Package ‘plutor’

October 27, 2023

Title Useful Functions for Visualization

Version 0.1.0

Description In ancient Roman mythology, 'Pluto' was the ruler of the underworld and presides over the afterlife. 'Pluto' was frequently conflated with 'Plutus', the god of wealth, because mineral wealth was found underground. When plotting with R, you try once, twice, practice again and again, and finally you get a pretty figure you want. It's a 'plot tour', a tour about repetition and reward. Hope 'plutor' helps you on the tour!

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports baizer, cli, dplyr, gg4x, ggplot2, ggsci, grDevices, grid, magrittr, methods, purrr, RColorBrewer, repr, rlang, scales, stats, stringr, tibble, tidyr, utils

Suggests covr, svglite, testthat (>= 3.0.0), vdiff

Config/testthat/edition 3

Depends R (>= 2.10)

LazyData true

URL https://github.com/william-swl/plutor

BugReports https://github.com/william-swl/plutor/issues

NeedsCompilation no

Author William Song [aut, cre]

Maintainer William Song <william_swl@163.com>

Repository CRAN

Date/Publication 2023-10-27 08:00:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>assign_colors</td>
<td>3</td>
</tr>
<tr>
<td>bioletter_colors</td>
<td>3</td>
</tr>
<tr>
<td>brewer_colors</td>
<td>4</td>
</tr>
<tr>
<td>canvas_size</td>
<td>4</td>
</tr>
<tr>
<td>cm2inch</td>
<td>5</td>
</tr>
<tr>
<td>cm2pt</td>
<td>5</td>
</tr>
<tr>
<td>extract_compare</td>
<td>6</td>
</tr>
<tr>
<td>geom2trace.GeomCompare</td>
<td>6</td>
</tr>
<tr>
<td>geom2trace.GeomDescribe</td>
<td>7</td>
</tr>
<tr>
<td>GeomCompare</td>
<td>7</td>
</tr>
<tr>
<td>GeomDescribe</td>
<td>8</td>
</tr>
<tr>
<td>geom_compare</td>
<td>8</td>
</tr>
<tr>
<td>geom_describe</td>
<td>10</td>
</tr>
<tr>
<td>gradient_colors</td>
<td>12</td>
</tr>
<tr>
<td>inch2cm</td>
<td>13</td>
</tr>
<tr>
<td>inch2mm</td>
<td>13</td>
</tr>
<tr>
<td>lpt</td>
<td>14</td>
</tr>
<tr>
<td>mini_diamond</td>
<td>14</td>
</tr>
<tr>
<td>mm2inch</td>
<td>15</td>
</tr>
<tr>
<td>mm2pt</td>
<td>15</td>
</tr>
<tr>
<td>plot_colors</td>
<td>16</td>
</tr>
<tr>
<td>pl_init</td>
<td>16</td>
</tr>
<tr>
<td>pl_save</td>
<td>17</td>
</tr>
<tr>
<td>pl_size</td>
<td>18</td>
</tr>
<tr>
<td>PositionFloatxPL</td>
<td>19</td>
</tr>
<tr>
<td>PositionFloatyPL</td>
<td>19</td>
</tr>
<tr>
<td>position_floatxPL</td>
<td>19</td>
</tr>
<tr>
<td>position_floatyPL</td>
<td>20</td>
</tr>
<tr>
<td>pt2cm</td>
<td>20</td>
</tr>
<tr>
<td>pt2mm</td>
<td>21</td>
</tr>
<tr>
<td>revert_pos_scale</td>
<td>21</td>
</tr>
<tr>
<td>scale_ele</td>
<td>22</td>
</tr>
<tr>
<td>scale_x_continuous_pl</td>
<td>22</td>
</tr>
<tr>
<td>scale_x_log10_pl</td>
<td>24</td>
</tr>
<tr>
<td>scale_y_continuous_pl</td>
<td>26</td>
</tr>
<tr>
<td>scale_y_log10_pl</td>
<td>29</td>
</tr>
<tr>
<td>sci_colors</td>
<td>31</td>
</tr>
<tr>
<td>StatCompare</td>
<td>31</td>
</tr>
<tr>
<td>StatCountPL</td>
<td>32</td>
</tr>
<tr>
<td>StatDescribe</td>
<td>32</td>
</tr>
<tr>
<td>StatFuncPL</td>
<td>32</td>
</tr>
<tr>
<td>StatMeanPL</td>
<td>33</td>
</tr>
<tr>
<td>theme_pl</td>
<td>33</td>
</tr>
<tr>
<td>theme_pl0</td>
<td>34</td>
</tr>
<tr>
<td>tpt</td>
<td>35</td>
</tr>
<tr>
<td>trans_pos_scale</td>
<td>35</td>
</tr>
</tbody>
</table>
assign_colors

