Package ‘pmhtutorial’

March 22, 2019

Type Package
Title Minimal Working Examples for Particle Metropolis-Hastings
Version 1.5
Author Johan Dahlin
Maintainer Johan Dahlin <uni@johandahlin.com>
URL https://github.com/comops/pmh-tutorial-rpkg
Description Routines for state estimate in a linear Gaussian state space model and a simple stochastic volatility model using particle filtering. Parameter inference is also carried out in these models using the particle Metropolis-Hastings algorithm that includes the particle filter to provided an unbiased estimator of the likelihood. This package is a collection of minimal working examples of these algorithms and is only meant for educational use and as a start for learning to them on your own.

Depends R (>= 3.2.3)
License GPL-2
Imports mvtnorm, Quandl, grDevices, graphics, stats
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-03-22 18:10:03 UTC

R topics documented:

example1_lgss .. 2
example2_lgss .. 3
example3_sv .. 4
example4_sv .. 6
example5_sv .. 7
Description

Minimal working example of state estimation in a linear Gaussian state space model using Kalman filtering and a fully-adapted particle filter. The code estimates the bias and mean squared error (compared with the Kalman estimate) while varying the number of particles in the particle filter.

Usage

```r
example1_lgss()
```

Details

The Kalman filter is a standard implementation without an input. The particle filter is fully adapted (i.e. takes the current observation into account when proposing new particles and computing the weights).

Value

Returns a plot with the generated observations `y` and the difference in the state estimates obtained by the Kalman filter (the optimal solution) and the particle filter (with 20 particles). Furthermore, the function returns plots of the estimated bias and mean squared error of the state estimate obtained using the particle filter (while varying the number of particles) and the Kalman estimates.

The function returns a list with the elements:

- `y`: The observations generated from the model.
- `x`: The states generated from the model.
- `kfEstimate`: The estimate of the state from the Kalman filter.
- `pfEstimate`: The estimate of the state from the particle filter with 20 particles.

Note

See Section 3.2 in the reference for more details.
Author(s)
Johan Dahlin <uni@johandahlin.com>

References

Examples
example1_lgss()

Example 2

Parameter estimation in a linear Gaussian state space model

Description
Minimal working example of parameter estimation in a linear Gaussian state space model using the particle Metropolis-Hastings algorithm with a fully-adapted particle filter providing an unbiased estimator of the likelihood. The code estimates the parameter posterior for one parameter using simulated data.

Usage
example2_lgss(noBurnInIterations = 1000, noIterations = 5000, noParticles = 100, initialPhi = 0.5)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noBurnInIterations</td>
<td>The number of burn-in iterations in the PMH algorithm. This parameter must be smaller than noIterations.</td>
</tr>
<tr>
<td>noIterations</td>
<td>The number of iterations in the PMH algorithm. 100 iterations takes about ten seconds on a laptop to execute. 5000 iterations are used in the reference below.</td>
</tr>
<tr>
<td>noParticles</td>
<td>The number of particles to use when estimating the likelihood.</td>
</tr>
<tr>
<td>initialPhi</td>
<td>The initial guess of the parameter phi.</td>
</tr>
</tbody>
</table>

Details
The Particle Metropolis-Hastings (PMH) algorithm makes use of a Gaussian random walk as the proposal for the parameter. The PMH algorithm is run using different step lengths in the proposal. This is done to illustrate the difficulty when tuning the proposal and the impact of a too small/large step length.

Value
Returns the estimate of the posterior mean.
Note
See Section 4.2 in the reference for more details.

Author(s)
Johan Dahlin <uni@johandahlin.com>

References

Examples

```r
example2_lgss(noBurnInIterations=200, noIterations=1000)
```

`example3_sv` Parameter estimation in a simple stochastic volatility model

Description
Minimal working example of parameter estimation in a stochastic volatility model using the particle Metropolis-Hastings algorithm with a bootstrap particle filter providing an unbiased estimator of the likelihood. The code estimates the parameter posterior for three parameters using real-world data.

