
Package ‘pmml’
January 25, 2019

Type Package

Title Generate PMML for Various Models

Version 1.5.7

Author Graham Williams, Tridivesh Jena, Wen Ching Lin, Michael Hahsler
(arules), Software AG, Hemant Ishwaran, Udaya B. Kogalur, Rajarshi Guha,
Dmitriy Bolotov

Maintainer Tridivesh Jena <rpmmlsupport@softwareag.com>

Depends XML

Suggests ada, amap, arules, gbm, glmnet, neighbr, nnet, rpart,
randomForestSRC (<= 2.5.0), randomForest, kernlab, e1071,
testthat, survival, xgboost, pmmlTransformations(>= 1.3.1),
knitr, rmarkdown

Imports methods, stats, utils, stringr

License GPL (>= 2.1)

Description The Predictive Model Markup Language (PMML) is an XML-based language which pro-
vides a way for applications to define machine learning, statistical and data mining mod-
els and to share models between PMML compliant applications. More informa-
tion about the PMML industry standard and the Data Min-
ing Group can be found at <http://www.dmg.org>. The generated PMML can be im-
ported into any PMML consuming application, such as Zementis Predictive Analytics prod-
ucts, which integrate with web services, relational database systems and deploy na-
tively on Hadoop in conjunction with Hive, Spark or Storm, as well as allow predictive analyt-
ics to be executed for IBM z Systems mainframe applications and real-time, streaming analyt-
ics platforms. The package isofor (used for anomaly detection) can be installed with dev-
tools::install_github(``Zelazny7/isofor'').

URL https://www.softwareag.com/zementis

NeedsCompilation no

RoxygenNote 6.1.1

VignetteBuilder knitr

Repository CRAN

Date/Publication 2019-01-25 07:30:03 UTC

1

https://www.softwareag.com/zementis

2 R topics documented:

R topics documented:

AddAttributes . 3
addDDAttributes . 5
addDFChildren . 7
addLT . 8
addMSAttributes . 10
addOutputField . 11
audit . 13
fileToXMLNode . 14
functionToPMML . 15
houseVotes84 . 16
makeIntervals . 17
makeOutputNodes . 18
makeValues . 19
pmml . 20
pmml.ada . 23
pmml.coxph . 24
pmml.cv.glmnet . 25
pmml.gbm . 27
pmml.glm . 28
pmml.hclust . 30
pmml.iForest . 31
pmml.kmeans . 33
pmml.ksvm . 34
pmml.lm . 35
pmml.multinom . 36
pmml.naiveBayes . 37
pmml.neighbr . 39
pmml.nnet . 41
pmml.randomForest . 42
pmml.rfsrc . 44
pmml.rpart . 45
pmml.rules . 46
pmml.svm . 47
pmml.xgb.Booster . 50
pmmlCanExport . 52
pmmltoc . 53
savePMML . 53

Index 55

AddAttributes 3

AddAttributes adds attribute values to an existing element in a given PMML file

Description

This helper function allows one to add attributes to an arbitrary xml element. This is an experimental
function designed to be more general than the ’addMSAttributes’ or ’addDDAttributes’ functions.

Usage

AddAttributes(xmlmodel=NULL, xpath=NULL, attributes=NULL,
namespace="4_3",...)

Arguments

xmlmodel the PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the fileToXMLNode function.

xpath the XPath to the element to which the attributes are to be added.

attributes the attributes to be added to the data fields. The user should make sure that the
attributes being added are allowed in the PMML schema.

namespace the namespace of the PMML model. This is frequently also the PMML version
the model is represented as.

... further arguments passed to or from other methods.

Details

The attribute information can be provided as a vector. Multiple attribute names and values can be
passes as vector elements to enable inserting multiple attributes. However, this function overwrites
any pre-existing attribute values, so it must be used with care. This behavior is by design as this
feature is meant to help an user add new defined attribute values at different times. The XPath has
to include the namespace as shown in the examples.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<tridivesh.jena@softwareag.com>

4 AddAttributes

Examples

make a sample model
library(pmml)
model0 <- lm(Sepal.Length~., data=iris[,-5])
model <- pmml(model0)