Description
assign colors by a column in a tibble, for the convenience to use `scale_color_identity()`

Usage
`assign_colors(df, by, colors = sci_colors("npg", 10), na = "#F5F5F5")`

Arguments
- `df`: tibble
- `by`: assign colors according to this column
- `colors`: a vector of color values
- `na`: if colors are not enough, fill na values

Value
tibble

Examples
`assign_colors(mini_diamond, cut, colors = sci_colors("nejm", 8))`

bioletter_colors

colors of nucleotides and amino acids

Description
colors of nucleotides and amino acids

Usage
bioletter_colors

Format
bioletter_colors:
colors for biological letters like amino acids or nucleotides

Source
according to the print format
brewer_colors

select colors from RColorBrewer package presets

Usage

```
brewer_colors(name, n = 3, ...)
```

Arguments

- **name**: presets name
- **n**: number of colors
- **...**: other arguments of RColorBrewer::brewer.pal

Value

colors

Examples

```
brewer_colors("Blues", 5)
```

canvas_size

width and height of built-in canvas

Description

width and height of built-in canvas

Usage

```
canvas_size
```

Format

```
canvas_size:
canvas sizes list
```

Source

according to the print format
cm2inch

description

trans cm to inch

Usage

```
cm2inch(x)
```

Arguments

- `x` cm value

Value

inch value

Examples

```
cm2inch(1)
```

cm2pt

trans cm to pt

Description

trans cm to pt

Usage

```
cm2pt(x)
```

Arguments

- `x` cm value

Value

pt value

Examples

```
cm2pt(1)
```
extract_compare
extract the result of geom_compare from a ggplot object

Description
extract the result of geom_compare from a ggplot object

Usage
extract_compare(p)

Arguments
p ggplot object

Value
compare tibble

geom2trace.GeomCompare

Description
geom2trace.GeomCompare

Usage
geom2trace.GeomCompare(data, params, plot)

Arguments
data, params, plot
params

Value
no return value
geom2trace.GgeomDescribe

Description

geom2trace.GgeomDescribe

Usage

geom2trace.GgeomDescribe(data, params, plot)

Arguments

data, params, plot

params

Value

no return value

GeomCompare

Description

GeomCompare

Usage

GeomCompare

Format

An object of class GeomCompare (inherits from Geom, ggproto, gg) of length 6.
GeomDescribe

Description
GeomDescribe

Usage
GeomDescribe

Format
An object of class GeomDescribe (inherits from Geom, ggproto, gg) of length 5.

geom_compare

add p value and fold change on a plot

Description
add p value and fold change on a plot

Usage
geom_compare(
 mapping = NULL,
 data = NULL,
 stat = "compare",
 position = "identity",
 ...,
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 lab_pos = NULL,
 step_increase = 0.1,
 tip_length = 0.02,
 lineend = "round",
 cp_label = c("psymbol"),
 ns_lineheight_just = 0.2,
 ignore_ns = FALSE,
 fc_method = NULL,
 comparisons = NULL,
 paired = FALSE,
 alternative = "two.sided",
 test_method = "wilcoxon"
geom_compare

ns_symbol = "NS",
cp_ref = NULL,
cp_inline = FALSE,
brackets_widen = 0,
fc_digits = 2,
cp_result = NULL,
cp_manual = NULL
)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).
stat The statistical transformation to use on the data for this layer, either as a ggprotoGeom subclass or as a string naming the stat stripped of the stat_ prefix (e.g. "count" rather than "stat_count")
position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.
... Other arguments passed on to ggplot2::geom_segment().
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().
lab_pos position of the label brackets
step_increase the increase height for next bracket, a ratio according to the whole panel height
tip_length the length for tips at the ends of the brackets, a ratio according to the whole panel height
lineend Line end style (round, butt, square).
cp_label which values will be add on the plot, a character vector with some of psymbol, p, right_deno_fc, left_deno_fc, right_deno, left_deno in it. If comparisons is assigned, you can also include fc1, fc2
ns_lineheight_just
if show psymbol in the label, justify the NS labels to make the lineheights look balanced

ignore_ns
if TRUE will ignore all label items if p >= 0.05, or you can assign a character vector like cp_label to ignore some items of the label

fc_method
fold change method, default is mean. If you use log10 or log2 axis, default is geom_mean.