Usage

```r
example3_sv(noBurnInIterations = 2500, noIterations = 7500, 
noParticles = 500, initialTheta = c(0, 0.9, 0.2), 
stepSize = diag(c(0.1, 0.01, 0.05)^2), syntheticData = FALSE)
```

Arguments

- `noBurnInIterations` The number of burn-in iterations in the PMH algorithm. Must be smaller than `noIterations`.
- `noIterations` The number of iterations in the PMH algorithm. 100 iterations takes about a minute on a laptop to execute.
- `noParticles` The number of particles to use when estimating the likelihood.
- `initialTheta` The initial guess of the parameters theta.
- `stepSize` The step sizes of the random walk proposal. Given as a covariance matrix.
- `syntheticData` If TRUE, data is not downloaded from the Internet. This is only used when running tests of the package.
Details
The Particle Metropolis-Hastings (PMH) algorithm makes use of a Gaussian random walk as the proposal for the parameters. The data are scaled log-returns from the OMXS30 index during the period from January 2, 2012 to January 2, 2014.

This version of the code makes use of a somewhat well-tuned proposal as a pilot run to estimate the posterior covariance and therefore increase the mixing of the Markov chain.

Value
The function returns the estimated marginal parameter posteriors for each parameter, the trace of the Markov chain and the resulting autocorrelation function. The data is also presented with an estimate of the log-volatility.

The function returns a list with the elements:

- \(\hat{\theta} \): The estimate of the mean of the parameter posterior.
- \(\hat{x} \): The estimate of the mean of the log-volatility posterior.
- \(\hat{\theta}_{SD} \): The estimate of the standard deviation of the parameter posterior.
- \(\hat{x}_{SD} \): The estimate of the standard deviation of the log-volatility posterior.
- \(\hat{i}_{ACT} \): The estimate of the integrated autocorrelation time for each parameter.
- \(\hat{estCov} \): The estimate of the covariance of the parameter posterior.
- \(\hat{theta} \): The trace of the chain exploring the parameter posterior.

Note
See Section 5 in the reference for more details.

Author(s)
Johan Dahlin <uni@johandahlin.com>

References

Examples
```r
## Not run:
example3_sv(noBurnInIterations=200, noIterations=1000)

## End(Not run)```
Parameter estimation in a simple stochastic volatility model

Description

Minimal working example of parameter estimation in a stochastic volatility model using the particle Metropolis-Hastings algorithm with a bootstrap particle filter providing an unbiased estimator of the likelihood. The code estimates the parameter posterior for three parameters using real-world data.

Usage

```
exaiple4_sv(noburniniterations = 2500, noiterations = 7500,
noparticles = 500, initialTheta = c(0, 0.9, 0.2),
syntheticdata = FALSE)
```

Arguments

- `noburniniterations`: The number of burn-in iterations in the PMH algorithm. Must be smaller than `noiterations`.
- `noiterations`: The number of iterations in the PMH algorithm. 100 iterations takes about a minute on a laptop to execute.
- `noparticles`: The number of particles to use when estimating the likelihood.
- `initialTheta`: The initial guess of the parameters theta.
- `syntheticdata`: If TRUE, data is not downloaded from the Internet. This is only used when running tests of the package.

Details

The Particle Metropolis-Hastings (PMH) algorithm makes use of a Gaussian random walk as the proposal for the parameters. The data are scaled log-returns from the OMXS30 index during the period from January 2, 2012 to January 2, 2014.

This version of the code makes use of a proposal that is tuned using a run of `example3_sv` and therefore have better mixing properties.

Value

The function returns the estimated marginal parameter posteriors for each parameter, the trace of the Markov chain and the resulting autocorrelation function. The data is also presented with an estimate of the log-volatility.

The function returns a list with the elements:

- `thhat`: The estimate of the mean of the parameter posterior.
- `xhat`: The estimate of the mean of the log-volatility posterior.
- `thhatSD`: The estimate of the standard deviation of the parameter posterior.
• $\hat{x}_{\text{SD}}$: The estimate of the standard deviation of the log-volatility posterior.
• $\text{iact}$: The estimate of the integrated autocorrelation time for each parameter.
• $\text{estCov}$: The estimate of the covariance of the parameter posterior.

**Note**
See Section 6.3.1 in the reference for more details.

**Author(s)**
Johan Dahlin <uni@johandahlin.com>

**References**

**Examples**

```r
Not run:
example5_sv(noBurnInIterations=200, noIterations=1000)
End(Not run)
```

---

**example5_sv**

*Parameter estimation in a simple stochastic volatility model*

**Description**
Minimal working example of parameter estimation in a stochastic volatility model using the particle Metropolis-Hastings algorithm with a bootstrap particle filter providing an unbiased estimator of the likelihood. The code estimates the parameter posterior for three parameters using real-world data.

**Usage**