The resulting PMML:
<PMML version="4.3" ... xmlns="http://www.dmg.org/PMML-4_3">
<Header ... description="Linear Regression Model"/>
<DataDictionary numberOfFields="4">
.
.
</DataDictionary>
<RegressionModel modelName="Linear_Regression_Model"
functionName="regression"
algorithmName="least squares">
<MiningSchema>
.
.
</MiningSchema>
.
.
<RegressionTable intercept="1.85599749291755">
<NumericPredictor name="Sepal.Width" exponent="1"
coefficient="0.650837159313218"/>
<NumericPredictor name="Petal.Length" exponent="1"
coefficient="0.709131959136729"/>
<NumericPredictor name="Petal.Width" exponent="1"
coefficient="-0.556482660167024"/>
</RegressionTable>
</RegressionModel>
</PMML>

Add arbitrary attributes to the 1st 'NumericPredictor' element. The
attributes are for demostration only, they are not allowed under
the PMML schema. The command assumes the default namespace.
AddAttributes(model, "/p:PMML/descendant::p:NumericPredictor[1]",

attributes=c(a=1,b="b"))

add attributes to the NumericPredictor element which has
'Petal.Length' as the 'name' attribute.
AddAttributes(model,

"/p:PMML/descendant::p:NumericPredictor[@name='Petal.Length']",
attributes=c(a=1,b="b"))

3 NumericElements exist which have '1' as the 'exponent' attribute.
Add new attributes to the 3rd one.
AddAttributes(model,

"/p:PMML/descendant::p:NumericPredictor[@exponent='1'][3]",
attributes=c(a=1,b="b"))

addDDAttributes 5

add attributes to the 1st element whose 'name' attribute contains
'Length'.
AddAttributes(model,

"/p:PMML/descendant::p:NumericPredictor[contains(@name,'Length')]",
attributes=c(a=1,b="b"))

addDDAttributes adds attribute values to an existing DataField element in a given
PMML file

Description

The PMML format allows a DataField element to have various attributes which although useful,
may not always be present in a PMML model. This function allows one to take an existing PMML
file and add these attributes to the DataFields.

Usage

addDDAttributes(xmlmodel=NULL,attributes=NULL,field=NULL,
namespace="4_3",...)

Arguments

xmlmodel the PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the fileToXMLNode function.

attributes the attributes to be added to the data fields. The user should make sure that the
attributes being added are allowed in the PMML schema.

field The field to which the attributes are to be added. This is used when the attributes
are a vector of name-value pairs, intended for this one field.

namespace the namespace of the PMML model. This is frequently also the PMML version
the model is represented as.

... further arguments passed to or from other methods.

Details

The attribute information can be provided as a dataframe or a vector. Each row of the data frame
corresponds to an attribute name and each column corresponding to a variable name. This way one
can add as many attributes to as many variables as one wants in one step. A more convinient method
to add multiple attributes to one field might be to give the attribute name and values as a vector. This
function may be used multiple times to add new attribute values step-by-step. However this function
overwrites any pre-existing attribute values, so it must be used with care. This behavior is by design
as this feature is meant to help an user add new defined attribute values at different times. For
example, one may use this to modify the display name of a field at different times.

6 addDDAttributes

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<tridivesh.jena@softwareag.com>

Examples

make a sample model
library(pmml)
model0 <- lm(Sepal.Length~., data=iris[,-5])
model <- pmml(model0)

Resulting model has mining fields with no information besides
fieldName, dataType and optype. this object is already an xml
node, not an external text file; so there is no need to convert
it to an xml node object.

create data frame with attribute information

attributes <- data.frame(c("FlowerWidth",1),c("FlowerLength",0),
stringAsFactors=FALSE)

rownames(attributes) <- c("displayName","isCyclic")
colnames(attributes) <- c("Sepal.Width","Petal.Length")
although not needed in this first try, necessary to easily add
new values later. Removes values as factors so that new values
added later are not evaluated as factor values and thus rejected
as invalid.
attributes[] <- lapply(attributes,as.character)

actual command
addDDAttributes(model,attributes,namespace="4_3")

Alternative method to add attributes to a single field,
"Sepal.Width"
addDDAttributes(model,c(displayName="FlowerWidth",isCyclic=1),

"Sepal.Width")

mi<-makeIntervals(list("openClosed","closedClosed","closedOpen"),
list(NULL,1,2),list(1,2,NULL))

mv<-makeValues(list("A","B","C"),list(NULL,NULL,NULL),
list("valid",NULL,"invalid"))

addDFChildren(model, field="Sepal.Length", interval=mi, values=mv)

addDFChildren 7

addDFChildren adds ’Interval’ and ’Value’ child elements to a given DataField ele-
ment in a given PMML file

Description

The PMML format allows a DataField element to have ’Interval’ and ’Value’ child elements which
although useful, may not always be present in a PMML model. This function allows one to take an
existing PMML file and add these elements to the DataFields.