comparisons
a list of two-element vector, to assign the comparisons should be performed

paired
paired test or not, FALSE as default. If TRUE, you should use mapping=aes(paired_by=col) to indicate pairs by an extra column

alternative
one of two.sided, greater, less

test_method
wilcoxon as default, one of wilcoxon, t

ns_symbol
the symbol of non-significant, NS as default

cp_ref
reference item, the others will be compared with it

cp_inline
draw in line or not, default is FALSE

brackets_widen
widen the brackets, can be a negative value

fc_digits
fold change digits

cp_result
comparasion result tibble

cp_manual
manual comparisons table, please refer to extract_compare()

Value

ggplot object

Description values plot

Description

The describe geom is used to create description values plot, including center symbol and error symbol. The center symbol can be mean, median or other custom functions, the error symbol can be sd, quantile or other custom functions.

Usage

geom_describe(
 mapping = NULL,
 data = NULL,
 stat = "describe",
 position = "identity",
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
lineend = "round",
show_error = TRUE,
center_symbol = "bar",
center_width = 0.3,
error_width = 0.2,
center_func = mean,
low_func = function(x, na.rm) {
 mean(x, na.rm = na.rm) - sd(x, na.rm = na.rm)
},
high_func = function(x, na.rm) {
 mean(x, na.rm = na.rm) + sd(x, na.rm = na.rm)
},
...

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
 If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
 A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
 A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).
stat The statistical transformation to use on the data for this layer, either as a ggproto Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g. "count" rather than "stat_count")
position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to use position_jitter), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().
lineend Line end style (round, butt, square).
show_error show error symbol
center_symbol one of point, bar
gradient_colors

center_width if center_symbol='bar', the width of the bar
error_width the width of the error bar
center_func the center function, mean as default
low_func the low error function, mean minus sd as default
high_func the high error function, mean plus sd as default
... Other arguments passed on to ggplot2::point() or ggplot2::geom_segment.

Value

ggplot object

description
genrate gradient colors

Usage

gradient_colors(x, n)

Arguments

x colors
n number of colors to output

Value

gradient colors

Examples

gradient_colors(c("blue", "red"), 10)
inch2cm

Description
trans inch to cm

Usage
inch2cm(x)
in2cm(x)
cm2in(x)

Arguments
x inch value

Value
cm value

Examples
inch2cm(1)

inch2mm

Description
trans inch to mm

Usage
inch2mm(x)
in2mm(x)

Arguments
x inch value

Value
mm value
Examples

inch2mm(1)

lpt
trans geom line point and theme line point to the real point

Description

trans geom line point and theme line point to the real point

Usage

lpt(x)

Arguments

x
line point in geom or theme

Value

real point

Examples

lpt(1)

mini_diamond
Minimal tibble dataset adjusted from diamond

Description

Minimal tibble dataset adjusted from diamond

Usage

mini_diamond

Format

 mini_diamond:
A data frame with 100 rows and 7 columns:
 id unique id
 cut, clarity 2 category variables
 carat, price, x, y 4 continuous variables ...

Source

adjusted from ggplot2
\textit{mm2inch} \hspace{1cm} \textit{trans mm to inch}

\textbf{Description}

trans mm to inch

\textbf{Usage}

\texttt{mm2inch(x)}

\texttt{mm2in(x)}

\textbf{Arguments}

\texttt{x} \hspace{1cm} \text{mm value}

\textbf{Value}

\text{inch value}

\textbf{Examples}

\texttt{mm2inch(1)}

\textit{mm2pt} \hspace{1cm} \textit{trans mm to pt}

\textbf{Description}

trans mm to pt

\textbf{Usage}

\texttt{mm2pt(x)}

\textbf{Arguments}

\texttt{x} \hspace{1cm} \text{mm value}

\textbf{Value}

\text{pt value}

\textbf{Examples}

\texttt{mm2pt(1)}
plot_colors

Description

plot colors

Usage

plot_colors(x, ncol = 10, show_name = TRUE)