```r
eexample5_sv(noBurnInIterations = 2500, noIterations = 7500,
 noParticles = 500, initialTheta = c(0, 0.9, 0.2),
 syntheticData = FALSE)
```

**Arguments**

- `noBurnInIterations`  
  The number of burn-in iterations in the PMH algorithm. Must be smaller than `noIterations`.
- `noIterations`  
  The number of iterations in the PMH algorithm. 100 iterations takes about a minute on a laptop to execute.
noParticles The number of particles to use when estimating the likelihood.
initialTheta The initial guess of the parameters theta.
syntheticData If TRUE, data is not downloaded from the Internet. This is only used when running tests of the package.

Details

The Particle Metropolis-Hastings (PMH) algorithm makes use of a Gaussian random walk as the proposal for the parameters. The data are scaled log-returns from the OMXS30 index during the period from January 2, 2012 to January 2, 2014.

This version of the code makes use of a proposal that is tuned using a pilot run. Furthermore the model is reparameterised to enjoy better mixing properties by making the parameters unrestricted to a certain part of the real-line.

Value

The function returns the estimated marginal parameter posteriors for each parameter, the trace of the Markov chain and the resulting autocorrelation function. The data is also presented with an estimate of the log-volatility.

The function returns a list with the elements:

- thhat: The estimate of the mean of the parameter posterior.
- xhat: The estimate of the mean of the log-volatility posterior.
- thhatSD: The estimate of the standard deviation of the parameter posterior.
- xhatSD: The estimate of the standard deviation of the log-volatility posterior.
- iact: The estimate of the integrated autocorrelation time for each parameter.
- estCov: The estimate of the covariance of the parameter posterior.

Note

See Section 6.3.2 in the reference for more details.

Author(s)

Johan Dahlin <uni@johandahlin.com>

References


Examples