Usage

addDFChildren(xmlmodel=NULL,field=NULL,intervals=NULL,
values=NULL,namespace="4_3",...)

Arguments

xmlmodel the PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the fileToXMLNode function.

field The field to which the attributes are to be added. This is used when the attributes
are a vector of name-value pairs, intended for this one field.

intervals The ’Interval’ elements given as a list

values The ’Value’ elements given as a list.

namespace the namespace of the PMML model. This is frequently also the PMML version
the model is represented as.

... further arguments passed to or from other methods.

Details

The ’Interval’ elements or the ’Value’ elements can be typed in, but more conviniently created by
using the helper functions ’makeIntervals’ and ’MakeValues’. This function can then add these
extra information to the PMML.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<tridivesh.jena@softwareag.com>

8 addLT

Examples

make a sample model
library(pmml)
model0 <- lm(Sepal.Length~., data=iris[,-5])
model <- pmml(model0)

Resulting model has data fields but with no 'Interval' or Value'
elements. This object is already an xml node, not an external text
file; so there is no need to convert it to an xml node object.

add an 'Interval' element node by typing it in
addDFChildren(model, field="Sepal.Length",

intervals=list(newXMLNode("Interval",
attrs=c(closure="openClosed",rightMargin=3))))

use helper functions to create list of 'Interval' and 'Value'
elements. We define the 3 Intervals as ,1] (1,2) and [2,
mi<-makeIntervals(list("openClosed","openOpen","closedOpen"),

list(NULL,1,2),list(1,2,NULL))

define 3 values, none with a 'displayValue' attribute and 1 value
defined as 'invalid'. The 2nd one is 'valid' by default.
mv<-makeValues(list(1.1,2.2,3.3),list(NULL,NULL,NULL),

list("valid",NULL,"invalid"))

As an example, apply these to the Sepal.Length field.
addDFChildren(model, field="Sepal.Length", intervals=mi, values=mv)
Only defined 'Interval's
addDFChildren(model, field="Sepal.Length", intervals=mi)

addLT adds a LocalTransformations element to a given PMML file.

Description

The pmmlTransformations package allows one to create a LocalTransformations element describ-
ing the data manipulations desired. This function allows one to add this information to a given
PMML file; thus combining the description of any data processing as well as the model using such
transformed data.

Usage

addLT(xmlmodel=NULL, transforms=NULL, namespace="4_3",...)

addLT 9

Arguments

xmlmodel the PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the fileToXMLNode function.

transforms the transformations performed on the initial data. This is the LocalTransforma-
tions element as an XML node object.

namespace the namespace of the PMML model. This is frequently also the PMML version
the model is represented as.

... further arguments passed to or from other methods.

Details

The attribute information should be provided as a dataframe; each row corresponding to an attribute
name and each column corresponding to a variable name. This way one can add as many attributes
to as many variables as one wants in one step. On the other extreme, a one-by-one data frame may
be used to add one new attribute to one variable. This function may be used multiple times to add
new attribute values step-by-step. This function overwrites any pre-existing attribute values, so it
must be used with care. However, this is by design as this feature is meant to help an user defined
new attribute values at different times. For example, one may use this to impute missing values in a
model at fifferent times.

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<tridivesh.jena@softwareag.com>

Examples

Not run:
make a sample model

library(pmml)
model <- pmml(lm(Sepal.Length~., data=iris[,-5]))

Perform a z-score transform on the first variable of the data set.
As it is created and used in the same R session, this object is
already an xml node, not an external text file; so there is no
need to convert it to an xml node object.

library(pmmlTransformations)
irisBox <- WrapData(iris)
irisBox <- ZScoreXform(irisBox,"1")
xforms <- pmml(,transforms=irisBox)

Add the LocalTransformations element to the initial PMML model.

