncomp**: Number of latent components in the model (from 2 to 6)
**Details**

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a R port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

**Value**

vector \((Y, X_1, \ldots, X_{\text{totdim}})\)

**Author(s)**

Frederic Bertrand  
<frederic.bertrand@math.unistra.fr>  
[http://www-irma.u-strasbg.fr/~fbertran/](http://www-irma.u-strasbg.fr/~fbertran/)

**References**


Baibing Li, Julian Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89.  
[http://dx.doi.org/10.1016/S0169-7439(02)00051-5](http://dx.doi.org/10.1016/S0169-7439(02)00051-5)

**See Also**

`simul_data_YX` and `simul_data_complete` for generating multivariate data

**Examples**

```r
simul_data_UniYX(20,6)

dimX <- 6
Astar <- 2
simul_data_UniYX(dimX,Astar)

(dataAstar2 <- t(replicate(50,simul_data_UniYX(dimX,Astar))))

cvtable(summary(cv.plsR(dataAstar2[,1],dataAstar2[,2:7],5,NK=100)))

dimX <- 6
Astar <- 3
simul_data_UniYX(dimX,Astar)

(dataAstar3 <- t(replicate(50,simul_data_UniYX(dimX,Astar))))

cvtable(summary(cv.plsR(dataAstar3[,1],dataAstar3[,2:7],5,NK=100)))

dimX <- 6
Astar <- 4
simul_data_UniYX(dimX,Astar)

(dataAstar4 <- t(replicate(50,simul_data_UniYX(dimX,Astar))))

cvtable(summary(cv.plsR(dataAstar4[,1],dataAstar4[,2:7],5,NK=100)))

rm(list=c("dimX","Astar"))
```
Description

This function generates a single univariate binomial response value $Y$ and a vector of explanatory variables $(X_1, \ldots, X_{\text{totdim}})$ drawn from a model with a given number of latent components.

Usage

```
simul_data_UniYX_binom(totdim, ncomp, link="logit", offset = 0)
```

Arguments

- `totdim` Number of columns of the X vector (from `ncomp` to hardware limits)
- `ncomp` Number of latent components in the model (from 2 to 6)
- `link` Character specification of the link function in the mean model ($\mu$). Currently, "logit", "probit", "cloglog", "cauchit", "log", "loglog" are supported. Alternatively, an object of class "link-glm" can be supplied.
- `offset` Offset on the linear scale

Details

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a modification of a R port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

Value

```
vector (Y, X_1, \ldots, X_{\text{totdim}})
```

Author(s)

Frédéric Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


Baibing Li, Julian Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89.
http://dx.doi.org/10.1016/S0169-7439(02)00051-5

See Also

```
simul_data_UniYX
```
**Examples**

```r
layout(matrix(1:6,nrow=2)) # logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4)))[,1])
probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit"))[,1])
cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog"))[,1])
cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit"))[,1])
log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log"))[,1])
layout(1)
```

```r
layout(matrix(1:6,nrow=2)) # logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,offset=5)))[,1])
probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit",offset=5)))[,1])
cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog",offset=5)))[,1])
cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit",offset=5)))[,1])
log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log",offset=5)))[,1])
layout(1)
```

```r
layout(matrix(1:6,nrow=2)) # logit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,offset=-5)))[,1])
probit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="probit",offset=-5)))[,1])
cloglog link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cloglog",offset=-5)))[,1])
cauchit link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="cauchit",offset=-5)))[,1])
log link
hist(t(replicate(100,simul_data_UniYX_binom(4,4,link="log",offset=-5)))[,1])
layout(1)
```

---

**simul_data_YX**  
_Data generating function for multivariate plsR models_
**simul_data_YX**

**Description**

This function generates a single multivariate response value \( Y \) and a vector of explanatory variables \((X_1, \ldots, X_{\text{totdim}})\) drawn from a model with a given number of latent components.