Arguments

x
color values
ncol
color number of each row
show_name
use vector names as label, FALSE to show the color value

Value

ggplot object

Examples

plot_colors(gradient_colors(c("blue", "red"), 10))

pl_init

Description

set size, resolution and default theme

Usage

pl_init(
 width = 4,
 height = 3,
 res = 300,
 w = NULL,
 h = NULL,
 theme = theme_pl()
)
Arguments

width width
height height
res resolution, 300 as default
w alias of width
h alias of height
theme default theme

Value

no return value

Examples

pl_init()

pl_save()
 save plot, support save into a blank canvas

Description

save plot, support save into a blank canvas

Usage

pl_save(
 plot,
 filename,
 width,
 height,
 units = "in",
 canvas = NULL,
 canvas_pos_x = 0.5,
 canvas_pos_y = 0.1,
 ...
)

Arguments

plot ggplot object
filename filename
width plot width
height plot height
units units, ‘in’ for inch as default. Can be ‘in’, ‘cm’
canvas as default, pass character to use built-in canvas ('A4', 'A4v'), or pass a numeric vector in 'c(width, heigh)' form

canvas_pos_x from 0 to 1, the horizontal position of plot in canvas

canvas_pos_y from 0 to 1, the vertical position of plot in canvas

... other arguments from ggsave

Value

no return value

pl_size

set repr size and resolution

Description

set repr size and resolution

Usage

pl_size(width = 4, height = 3, res = 300, w = NULL, h = NULL)

Arguments

width width
height height
res resolution, 300 as default
w alias of width
h alias of height

Value

no return value

Examples

pl_size(width = 3, height = 2)
position_floatxPL

Description
 PositionFloatxPL

Usage
 PositionFloatxPL

Format
 An object of class PositionFloatxPL (inherits from Position, ggproto, gg) of length 4.

position_floatyPL

Description
 PositionFloatyPL

Usage
 PositionFloatyPL

Format
 An object of class PositionFloatyPL (inherits from Position, ggproto, gg) of length 4.

position_floatxPL

a new Position object to create float x position

Description
 a new Position object to create float x position

Usage
 position_floatxPL(float = -0.05, cycle = 2)

Arguments
 float float range, a ratio according to the whole panel height
 cycle float cycle
Value

Position object

position_floatyPL
a new Position object to create float y position

Description

a new Position object to create float y position

Usage

position_floatyPL(float = -0.05, cycle = 2)

Arguments

float
float range, a ratio according to the whole panel height

cycle
float cycle

Value

Position object

pt2cm
trans pt to cm

Description

trans pt to cm

Usage

pt2cm(x)

Arguments

x
pt value

Value

cm value

Examples

pt2cm(1)
pt2mm

trans pt to mm

Description

trans pt to mm

Usage

`pt2mm(x)`

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>pt value</th>
</tr>
</thead>
</table>

Value

mm value

Examples

`pt2mm(1)`

revert_pos_scale

revert the position scale transformation

Description

revert the position scale transformation

Usage

`revert_pos_scale(s)`

Arguments

<s| ScaleContinuousPosition object, e.g. scalesy in compute_group()>

Value

function
scale_ele

scale element according to a vector of element scales

Description

scale element according to a vector of element scales

Usage

scale_ele(level, base, ele_scales)

Arguments

level output level
base value of base level
ele_scales vector of element scales

Value

value of output level

Examples

scale_ele(level = 2, base = 5, ele_scales = c(1, 2))

scale_x_continuous_pl

A variant of scale_x_continuous() to show axis minor breaks

Description

A variant of scale_x_continuous() to show axis minor breaks

Usage

scale_x_continuous_pl(
 name = waiver(),
 breaks = waiver(),
 minor_breaks = NULL,
 n.breaks = NULL,
 labels = waiver(),
 limits = NULL,
 expand = ggplot2::expansion(),
 oob = scales::oob_keep,
 na.value = NA_real_,
 trans = "identity"),
```r
guide = ggh4x::guide_axis_minor(),
position = "bottom",
sec.axis = waiver(),
show_minor_breaks = TRUE,
minor_break_step = NULL
)
```

Arguments

- **name**: The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.