10 addMSAttributes

Since the model still uses the original fields, the usage
envisioned for this function is to make it easy if the modeller
forgot to add the transformations when using the pmml function
initially.

modified <- addLT(model,xforms,namespace="4_3")

End(Not run)

addMSAttributes adds attribute values to an existing MiningField element in a given
PMML file

Description

The PMML format allows a MiningField element to have attributes ’usageType’, ’missingValueRe-
placement’ and ’invalidValueTreatment’ which although useful, may not always be present in a
PMML model. This function allows one to take an existing PMML file and add these attributes to
the MiningFields.

Usage

addMSAttributes(xmlmodel=NULL,attributes=NULL,
namespace="4_3",...)

Arguments

xmlmodel the PMML model in a XML node format. If the model is a text file, it should be
converted to an XML node, for example, using the fileToXMLNode function.

attributes the attributes to be added to the mining fields. The user should make sure that
the attributes being added are allowed in the PMML schema.

namespace the namespace of the PMML model. This is frequently also the PMML version
the model is represented as.

... further arguments passed to or from other methods.

Details

The attribute information should be provided as a dataframe; each row corresponding to an attribute
name and each column corresponding to a variable name. This way one can add as many attributes
to as many variables as one wants in one step. On the other extreme, a one-by-one data frame may
be used to add one new attribute to one variable. This function may be used multiple times to add
new attribute values step-by-step. This function overwrites any pre-existing attribute values, so it
must be used with care. However, this is by design as this feature is meant to help an user defined
new attribute values at different times. For example, one may use this to impute missing values in a
model at different times.

addOutputField 11

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<tridivesh.jena@softwareag.com>

Examples

make a sample model
library(pmml)
model0 <- lm(Sepal.Length~., data=iris[,-5])
model <- pmml(model0)

Resulting model has mining fields with no information
besides fieldName, dataType and optype. This object is
already an xml node, not an external text file; so there
is no need to convert it to an xml node object.

Create data frame with attribute information

attributes <- data.frame(c("active",1.1,"asIs"),
c("active",2.2,"asIs"),
c("active",NA,"asMissing"))

rownames(attributes) <- c("usageType","missingValueReplacement",
"invalidValueTreatment")

colnames(attributes) <- c("Sepal.Width","Petal.Length",
"Petal.Width")

Although not needed in this first try, necessary to easily
add new values later
for(k in 1:ncol(attributes)){

attributes[[k]]<-as.character(attributes[[k]])
}

actual command
addMSAttributes(model,attributes,namespace="4_3")

addOutputField Add Output nodes to a PMML object.

Description

Add Output nodes to a PMML object.

12 addOutputField

Usage

addOutputField(xmlmodel = NULL, outputNodes = NULL, at = "End",
xformText = NULL, nodeName = NULL, attributes = NULL,
whichOutput = 1, namespace = "4_3")

Arguments

xmlmodel The PMML model to which the OutputField elements are to be added

outputNodes The Output nodes to be added. These may be created using the ’makeOutputN-
odes’ helper function

at Given an Output element, the 1 based index after which the given Output child
element should be inserted at

xformText Post-processing information to be included in the OutputField element. This
expression will be processed by the functionToPMML function

nodeName The name of the element to be added

attributes The attributes to be added

whichOutput The index of the Output element

namespace The namespace of the PMML model

Details

This function is meant to add any post-processing information to an existing model via the Output-
Field element. One can also use this to tell the PMML model to output other values not automati-
cally added to the model output. The first method is to use the ’makeOutputNodes’ helper function
to make a list of output elements to be added. ’whichOutput’ lets the function know which of the
Output elements we want to work with; there may be more than one in a multiple model file. One
can then add those elements there, at the desired index given by the ’at’ parameter; the elements
are inserted after the OutputField element at the ’at’ index. In other words, find the ’whichOut-
put’ Output element, add the ’outputNodes’ child elements (which should be OutputField nodes)
at the ’at’ position in the child nodes. This function can also be used with the ’nodeName’ and
’attributes’ to add the list of attributes to an OutputField element with name ’nodeName’ element
using the ’xmlmodel’, ’outputNodes’ and ’at’ parameters. Finally, one can use this to add the trans-
formation expression given by the ’xformText’ parameter to the node with name ’nodeName’. The
string given via ’xformText’ is converted to an XML expression similarly to the functionToPMML
function. In other words, find the OutputField node with tha name ’nodeName’ and add the list of
attributes given with ’attributes’ and also, add the child transformations given in the ’xformText’
parameter.

Value

Output node with the OutputField elements inserted.