```r
Not run:
example5_sv(noBurnInIterations=200, noIterations=1000)
```

```r
End(Not run)
```
**generateData**

*Generates data from a linear Gaussian state space model*

---

**Description**

Generates data from a specific linear Gaussian state space model of the form \( x_t = \phi x_{t-1} + \sigma_v v_t \) and \( y_t = x_t + \sigma_e e_t \), where \( v_t \) and \( e_t \) denote independent standard Gaussian random variables, i.e. \( N(0, 1) \).

**Usage**

\[
\text{generateData}(\theta, \text{noObservations, initialState})
\]

**Arguments**

- **\( \theta \)**: The parameters \( \theta = \{ \phi, \sigma_v, \sigma_e \} \) of the LGSS model. The parameter \( \phi \) that scales the current state in the state dynamics is restricted to \([-1, 1]\) to obtain a stable model. The standard deviations of the state process noise \( \sigma_v \) and the observation process noise \( \sigma_e \) must be positive.

- **\( \text{noObservations} \)**: The number of time points to simulate.

- **\( \text{initialState} \)**: The initial state.

**Value**

The function returns a list with the elements:

- \( x \): The latent state for \( t = 0, ..., T \).
- \( y \): The observation for \( t = 0, ..., T \).

**Author(s)**

Johan Dahlin <uni@johandahlin.com>

**References**

Kalman filter for state estimate in a linear Gaussian state space model

Description

Estimates the filtered state and the log-likelihood for a linear Gaussian state space model of the form

\[ x_t = \phi x_{t-1} + \sigma_v v_t \quad \text{and} \quad y_t = x_t + \sigma_e e_t, \]

where \( v_t \) and \( e_t \) denote independent standard Gaussian random variables, i.e. \( N(0, 1) \).

Usage

kalmanfilter(y, theta, initialState, initialStateCovariance)

Arguments

- \( y \): Observations from the model for \( t = 1, \ldots, T \).
- \( \theta \): The parameters \( \theta = \{ \phi, \sigma_v, \sigma_e \} \) of the LGSS model. The parameter \( \phi \) scales the current state in the state dynamics. The standard deviations of the state process noise and the observation process noise are denoted \( \sigma_v \) and \( \sigma_e \), respectively.
- \( \text{initialState} \): The initial state.
- \( \text{initialStateCovariance} \): The initial covariance of the state.

Value

The function returns a list with the elements:

- \( \text{xHatFiltered} \): The estimate of the filtered state at time \( t = 1, \ldots, T \).
- \( \text{logLikelihood} \): The estimate of the log-likelihood.

Note

See Section 3 in the reference for more details.

Author(s)

Johan Dahlin <uni@johandahlin.com>

References

Examples

# Generates 500 observations from a linear state space model with
# \((\phi, \sigma_e, \sigma_v) = (0.5, 1.0, 0.1)\) and zero initial state.
theta <- c(0.5, 1.0, 0.1)
d <- generateData(theta, noObservations=500, initialState=0.0)

# Estimate the filtered state using Kalman filter
kfOutput <- kalmanFilter(d$y, theta,
                         initialState=0.0, initialStateCovariance=0.01)

# Plot the estimate and the true state
par(mfrow=c(3, 1))
plot(d$x, type="l", xlab="time", ylab="true state", bty="n",
     col="#1B9E77")
plot(kfOutput$xHatFiltered, type="l", xlab="time",
     ylab="Kalman filter estimate", bty="n", col="#D95F02")
plot(d$x-kfOutput$xHatFiltered, type="l", xlab="time",
     ylab="difference", bty="n", col="#7570B3")

Description

Creates diagnostic plots from runs of the particle Metropolis-Hastings algorithm.

Usage

makePlotsParticleMetropolisHastingsSVModel(y, res, noBurnInIterations, noIterations, nPlot)

Arguments

y Observations from the model for \(t = 1, \ldots, T\).
res The output from a run of particleMetropolisHastings, particleMetropolisHastingsSVmodel or particleMetropolisHastingsSVmodelReparameterised.
noBurnInIterations The number of burn-in iterations in the PMH algorithm. Must be smaller than noIterations.
noIterations The number of iterations in the PMH algorithm.
nPlot Number of steps in the Markov chain to plot.

Value

The function returns plots similar to the ones in the reference as well as the estimate of the integrated autocorrelation time for each parameter.
Author(s)
Johan Dahlin <uni@johandahlin.com>

References

Description
Estimates the filtered state and the log-likelihood for a linear Gaussian state space model of the form
\[ x_t = \phi x_{t-1} + \sigma_v v_t \] and
\[ y_t = x_t + \sigma_e e_t, \]
where \( v_t \) and \( e_t \) denote independent standard Gaussian random variables, i.e. \( N(0, 1) \).

Usage
\texttt{particleFilter(y, theta, noParticles, initialState)}

Arguments
- **y**: Observations from the model for \( t = 1, \ldots, T \).
- **theta**: The parameters \( \theta = \{\phi, \sigma_v, \sigma_e\} \) of the LGSS model. The parameter \( \phi \) scales the current state in the state dynamics. The standard deviations of the state process noise and the observation process noise are denoted \( \sigma_v \) and \( \sigma_e \), respectively.
- **noParticles**: The number of particles to use in the filter.
- **initialState**: The initial state.

Value
The function returns a list with the elements:
- **xHatFiltered**: The estimate of the filtered state at time \( t = 1, \ldots, T \).
- **logLikelihood**: The estimate of the log-likelihood.
- **particles**: The particle system at each time point.
- **weights**: The particle weights at each time point.

Note
See Section 3 in the reference for more details.

Author(s)
Johan Dahlin <uni@johandahlin.com>
References


Examples

# Generates 500 observations from a linear state space model with
# (phi, sigma_e, sigma_v) = (0.5, 1.0, 0.1) and zero initial state.
theta <- c(0.5, 1.0, 0.1)
d <- generateData(theta, noObservations=500, initialState=0.0)

# Estimate the filtered state using a Particle filter
pfOutput <- particleFilter(d$y, theta, noParticles = 50,
initialState=0.0)

# Plot the estimate and the true state
par(mfrow=c(3, 1))
plot(d$x[1:500], type="l", xlab="time", ylab="true state", bty="n",
col="#1B9E77")
plot(pfOutput$xHatFiltered, type="l", xlab="time",
 ylab="particle filter estimate", bty="n", col="#D95F02")
plot(d$x[1:500]-pfOutput$xHatFiltered, type="l", xlab="time",
 ylab="difference", bty="n", col="#7570B3")

particleFilterSVmodel Bootstrap particle filter for state estimate in a simple stochastic volatility model

Description

Estimates the filtered state and the log-likelihood for a stochastic volatility model of the form $x_t = \mu + \phi(x_{t-1} - \mu) + \sigma_v v_t$ and $y_t = \exp(x_t/2)e_t$, where $v_t$ and $e_t$ denote independent standard Gaussian random variables, i.e. $N(0,1)$.

Usage

particleFilterSVmodel(y, theta, noParticles)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Observations from the model for $t = 1, ..., T$.</td>
</tr>
<tr>
<td>theta</td>
<td>The parameters $\theta = {\mu, \phi, \sigma_v}$. The mean of the log-volatility process is denoted $\mu$. The persistence of the log-volatility process is denoted $\phi$. The standard deviation of the log-volatility process is denoted $\sigma_v$.</td>
</tr>
<tr>
<td>noParticles</td>
<td>The number of particles to use in the filter.</td>
</tr>
</tbody>
</table>
The function returns a list with the elements:

- `xHatFiltered`: The estimate of the filtered state at time $t = 1, \ldots, T$.
- `logLikelihood`: The estimate of the log-likelihood.

Note

See Section 5 in the reference for more details.

Author(s)

Johan Dahlin <uni@johandahlin.com>

References


Examples