- **breaks**: One of:
 - `NULL` for no breaks
 - `waiver()` for the default breaks computed by the transformation object
 - A numeric vector of positions
 - A function that takes the limits as input and returns breaks as output (e.g., a function returned by `scales::extended_breaks()`). Also accepts rlang `lambda` function notation.

- **minor_breaks**: One of:
 - `NULL` for no minor breaks
 - `waiver()` for the default breaks (one minor break between each major break)
 - A numeric vector of positions
 - A function that given the limits returns a vector of minor breaks. Also accepts rlang `lambda` function notation.

- **n.breaks**: An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if `breaks = waiver()`. Use `NULL` to use the default number of breaks given by the transformation.

- **labels**: One of:
 - `NULL` for no labels
 - `waiver()` for the default labels computed by the transformation object
 - A character vector giving labels (must be same length as breaks)
 - An expression vector (must be the same length as breaks). See ?plotmath for details.
 - A function that takes the breaks as input and returns labels as output. Also accepts rlang `lambda` function notation.

- **limits**: One of:
 - `NULL` to use the default scale range
 - A numeric vector of length two providing limits of the scale. Use `NA` to refer to the existing minimum or maximum
scale_x_log10_pl

- A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will **remove** data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see `coord_cartesian()`).

 expand use `expansion()` to dismiss the blank between x axis low limit and y axis

 oob use `scales::oob_keep` instead of `scales::oob_censor`, which will always consider the data points out of the limits

 na.value Missing values will be replaced with this value.

 trans For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".

 A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called `<name>_trans` (e.g., `scales::boxcox_trans()`). You can create your own transformation with `scales::trans_new()`.

 guide A function used to create a guide or its name. See `guides()` for more information.

 position For position scales, The position of the axis. left or right for y axes, top or bottom for x axes.

 sec.axis `sec_axis()` is used to specify a secondary axis.

 show_minor_breaks show minor breaks or not

 minor_break_step the step of minor breaks

Value

- **scale object**

Description

A variant of `scale_x_log10()` to show axis minor breaks and better axis labels
Usage

scale_x_log10_pl(
 name = waiver(),
 breaks = NULL,
 minor_breaks = NULL,
 n.breaks = NULL,
 labels = NULL,
 limits = NULL,
 expand = ggplot2::expansion(),
 oob = scales::oob_keep,
 na.value = NA_real_,
 trans = scales::log10_trans(),
 guide = ggh4x::guide_axis_minor(),
 position = "bottom",
 sec.axis = waiver(),
 show_minor_breaks = TRUE
)

Arguments

name

The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

breaks

One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A numeric vector of positions
- A function that takes the limits as input and returns breaks as output (e.g., a function returned by scales::extended_breaks()). Also accepts rlang lambda function notation.

minor_breaks

One of:

- NULL for no minor breaks
- waiver() for the default breaks (one minor break between each major break)
- A numeric vector of positions
- A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

labels

One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath for details.
• A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits

One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see `coord_cartesian()`).

expand

use `expansion()` to dismiss the blank between x axis low limit and y axis

oob

use `scales::oob_keep` instead of `scales::oob_censor`, which will always consider the data points out of the limits

na.value

Missing values will be replaced with this value.

trans

For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called `<name>_trans` (e.g., `scales::boxcox_trans()`). You can create your own transformation with `scales::trans_new()`.

guide

A function used to create a guide or its name. See `guides()` for more information.

position

For position scales, The position of the axis. left or right for y axes, top or bottom for x axes.

sec.axis

`sec_axis()` is used to specify a secondary axis.

show_minor_breaks

show minor breaks or not

Value

scale object

Description

A variant of `scale_y_continuous()` to show axis minor breaks
scale_y_continuous_pl

Usage

```r
scale_y_continuous_pl(
  name = waiver(),
  breaks = waiver(),
  minor_breaks = NULL,
  n.breaks = NULL,
  labels = waiver(),
  limits = NULL,
  expand = ggplot2::expansion(),
  oob = scales::oob_keep,
  na.value = NA_real_,
  trans = "identity",
  guide = ggh4x::guide_axis_minor(),
  position = "left",
  sec.axis = waiver(),
  show_minor_breaks = TRUE,
  minor_break_step = NULL
)
```