Author(s)

Tridivesh Jena

audit 13

Examples

Load the standard iris dataset
data(iris)

Create a linear model and convert it to PMML
mod <- lm(Sepal.Length~.,iris)
pmod <- pmml(mod)

Create additional output nodes
onodes0<-makeOutputNodes(name=list("OutputField","OutputField"),

attributes=list(list(name="dbl",
optype="continuous"),NULL),
expression=list("ln(x)","ln(x/(1-x))"))

onodes2<-makeOutputNodes(name=list("OutputField","OutputField"),
attributes=list(list(name="F1",
dataType="double",optype="continuous"),
list(name="F2")))

Create new pmml objects with the output nodes appended
addOutputField(xmlmodel=pmod, outputNodes=onodes2, at="End",

xformText=NULL, nodeName=NULL, attributes=NULL,
whichOutput=1)

pmod2<-addOutputField(xmlmodel=pmod, outputNodes=onodes0, at="End",
xformText=NULL, nodeName=NULL,
attributes=NULL,whichOutput=1)

Create nodes with attributes and transformations
addOutputField(xmlmodel=pmod2, outputNodes=onodes2,at=2)
addOutputField(xmlmodel=pmod2, xformText=list("exp(x) && !x"),

nodeName="Predicted_Sepal.Length")

att <- list(datype="dbl",optpe="dsc")
addOutputField(xmlmodel=pmod2, nodeName="Predicted_Sepal.Length",

attributes=att)

audit Artificially constructed dataset

Description

This is an artificial dataset consisting of fictional clients who have been audited, perhaps for tax
refund compliance. For each case an outcome is recorded (whether the taxpayer’s claims had to be
adjusted or not) and any amount of adjustment that resulted is also recorded.

Format

A data frame containing:

Age Numeric

14 fileToXMLNode

Employment Categorical string with 7 levels
Education Categorical string with 16 levels
Marital Categorical string with 6 levels
Occupation Categorical string with 14 levels
Income Numeric
Sex Categorical string with 2 levels
Deductions Numeric
Hours Numeric
Accounts Categorical string with 32 levels
Adjustment Numeric
Adjusted Numeric value 0 or 1

References

Togaware rattle package : Audit dataset
http://www.dmg.org/pmml_examples/index.html#Audit

Examples

data(audit, package = "pmml")

fileToXMLNode Reads in a file and tries to parse it into an object of type XMLNode

Description

This function can be used when the user wants to read in an external file and convert it into an
XMLNode to be used subsequently by other R functions.

Usage

fileToXMLNode(file)

Arguments

file the external file to be read in. This file can be any file in PMML format, regard-
less of the source or model type.

Details

This function reads in a file and attempts to parse it into an XML node. This format is the one that
will be obtained when a model is constructed in R and output in PMML format.

This function is mainly meant to be used to read in external files instead of depending on models
saved in R. As an example, the pmml package requires as input an object of type XMLNode before
its functions can be applied. Function ’fileToXMLNode’ can be used to read in an existing PMML
file, convert it to an XML node and then make it available for use by any of the pmml functions.

http://www.dmg.org/pmml_examples/index.html#Audit

functionToPMML 15

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<tridivesh.jena@softwareag.com>

Examples

Not run:
define some transformations
library(pmml)
library(pmmlTransformations)

irisBox <- WrapData(iris)
irisBox <- ZScoreXform(irisBox,xformInfo = "column1->d1")
irisBox <- ZScoreXform(irisBox,xformInfo = "column2->d2")

#make a LocalTransformations element and save it to an external file
pmml_trans <- pmml(NULL, transforms=irisBox)
write(toString(pmml_trans),file = "xform_iris.pmml")

Later, we may need to read in the PMML model into R
'lt' below is now a XML Node, as opposed to a string

lt <- fileToXMLNode("xform_iris.pmml")

End(Not run)

functionToPMML Convert an R expression to PMML.

Description

Convert an R expression to PMML.

Usage

functionToPMML(expr)

Arguments

expr an R expression enclosed in quotes

16 houseVotes84

Details

As long as the expression passed to the function is a valid R expression (e.g., no unbalanced paren-
thesis), it can contain arbitrary function names not defined in R. Variables in the expression passed
to ‘FunctionXform‘ are always assumed to be fields, and not substituted. That is, even if ‘x‘ has a
value in the R environment, the resulting expression will still use ‘x‘.