```r
Not run:
Get the data from Quandl
library("Quandl")
d <- Quandl("NASDAQOMX/OMXS30", start_date="2012-01-02", end_date="2014-01-02", type="zoo")
y <- as.numeric(100 * diff(log(d$"Index Value")))

Estimate the filtered state using a particle filter
theta <- c(-0.10, 0.97, 0.15)
pfOutput <- particleFilterSVMmodel(y, theta, noParticles=100)

Plot the estimate and the true state
par(mfrow=c(2, 1))
plot(y, type="l", xlab="time", ylab="log-returns", bty="n", col="#B8E777")
plot(pfOutput$xHatFiltered, type="l", xlab="time", ylab="estimate of log-volatility", bty="n", col="#D95F02")
End(Not run)
```
Description
Estimates the parameter posterior for \( \phi \) a linear Gaussian state space model of the form \( x_t = \phi x_{t-1} + \sigma_v v_t \) and \( y_t = x_t + \sigma_e e_t \), where \( v_t \) and \( e_t \) denote independent standard Gaussian random variables, i.e. \( N(0, 1) \).

Usage
```
particleMetropolisHastings(y, initialPhi, sigmav, sigmae, noParticles,
initialState, noIterations, stepSize)
```

Arguments
- **y**: Observations from the model for \( t = 1, ..., T \).
- **initialPhi**: The mean of the log-volatility process \( \mu \).
- **sigmav**: The standard deviation of the state process \( \sigma_v \).
- **sigmae**: The standard deviation of the observation process \( \sigma_e \).
- **noParticles**: The number of particles to use in the filter.
- **initialState**: The initial state.
- **noIterations**: The number of iterations in the PMH algorithm.
- **stepSize**: The standard deviation of the Gaussian random walk proposal for \( \phi \).

Value
The trace of the Markov chain exploring the marginal posterior for \( \phi \).

Note
See Section 4 in the reference for more details.

Author(s)
Johan Dahlin <uni@johandahlin.com>

References

Examples
```
Generates 100 observations from a linear state space model with
(phi, sigma_e, sigma_v) = (0.5, 1.0, 0.1) and zero initial state.
theta <- c(0.5, 1.0, 0.1)
d <- generateData(theta, noObservations=100, initialState=0.0)

Estimate the marginal posterior for phi
```
Particle Metropolis-Hastings algorithm for a stochastic volatility model

Description

Estimates the parameter posterior for $\theta = \{\mu, \phi, \sigma_v\}$ in a stochastic volatility model of the form $x_t = \mu + \phi(x_{t-1} - \mu) + \sigma_v v_t$ and $y_t = \exp(x_t/2)e_t$, where $v_t$ and $e_t$ denote independent standard Gaussian random variables, i.e. $N(0, 1)$.

Usage

particleMetropolisHastingsSVmodel(y, initialTheta, noParticles, noIterations, stepSize)

Arguments

- **y**: Observations from the model for $t = 1, ..., T$.
- **initialTheta**: An initial value for the parameters $\theta = \{\mu, \phi, \sigma_v\}$. The mean of the log-volatility process is denoted $\mu$. The persistence of the log-volatility process is denoted $\phi$. The standard deviation of the log-volatility process is denoted $\sigma_v$.
- **noParticles**: The number of particles to use in the filter.
- **noIterations**: The number of iterations in the PMH algorithm.
- **stepSize**: The standard deviation of the Gaussian random walk proposal for $\theta$.

Value

The trace of the Markov chain exploring the posterior of $\theta$.

Note

See Section 5 in the reference for more details.

Author(s)

Johan Dahlin <uni@johandahlin.com>
References


Examples

```r
Not run:
Get the data from Quandl
library("Quandl")
d <- Quandl("NASDAQOMX/OMX30", start_date="2012-01-02", end_date="2014-01-02", type="zoo")
y <- as.numeric(100 * diff(log(d$"Index Value")))