**Usage**

\[
\text{simul_data_YX}(\text{totdim}, \text{ncomp})
\]

**Arguments**

- `totdim` Number of column of the \( X \) vector (from `ncomp` to hardware limits)
- `ncomp` Number of latent components in the model (from 2 to 6)

**Details**

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a \( R \) port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

**Value**

\[
\text{vector} \quad (Y_1, \ldots, Y_r, X_1, \ldots, X_{\text{totdim}})
\]

**Note**

The value of \( r \) depends on the value of `ncomp`:

<table>
<thead>
<tr>
<th><code>ncomp</code></th>
<th><code>r</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

**Author(s)**

Frederic Bertrand  
`<frederic.bertrand@math.unistra.fr>`  
[http://www-irma.u-strasbg.fr/~fbertran/](http://www-irma.u-strasbg.fr/~fbertran/)

**References**


Baibing Li, Julian Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89.  
[http://dx.doi.org/10.1016/S0169-7439(02)00051-5](http://dx.doi.org/10.1016/S0169-7439(02)00051-5)

**See Also**

`simul_data_complete` for highlighting the simulations parameters
Examples

```r
if(require(plsdepot)){
 dimX <- 6
 Astar <- 2
 (dataAstar2 <- t(replicate(50,simul_data_YX(dimX,Astar))))
 library(plsdepot)
 resAstar2 <- plsreg2(dataAstar2[,4:9],dataAstar2[,1:3],comps=5)
 resAstar2$Q2
 resAstar2$Q2[,4]>0.0975

 dimX <- 6
 Astar <- 3
 (dataAstar3 <- t(replicate(50,simul_data_YX(dimX,Astar))))
 library(plsdepot)
 resAstar3 <- plsreg2(dataAstar3[,4:9],dataAstar3[,1:3],comps=5)
 resAstar3$Q2
 resAstar3$Q2[,4]>0.0975

 dimX <- 6
 Astar <- 4
 (dataAstar4 <- t(replicate(50,simul_data_YX(dimX,Astar))))
 library(plsdepot)
 resAstar4 <- plsreg2(dataAstar4[,5:10],dataAstar4[,1:4],comps=5)
 resAstar4$Q2
 resAstar4$Q2[,5]>0.0975

 rm(list=c("dimX","Astar"))
}
```

summary.cv.plsRglmmodel

---

**Summary method for plsRglm models**

---

**Description**

This function provides a summary method for the class "cv.plsRglmmodel"

**Usage**

```r
S3 method for class 'cv.plsRglmmodel'
summary(object, ...)
```

**Arguments**

- `object` an object of the class “cv.plsRglmmodel”
- `...` further arguments to be passed to or from methods.
Value

An object of class "summary.cv.plsRmodel" if model is missing or model="pls". Otherwise an object of class "summary.cv.plsRglmmodel".

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/

References


See Also

summary

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
bbb <- cv.plsRglm(dataY=yCornell,dataX=XCornell,nt=10,NK=1,
    modele="pls-glm-family",family=gaussian())
summary(bbb)
rm(list=c("XCornell","yCornell","bbb"))
Summary method for plsRglm models

This function provides a summary method for the class "plsRglmmodel"

Usage

## S3 method for class 'plsRglmmodel'
summary(object, ...)

Arguments

object an object of the class "plsRglmmodel"
...
further arguments to be passed to or from methods.

Value

call function call of plsRglmmodel

Author(s)

Frederic Bertrand
<frederic.bertrand@math.unistra.fr>
http://www-irma.u-strasbg.fr/~fbertran/
References


See Also

`summary`

Examples

```r
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modplslgm <- plsRglm(yCornell,XCornell,3,modele="pls-glm-gaussian")
class(modplslgm)
summary(modplslgm)
rm(list=c("XCornell","yCornell","modplslgm"))
```

---

**summary.plsRmodel**  
Summary method for plsR models

### Description

This function provides a summary method for the class "plsRmodel"

### Usage

```r
S3 method for class 'VarplsRmodel'
summary(object, ...)
```

### Arguments

- `object`: an object of the class "plsRmodel"
- `...`: further arguments to be passed to or from methods.

### Value

- `call`: function call of plsRmodel

### Author(s)

Frederic Bertrand  
<frederic.bertrand@math.unistra.fr>  
[http://www-irma.u-strasbg.fr/~fbertran/](http://www-irma.u-strasbg.fr/~fbertran/)

### References

See Also

summary

Examples

data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,3,modele="pls")
class(modpls)
summary(modpls)
rm(list=c("XCornell","yCornell","modpls"))

tilt.bootpls  

Tilted bootstrap for PLS models

Description

~~ A (1-5 lines) description of what the function does. ~~

Usage

tilt.bootpls(object, typeboot="plsmodel", statistic=coefs.plsR, R=c(499, 250, 250), alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1, stabvalue=1e6,...)