An expression such as ‘foo(x)‘ is treated as a function ‘foo‘ with argument ‘x‘. Consequently, pass-
ing in an R vector ‘c(1,2,3)‘ to ‘functionToPMML()‘ will produce PMML where ‘c‘ is a function
and ‘1,2,3‘ are the arguments.

An expression starting with ’-’ or ’+’ (for example, "-3" or "-(a+b)") will be treated as if there is a
0 before the initial ’-’ or ’+’ sign. This makes it possible to represent expressions that start with a
sign, since PMML’s ’-’ and ’+’ functions require two arguments. The resulting PMML node will
have a constant 0 as a child.

Value

PMML version of the input expression

Author(s)

Dmitriy Bolotov

Examples

Operator precedence and parenthesis
functionToPMML("1 + 3/5 - (4 * 2)")

Nested arbitrary functions
functionToPMML("foo(bar(x)) - bar(foo(y-z))")

If-else expression
functionToPMML("if (x==3) { 3 } else { 0 }")

If-else with boolean output
functionToPMML("if (x==3) { TRUE } else { FALSE }")

Function with string argument types
functionToPMML("colors('red','green','blue')")

Sign in front of expression
functionToPMML("-(x/y)")

houseVotes84 Modified 1984 United States Congressional Voting Records Database

makeIntervals 17

Description

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16
key votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired
for, and announced for (these three simplified to yea), voted against, paired against, and announced
against (these three simplified to nay), voted present, voted present to avoid conflict of interest, and
did not vote or otherwise make a position known (these three simplified to an unknown disposition).
Originally containing a binomial variable "class" and 16 other binary variables, those 16 variables
have been renamed to simply "V1","V2",...,"V16".

Format

A data frame containing:

Class Boolean variable
V1 Boolean variable
V2 Boolean variable
V3 Boolean variable
V4 Boolean variable
V5 Boolean variable
V6 Boolean variable
V7 Boolean variable
V8 Boolean variable
V9 Boolean variable
V10 Boolean variable
V11 Boolean variable
V12 Boolean variable
V13 Boolean variable
V14 Boolean variable
V15 Boolean variable
V16 Boolean variable

References

UCI Machine Learning Repository

Examples

data(houseVotes84, package = "pmml")

makeIntervals Create Interval elements, most likely to add to a DataDictionary ele-
ment

Description

Create Interval elements, most likely to add to a DataDictionary element

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

18 makeOutputNodes

Usage

makeIntervals(closure = NULL, leftMargin = NULL, rightMargin = NULL,
namespace = "4_3")

Arguments

closure The ’closure’ attribute of each ’Interval’ element to be created in order.

leftMargin The ’leftMargin’ attribute of each ’Interval’ element to be created in order.

rightMargin The ’rightMargin’ attribute of each ’Interval’ element to be created in order.

namespace The namespace of the PMML model

Details

The ’Interval’ element allows 3 attributes, all of which may be defined in the ’makeIntervals’ func-
tion. The value of these attributes should be provided as a list. Thus the elements of the ’leftMargin’
for example define the value of that attribute for each ’Interval’ element in order.

Value

PMML Intervals elements.

Author(s)

Tridivesh Jena

See Also

makeValues to make Values child elements, addDFChildren to add these xml fragments to the
DataDictionary PMML element.

Examples

make 3 Interval elements
we define the 3 Intervals as ,1] (1,2) and [2,
mi<-makeIntervals(list("openClosed","openOpen","closedOpen"),

list(NULL,1,2),list(1,2,NULL))

makeOutputNodes Add Output nodes to a PMML object.

Description

Add Output nodes to a PMML object.

makeValues 19

Usage

makeOutputNodes(name = "OutputField", attributes = NULL,
expression = NULL, namespace = "4_3")

Arguments

name The name of the element to be created

attributes The node attributes to be added

expression Post-processing information to be included in the element. This expression will
be processed by the functionToPMML function

namespace The namespace of the PMML model

Details

This function will create a list of nodes with names ’name’, attributes ’attributes’ and child elements
’expression’. ’expression’ is a string converted to XML similar to th functionToPMML function.
Meant to create OutputField elements, ’expressions’ allows one to include post-processing trans-
formations to a model. To create multiple such nodes, all the parameters must be given as lists of
equal length.