Estimate the marginal posterior for phi
pmhOutput <- particleMetropolisHastingsSVmodel(y,
 initialTheta = c(0, 0.9, 0.2),
 noParticles=500,
 noIterations=1000,
 stepSize=diag(c(0.05, 0.0002, 0.002)))

Plot the estimate
nbins <- floor(sqrt(1000))
par(mfrow=c(3, 1))
hist(pmhOutput$theta[,1], breaks=nbins, main="", xlab=expression(mu),
 ylab="marginal posterior", freq=FALSE, col="#7570B3")
hist(pmhOutput$theta[,2], breaks=nbins, main="", xlab=expression(phi),
 ylab="marginal posterior", freq=FALSE, col="#7298A")
hist(pmhOutput$theta[,3], breaks=nbins, main="",
 xlab=expression(sigma[v]), ylab="marginal posterior",
 freq=FALSE, col="#66A61E")

End(Not run)
```

---

**Particle Metropolis-Hastings algorithm for a stochastic volatility model**

**Description**

Estimates the parameter posterior for $\theta = \{\mu, \phi, \sigma_v\}$ in a stochastic volatility model of the form $x_t = \mu + \phi(x_{t-1} - \mu) + \sigma_v v_t$ and $y_t = \exp(x_t/2)e_t$, where $v_t$ and $e_t$ denote independent standard Gaussian random variables, i.e. $N(0, 1)$. In this version of the PMH, we reparameterise the model and run the Markov chain on the parameters $\vartheta = \{\mu, \psi, \varsigma\}$, where $\phi = \tanh(\psi)$ and $\sigma_v = \exp(\varsigma)$. 

Usage

particleMetropolisHastingsSVmodelReparameterised(y, initialTheta, noParticles, noIterations, stepSize)

Arguments

y Observations from the model for \( t = 1, \ldots, T \).
initialTheta An initial value for the parameters \( \theta = \{\mu, \phi, \sigma_v\} \). The mean of the log-volatility process is denoted \( \mu \). The persistence of the log-volatility process is denoted \( \phi \). The standard deviation of the log-volatility process is denoted \( \sigma_v \).
noParticles The number of particles to use in the filter.
noIterations The number of iterations in the PMH algorithm.
stepSize The standard deviation of the Gaussian random walk proposal for \( \theta \).

Value

The trace of the Markov chain exploring the posterior of \( \theta \).

Note

See Section 5 in the reference for more details.

Author(s)

Johan Dahlin <uni@johandahlin.com>

References


Examples

```r
Not run:
Get the data from Quandl
library("Quandl")
d <- Quandl("NASDAQOMX/OMXS30", start_date="2012-01-01", end_date="2014-01-02", type="zoo")
y <- as.numeric(100 * diff(log(d$"Index Value")))

Estimate the marginal posterior for phi
pmhOutput <- particleMetropolisHastingsSVmodelReparameterised(
 y, initialTheta = c(0, 0.9, 0.2), noParticles=500,
 noIterations=1000, stepSize=diag(c(0.05, 0.0002, 0.002)))

Plot the estimate
nbins <- floor(sqrt(1000))
par(mfrow=c(3, 1))
```
hist(pmhOutput$theta[,1], breaks=nbins, main="", xlab=expression(mu), ylab="marginal posterior", freq=FALSE, col="#7570B3")

hist(pmhOutput$theta[,2], breaks=nbins, main="", xlab=expression(phi), ylab="marginal posterior", freq=FALSE, col="#E7298A")

hist(pmhOutput$theta[,3], breaks=nbins, main="", xlab=expression(sigma[v]), ylab="marginal posterior", freq=FALSE, col="#66A61E")

## End(Not run)
Index

*Topic datagen
  generatedata, 9

*Topic misc
  example1_lgss, 2
  example2_lgss, 3
  example3_sv, 4
  example4_sv, 6
  example5_sv, 7

*Topic ts
  kalmanFilter, 10
  particleFilter, 12
  particleFilterSVmodel, 13
  particleMetropolisHastings, 14
  particleMetropolisHastingsSVmodel, 16
  particleMetropolisHastingsSVmodelReparameterised, 17

example1_lgss, 2
example2_lgss, 3
example3_sv, 4, 6
example4_sv, 6
example5_sv, 7

generateData, 9

kalmanFilter, 10

makePlotsParticleMetropolisHastingsSVModel, 11

particleFilter, 12
particleFilterSVmodel, 13
particleMetropolisHastings, 14
particleMetropolisHastingsSVmodel, 16
particleMetropolisHastingsSVmodelReparameterised, 17