Arguments

object  ~~Explain object here~~
typeboot  ~~Explain typeboot here~~
statistic  ~~Explain statistic here~~
R  ~~Explain R here~~
alpha  ~~Explain alpha here~~
sim  ~~Explain sim here~~
stype  ~~Explain stype here~~
index  ~~Explain index here~~
stabvalue  ~~Explain stabvalue here~~
...  ~~Explain ... here~~

Details

~~ More details than the description above ~~

Value

~Describe the value returned If it is a LIST, use

comp1 Description of `comp1`
comp2 Description of `comp2`
...
tilt.bootplsglm

Tilted bootstrap for PLS models

Description

~~ A (1-5 lines) description of what the function does. ~~

Usage

tilt.bootplsglm(object, typeboot="fmodel_np", statistic=coefs.plsRglm, R=c(499, 250, 250), alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1, stabvalue=1e6,...)

Arguments

object ~~Explain object here~~
typeboot ~~Explain typeboot here~~
statistic ~~Explain statistic here~~
R ~~Explain R here~~
alpha ~~Explain alpha here~~
sim ~~Explain sim here~~
stype ~~Explain stype here~~

Examples

## Not run:
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]

set.seed(1385)
Cornell.tilt.boot <- tilt.bootpls(yCornell,XCornell,3), statistic=coefs.plsR,
R=c(499, 100, 100), alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
Cornell.tilt.boot
str(Cornell.tilt.boot)

boxplots.bootpls(Cornell.tilt.boot,indices=2:7)

rm(Cornell.tilt.boot)