Arguments

name

The name of the scale. Used as the axis or legend title. If `waiver()`, the default, the name of the scale is taken from the first mapping used for that aesthetic. If `NULL`, the legend title will be omitted.

breaks

One of:

- `NULL` for no breaks
- `waiver()` for the default breaks computed by the transformation object
- A numeric vector of positions
- A function that takes the limits as input and returns breaks as output (e.g., a function returned by `scales::extended_breaks()`). Also accepts `rlang` lambda function notation.

minor_breaks

One of:

- `NULL` for no minor breaks
- `waiver()` for the default breaks (one minor break between each major break)
- A numeric vector of positions
- A function that given the limits returns a vector of minor breaks. Also accepts `rlang` lambda function notation.

n.breaks

An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if `breaks = waiver()`. Use `NULL` to use the default number of breaks given by the transformation.

labels

One of:

- `NULL` for no labels
- `waiver()` for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath for details.
• A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits
One of:
• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

expand
use expansion() to dismiss the blank between y axis low limit and x axis

oob
use scales::oob_keep instead of scales::oob_censor, which will always consider the data points out of the limits

na.value
Missing values will be replaced with this value.

trans
For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called <name>_trans (e.g., scales::boxcox_trans()). You can create your own transformation with scales::trans_new().

guide
A function used to create a guide or its name. See guides() for more information.

position
For position scales, The position of the axis. left or right for y axes, top or bottom for x axes.

sec.axis
sec_axis() is used to specify a secondary axis.

show_minor_breaks
show minor breaks or not

minor_break_step
the step of minor breaks

Value
scale object
scale_y_log10_pl

A variant of scale_y_log10() to show axis minor breaks and better axis labels

Description

A variant of scale_y_log10() to show axis minor breaks and better axis labels

Usage

scale_y_log10_pl(
 name = waiver(),
 breaks = NULL,
 minor_breaks = NULL,
 n.breaks = NULL,
 labels = NULL,
 limits = NULL,
 expand = ggplot2::expansion(),
 oob = scales::oob_keep,
 na.value = NA_real_,
 trans = scales::log10_trans(),
 guide = ggh4x::guide_axis_minor(),
 position = "left",
 sec.axis = waiver(),
 show_minor_breaks = TRUE
)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.
breaks One of:
 • NULL for no breaks
 • waiver() for the default breaks computed by the transformation object
 • A numeric vector of positions
 • A function that takes the limits as input and returns breaks as output (e.g., a function returned by scales::extended_breaks()). Also accepts rlang lambda function notation.
minor_breaks One of:
 • NULL for no minor breaks
 • waiver() for the default breaks (one minor break between each major break)
 • A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also accepts rlang lambda function notation.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a slightly different number to ensure nice break labels. Will only have an effect if breaks = waiver(). Use NULL to use the default number of breaks given by the transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath for details.
• A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.

limits One of:
• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will remove data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see coord_cartesian()).

expand use expansion() to dismiss the blank between y axis low limit and x axis

oob use scales::oob_keep instead of scales::oob_censor, which will always consider the data points out of the limits

na.value Missing values will be replaced with this value.

trans For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".

A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called <name>_trans (e.g., scales::boxcox_trans()). You can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more information.

position For position scales, the position of the axis. left or right for y axes, top or bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

show_minor_breaks show minor breaks or not
sci_colors

Value
scale object

sci_colors select colors from ggsci package presets

Description
select colors from ggsci package presets

Usage
sci_colors(name, n = 3, alpha = 1)

Arguments
name presets name
n number of colors
alpha alpha

Value
colors

Examples
sci_colors("npg", 5)

StatCompare StatCompare

Description
StatCompare

Usage
StatCompare

Format
An object of class StatCompare (inherits from Stat, ggproto, gg) of length 6.
StatCountPL

Description
StatCountPL

Usage
StatCountPL

Format
An object of class StatCountPL (inherits from Stat, ggproto, gg) of length 4.

StatDescribe

Description
StatDescribe

Usage
StatDescribe

Format
An object of class StatDescribe (inherits from Stat, ggproto, gg) of length 4.