Value

List of nodes

Author(s)

Tridivesh Jena

Examples

make 2 nodes, one with attributes
TwoNodes <- makeOutputNodes(name=list("OutputField","OutputField"),

attributes=list(list(name="dbl",optype="continuous"),NULL),
expression=list("ln(x)","ln(x/(1-x))"))

makeValues Create Values element, most likely to add to a DataDictionary element

Description

Create Values element, most likely to add to a DataDictionary element

Usage

makeValues(value = NULL, displayValue = NULL, property = NULL,
namespace = "4_3")

20 pmml

Arguments

value The ’value’ attribute of each ’Value’ element to be created in order.

displayValue The ’displayValue’ attribute of each ’Value’ element to be created in order.

property The ’property’ attribute of each ’Value’ element to be created in order.

namespace The namespace of the PMML model

Details

The ’makeValues’ function is used the same way as the ’makeIntervals’ function. If certain at-
tributes for an element should not be included, they should be input in the list as NULL.

Value

PMML Values elements.

Author(s)

Tridivesh Jena

See Also

makeIntervals to make Interval child elements, addDFChildren to add these xml fragments to the
DataDictionary PMML element.

Examples

define 3 values, none with a 'displayValue' attribute and 1 value
defined as 'invalid'. The 2nd one is 'valid' by default.
mv <- makeValues(list(1.1,2.2,3.3),list(NULL,NULL,NULL),

list("valid",NULL,"invalid"))

pmml Generate PMML for R objects

Description

pmml is a generic function implementing S3 methods used to produce the PMML (Predictive Model
Markup Language) representation of an R model. The resulting PMML file can then be imported
into other systems that accept PMML.

The same function can also be used to output variable transformations in PMML format. In par-
ticular, it can be used as a transformations generator. Various transformation operations can be
implemented in R and those transformations can then be output in PMML format by calling the
function with a NULL value for the model input and a pmmlTransformations object as the trans-
forms input. Please see the R pmmlTransformations package for more information on how to
create the pmmlTransformations object.

pmml 21

In addition, the pmml function can also be called using a pre-existing PMML model as the first
input and a pmmlTransformations object as the transforms input. The result is a new PMML
model with the transformation inserted as a "LocalTransformations" element in the original model.
If the original model already had a "LocalTransformations" element, the new information will be
appended to that element. If the model variables are derived directly from a chain of transformations
defined in the transforms input, the field names in the model are replaced with the original field
names with the correct data types to make a consistent model. The covered cases include model
fields derived from an original field, model fields derived from a chain of transformations starting
from an original field and mutiple fields derived from the same original field.

This package converts models to PMML version 4.3.

Please note that package XML_3.95-0.1 or later is required to perform the full and correct func-
tionality of the pmml package.

If data used for an R model contains features of type character, these must be converted to factors
before the model is trained and converted with pmml.

A list of all the supported packages is available in the vignette:

vignette("packages_and_functions", package="pmml").

Usage

pmml(model=NULL, model.name="Rattle_Model",
app.name="Rattle/PMML", description=NULL,
copyright=NULL, transforms=NULL, ...)

Arguments

model an object to be converted to PMML.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

... further arguments passed to or from other methods.

Details

The Predictive Model Markup Language (PMML) is an XML-based language which provides a way
for applications to define machine learning, statistical and data mining models and to share models
between PMML compliant applications. More information about the PMML industry standard and
the Data Mining Group can be found at http://www.dmg.org.

The generated PMML can be imported into any PMML consuming application, such as Zementis
Predictive Analytics products, which integrate with web services, relational database systems and
deploy natively on Hadoop in conjunction with Hive, Spark or Storm, as well as allow predictive an-
alytics to be executed for IBM z Systems mainframe applications and real-time, streaming analytics
platforms.

http://www.dmg.org

22 pmml

Value

An object of class XMLNode as that defined by the XML package. This represents the top level, or
root node, of the XML document and is of type PMML. It can be written to file with saveXML.

Author(s)

<Graham.Williams@togaware.com>

References

• Rattle home page: https://rattle.togaware.com/

• PMML home page: http://www.dmg.org

• A. Guazzelli, W. Lin, T. Jena (2012), PMML in Action: Unleashing the Power of Open Stan-
dards for Data Mining and Predictive Analytics. CreativeSpace (Second Edition) - Available
on Amazon.com.