## End(Not run)
index  ~~~Explain index here~~~
stabvalue  ~~~Explain stabvalue here~~~
...  ~~~Explain ... here~~~

Details

~~~ More details than the description above ~~

Value

~Describe the value returned If it is a LIST, use
comp1 Description of `comp1`
comp2 Description of `comp2`
...

Author(s)

Frederic Bertrand
<br/>&lt;frederic.bertrand@math.unistra.fr&gt;
http://www-irma.u-strasbg.fr/~fbertran/

See Also
tilt.boot

Examples

data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
dataset <- cbind(y=yaze_compl,Xaze_compl)

# Lazraq-Cleroux PLS bootstrap Classic
aze_compl.tilt.boot <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic", family=NULL), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
aze_compl.tilt.boot <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic"), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
aze_compl.tilt.boot <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-family", family=binomial), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="ordinary", stype="i", index=1)
boxplots.bootpls(aze_compl.tilt.boot,1:2)

# PLS bootstrap balanced
aze_compl.tilt.boot <- tilt.bootplsglm(plsRglm(yaze_compl,Xaze_compl,3,
modele="pls-glm-logistic"), statistic=coefs.plsRglm, R=c(499, 100, 100),
alpha=c(0.025, 0.975), sim="balanced", stype="i", index=1)
Description

Quality of Bordeaux wines (Quality) and four potentially predictive variables (Temperature, Sunshine, Heat and Rain).

The value of Temperature for the first observation was removed from the matrix of predictors on purpose.

Usage

data(XbordeauxNA)

Format

A data frame with 34 observations on the following 4 variables.

Temperature  a numeric vector
Sunshine     a numeric vector
Heat         a numeric vector
Rain         a numeric vector

Source


References


Examples

data(XbordeauxNA)
str(XbordeauxNA)
Description

The caterpillar dataset was extracted from a 1973 study on pine processionary caterpillars. It assesses the influence of some forest settlement characteristics on the development of caterpillar colonies. There are k=10 potentially explanatory variables defined on n=33 areas. The value of x2 for the first observation was removed from the matrix of predictors on purpose.

Usage

data(XpineNAX21)

Format

A data frame with 33 observations on the following 10 variables.

- x1 altitude (in meters)
- x2 slope (in degrees)
- x3 number of pines in the area
- x4 height (in meters) of the tree sampled at the center of the area
- x5 diameter (in meters) of the tree sampled at the center of the area
- x6 index of the settlement density
- x7 orientation of the area (from 1 if southbound to 2 otherwise)
- x8 height (in meters) of the dominant tree
- x9 number of vegetation strata
- x10 mix settlement index (from 1 if not mixed to 2 if mixed)

Details

These caterpillars got their names from their habit of moving over the ground in incredibly long head-to-tail processions when leaving their nest to create a new colony. The XpineNAX21 is a dataset with a missing value for testing purpose.

Source


Examples

data(XpineNAX21)
str(XpineNAX21)
Index

*Topic **coef**
  coef.plsRglmmodel, 17
  coef.plsRmodel, 18

*Topic **datagen**
  simul_data_complete, 101
  simul_data_UniYX, 102
  simul_data_UniYX_binom, 104

*Topic **datasets**
  aze, 5
  aze_compl, 7
  bordeaux, 14
  CorMat, 24
  Cornell, 25
  fowlkes, 41
  pine, 60
  pine_full, 61
  pine_sup, 62
  XbordeauxNA, 114
  XpineNAX21, 115

*Topic **hplot**
  signpred, 100

*Topic **methods**
  coef.plsRglmmodel, 17
  coef.plsRmodel, 18
  cvtable, 39
  plot.table.summary.cv.plsRglmmodel, 63
  plot.table.summary.cv.plsRmodel, 64
  predict.plsRglmmodel, 87
  predict.plsRmodel, 89
  print.coef.plsRglmmodel, 92
  print.coef.plsRmodel, 93
  print.cv.plsRglmmodel, 94
  print.cv.plsRmodel, 95
  print.plsRglmmodel, 96
  print.plsRmodel, 97
  print.summary.plsRglmmodel, 98
  print.summary.plsRmodel, 99
  summary.cv.plsRglmmodel, 107
  summary.cv.plsRmodel, 108
  summary.plsRglmmodel, 109
  summary.plsRmodel, 110

*Topic **models**
  aic.dof, 3
  AICpls, 4
  bootpls, 8
  bootplsglm, 11
  boxplots.bootpls, 15
  coefs.plsR, 19
  coefs.plsRglm, 20
  coefs.plsRglmnp, 21
  coefs.plsRnp, 22
  confints.bootpls, 23
  cv.plsR, 26