StatFuncPL

Description
StatFuncPL

Usage
StatFuncPL

Format
An object of class StatFuncPL (inherits from Stat, ggproto, gg) of length 4.
StatMeanPL

Description
StatMeanPL

Usage
StatMeanPL

Format
An object of class StatMeanPL (inherits from Stat, ggproto, gg) of length 4.

theme_pl

Description
a new extensible theme

Usage

theme_pl(
 base_size = 10,
 base_line_size = lpt(base_size/10),
 base_rect_size = lpt(1),
 size_scales = c(5, 6, 7),
 margin_factor = 0.25,
 plot_margin_factor = 0.5,
 legend_spacing_factor = 1.2,
 font_family = "",
 ...
)

Arguments

 base_size base size of fonts and margins
 base_line_size base linewidth
 base_rect_size base linewidth of the rectangles
 size_scales a vector of element size scales, namely:
 1. base size, used by legend text, axis text, caption
 2. used by legend title, axis title, strip text (facet title), subtitle
theme_pl0

3. used by title, tag

- margin_factor: factor to adjust the element margins according to size_scales
- plot_margin_factor: factor to adjust the plot margins according to size_scales[3]
- legend_spacing_factor: factor to adjust the space of legend items according to size_scales[2]
- font_family: font family
- ...: arguments from ggplot2::theme()

Value

theme object of ggplot

Examples

theme_pl0()
tpt

Trans geom text or point to the real point

Description

Trans geom text or point to the real point

Usage

\[\text{tpt}(x) \]

\[\text{ppt}(x) \]

Arguments

\[x \quad \text{text point in geom} \]

Value

Real point

Examples

\[\text{tpt}(1) \]

trans_pos_scale

Perform the position scale transformation

Description

Perform the position scale transformation

Usage

\[\text{trans_pos_scale}(s) \]

Arguments

\[s \quad \text{ScaleContinuousPosition object, e.g. scales}y in compute_group()} \]

Value

Function
Index

* datasets
 - bioletter_colors, 3
 - canvas_size, 4
 - GeomCompare, 7
 -GeomDescribe, 8
 - mini_diamond, 14
 - PositionFloatxPL, 19
 - PositionFloatyPL, 19
 - StatCompare, 31
 - StatCountPL, 32
 - StatDescribe, 32
 - StatFuncPL, 32
 - StatMeanPL, 33

- aes(), 9, 11
- assign_colors, 3

- bioletter_colors, 3
- borders(), 9, 11
- brewer_colors, 4

- canvas_size, 4
- cm2in (inch2cm), 13
- cm2inch, 5
- cm2pt, 5
- coord_cartesian(), 24, 26, 28, 30

- extract_compare, 6

- fortify(), 9, 11

- geom2trace.GeomCompare, 6
- geom2trace.GeomDescribe, 7
- geom_compare, 8
- geom_describe, 10
- GeomCompare, 7
- GeomDescribe, 8
- ggplot(), 9, 11
- gradient_colors, 12
- guides(), 24, 26, 28, 30

- in2cm (inch2cm), 13
- in2mm (inch2mm), 13
- inch2cm, 13
- inch2mm, 13
- lambda, 23–30
- lpt, 14
- mini_diamond, 14
- mm2in (mm2inch), 15
- mm2inch, 15
- mm2pt, 15
- pl_init, 16
- pl_save, 17
- pl_size, 18
- plot_colors, 16
- position_floatxPL, 19
- position_floatyPL, 20
- PositionFloatxPL, 19
- PositionFloatyPL, 19
- ppt (tpt), 35
- pt2cm, 20
- pt2mm, 21

- revert_pos_scale, 21

- scale_ele, 22
- scale_x_continuous_pl, 22
- scale_x_log10_pl, 24
- scale_y_continuous_pl, 26
- scale_y_log10_pl, 29
- scales::boxcox_trans(), 24, 26, 28, 30
- scales::extended_breaks(), 23, 25, 27, 29
- scales::trans_new(), 24, 26, 28, 30
- sci_colors, 31
- sec_axis(), 24, 26, 28, 30
- StatCompare, 31
- StatCountPL, 32
- StatDescribe, 32
- StatFuncPL, 32

36
INDEX

StatMeanPL, 33
theme_pl, 33
theme_pl0, 34
tpt, 35
trans_pos_scale, 35
transformation object, 23, 25, 27, 29