  cv.plsRglm, 29
  infcrit.dof, 42
  kfolds2Chisq, 43
  kfolds2Chisqind, 44
  kfolds2coeff, 46
  kfolds2CVinfos_glm, 47
  kfolds2Mclassed, 49
  kfolds2Mclassedind, 50
  kfolds2Press, 52
  kfolds2Pressind, 53
  loglikpl, 54
  permcoefs.plsR, 56
  permcoefs.plsRglm, 57
  permcoefs.plsRglmnp, 58
  permcoefs.plsRnp, 59
  plots.confints.bootpls, 65
  PLS_glm_wvc, 82
  PLS_lm_wvc, 85
  plsR, 67
  plsR.dof, 73
  plsRglm, 74
  tilt.bootpls, 111
  tilt.bootplsglm, 112

*Topic **predict**
  predict.plsRglmmodel, 87
  predict.plsRmodel, 89

*Topic **print**
  cvtable, 39
  plot.table.summary.cv.plsRglmmodel, 63
plot.table.summary.cv.plsRmodel, 64
print.coef.plsRglmmodel, 92
print.coef.plsRmmodel, 93
print.cv.plsRglmmodel, 94
print.cv.plsRmmodel, 95
print.plsRglmmodel, 96
print.plsRmmodel, 97
print.summary.cv.plsRglmmodel, 98
print.summary.plsRmmodel, 99
summary.cv.plsRglmmodel, 107
summary.plsRmmodel, 108
summary.plsRglmmodel, 109
summary.plsRmmodel, 110

*Topic regression
aic.dof, 3
AICplls, 4
boxplots.bootpls, 15
confints.bootpls, 23
cv.plsR, 26
cv.plsRglm, 29
infcrit.dof, 42
kfolds2Chisq, 43
kfolds2Chisqind, 44
kfolds2coeff, 46
kfolds2CVinfos glm, 47
kfolds2Mclassed, 49
kfolds2Mclassedind, 50
ekfolds2Press, 52
kfolds2Pressind, 53
loglikplls, 54
plots.confints.bootpls, 65
PLS_glm_wvc, 82
PLS_lm_wvc, 85
plS, 67
plS.R.dof, 73
plS.Rglm, 74

*Topic utilities
aic.dof, 3
AICplls, 4
dicho, 40
infcrit.dof, 42
loglikplls, 54
plS.R.dof, 73
simul_data_complete, 101
simul_data_UniYX, 102
simul_data_UniYX_binom, 104
simul_data_YX, 105

AIC, 5
aic.dof, 3, 74
AICplls, 4, 55
as.data.frame, 26, 30, 68, 75

aze, 5, 7
aze_compl, 7
bic.dof(aic.dof), 3
boot, 9, 10, 12, 13
boot.ci, 23
bootpls, 8, 16, 19, 22, 23, 56, 59, 71, 79
bootplsglm, 11, 20, 21, 23, 57, 58
bordeaux, 14
boxplot, 16
boxplots.bootpls, 15
coeff, 17, 18
coeff.plsRglmmodel, 17
coeff.plsRmodel, 18
coeffs.plsR, 19
coeffs.plsRglm, 20
coeffs.plsRglmnp, 21
coeffs.plsrnp, 22
confints.bootpls, 23, 66
CorMat, 24
Cornell, 25
cv.plsR, 26, 50–53, 71
cv.plsRglm, 29, 43, 45, 48, 51, 79
cv.plsRglmmodel.default (cv.plsRglm), 29
cv.plsRglmmodel.formula (cv.plsRglm), 29
cv.plsRmodel.default (cv.plsR), 26
cv.plsRmodel.formula (cv.plsR), 26
cvtable, 39
dicho, 40
family, 30, 75, 82
formula, 26, 29, 68, 75
fowlkes, 41
glm, 31, 77, 83
glm.control, 31, 76
gmdl.dof (aic.dof), 3
ifelse, 40
infcrit.dof, 4, 42, 42, 74
kfolds2Chisq, 43, 45
kfolds2Chisqind, 43, 44
kfolds2coeff, 28, 32, 43, 45, 46, 48, 50–52, 54
kfolds2CVinfos glm, 47
kfolds2CVinfos lm, 28
kfolds2Mclassed, 28, 32, 43, 45, 47, 48, 49, 51, 52, 54
kfolds2Mclassedind, 28, 32, 43, 45, 47, 48, 50, 50, 52, 54
INDEX

kfolds2Press, 28, 32, 43, 45, 47, 48, 50, 51, 52, 54
kfolds2Pressind, 28, 32, 43, 45, 47, 48, 50–52, 53
legend, 65
logLik, 55
loglikpls, 5, 54
model.offset, 30, 76
offset, 30, 76
permcoefs.plsR, 56
permcoefs.plsRglm, 57
permcoefs.plsRglmnp, 58
permcoefs.plsRnp, 59
pine, 60
pine_full, 61
pine_sup, 62
plot, 65
plot.table.summary.cv.plsRglmmodel, 63
plot.table.summary.cv.plsRmodel, 64
plots.confints.bootplsglm, 65
PLS_glm, 84
PLS_glm(plsRglm), 74
PLS_glm_formula(plsRglm), 74
PLS_glm_kfoldcv, 84
PLS_glm_kfoldcv(cv.plsRglm), 29
PLS_glm_kfoldcv_formula, 83
PLS_glm_kfoldcv_formula(cv.plsRglm), 29
PLS_glm_wvc, 82, 86
PLS_lm, 86
PLS_lm(plsR), 67
PLS_lm_formula(plsR), 67
PLS_lm_kfoldcv, 86
PLS_lm_kfoldcv(cv.plsR), 26
PLS_lm_kfoldcv_formula(cv.plsR), 26
PLS_lm_wvc, 84, 85
plsR, 19, 56, 67, 79
plsR.dof, 4, 42, 73
plsRglm, 20–22, 57–59, 72, 74
plsRglm.model.default(plsRglm), 74
plsRglmmodel.formula(plsRglm), 74
plsRmodel.default(plsR), 67
plsRmodel.formula(plsR), 67
predict.glm, 88
predict.plsRglm.model, 87
predict.plsRmodel, 89
print, 92–99
print.coef.plsRglm.model, 92
print.coef.plsRmodel, 93
print.cv.plsRglmmodel, 92
print.plsRglmmodel, 96
print.plsRmodel, 97
print.summary.plsRglmmodel, 98
print.summary.plsRmodel, 99
signpred, 100
simul_data_complete, 101, 103, 106
simul_data_UniYX, 102, 104
simul_data_UniYX_binom, 104
simul_data_YX, 102, 103, 105
summary, 32, 40, 47, 48, 63, 64, 98, 99,
108–111
summary.cv.plsRglmmodel, 107
summary.cv.plsRmodel, 108
summary.plsRglmmodel, 109
summary.plsRmodel, 110
tilt.boot, 112, 113
tilt.bootplsglm, 111
tilt.bootplsglm, 112
visweb, 100
XbordeauxNA, 114
XpineNAX21, 115