• A. Guazzelli, M. Zeller, W. Lin, G. Williams (2009), PMML: An Open Standard for Sharing
Models. The R journal, Volume 1/1, 60-65

• A. Guazzelli, T. Jena, W. Lin, M. Zeller (2013). Extending the Naive Bayes Model Element
in PMML: Adding Support for Continuous Input Variables. In Proceedings of the 19th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining

• T. Jena, A. Guazzelli, W. Lin, M. Zeller (2013). The R pmmlTransformations Package. In
Proceedings of the 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

See Also

pmml.ada, pmml.rules, pmml.coxph, pmml.cv.glmnet, pmml.glm, pmml.hclust, pmml.kmeans,
pmml.ksvm, pmml.lm, pmml.multinom, pmml.naiveBayes, pmml.neighbr, pmml.nnet, pmml.randomForest,
pmml.rfsrc, pmml.rpart, pmml.svm, pmml.xgb.Booster

Examples

Build a simple lm model
iris.lm <- lm(Sepal.Length ~ ., data=iris)

Convert to pmml
pmml(iris.lm)

Create a pmmlTransformations object
library(pmmlTransformations)
xo <- WrapData(iris)

Transform the 'Sepal.Length' variable
xo <- MinMaxXform(xo,xformInfo="column1->d_sl")

Output the tranformation in PMML format
pmml(NULL, transforms=xo)

https://rattle.togaware.com/
http://www.dmg.org
http://www.amazon.com/dp/1470003244
http://www.amazon.com/dp/1470003244
http://kdd13pmml.files.wordpress.com/2013/07/guazzelli_et_al.pdf
http://kdd13pmml.files.wordpress.com/2013/07/guazzelli_et_al.pdf
http://kdd13pmml.files.wordpress.com/2013/07/jena_et_al.pdf

pmml.ada 23

pmml.ada Generate PMML for ada objects

Description

Generate the PMML representation for an ada object from package ada.

Usage

S3 method for class 'ada'
pmml(model, model.name="AdaBoost_Model",

app.name="R-PMML", description="AdaBoost Model",
copyright=NULL, transforms=NULL, unknownValue=NULL, ...)

Arguments

model ada object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

Details

The pmml function exports the ada model in the PMML MiningModel (multiple models) format.
The MiningModel element consists of a list of TreeModel elements, one in each model segment.

This function implements the discrete adaboost algorithm only. Note that each segment tree is a
classification model, returning either -1 or 1. However the MiningModel (ada algorithm) is doing
a weighted sum of the returned value, -1 or 1. So the value of attribute functionName of element
MiningModel is set to "regression"; the value of attribute functionName of each segment tree is
also set to "regression" (they have to be the same as the parent MiningModel per PMML schema).
Although each segment/tree is being named a "regression" tree, the actual returned score can only
be -1 or 1, which practically turns each segment into a classification tree.

The model in PMML format has 5 different outputs. The "rawValue" output is the value of the
model expressed as a tree model. The boosted tree model uses a transformation of this value, this is
the "boostValue" output. The last 3 outputs are the predicted class and the probabilities of each of
the 2 classes (The ada package Boosted Tree models can only handle binary classification models).

Author(s)

Zementis Inc.

24 pmml.coxph

References

R project CRAN package: ada: an R package for stochastic boosting
https://CRAN.R-project.org/package=ada

Examples

library(ada)
library(pmml)
data(audit)

fit <- ada(Adjusted~Employment+Education+Hours+Income,iter=3, audit)
pmml_fit <- pmml(fit)

pmml.coxph Generate PMML for coxph objects

Description

Generate the PMML representation for a coxph object from package survival.

Usage

S3 method for class 'coxph'
pmml(model, model.name="CoxPH_Survival_Regression_Model",

app.name="Rattle/PMML",
description="CoxPH Survival Regression Model",
copyright=NULL, transforms=NULL, unknownValue=NULL, ...)

Arguments

model a coxph object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

https://CRAN.R-project.org/package=ada

pmml.cv.glmnet 25

Details

A coxph object is the result of fitting a proportional hazards regression model, using the "coxph"
function from the package survival. Although the survival package supports special terms "clus-
ter", "tt" and "strata", only the special term "strata" is supported by the pmml package. Note that
special term "strata" cannot be a multiplicative variable and only numeric risk regression is sup-
ported.

Author(s)

<Graham.Williams@togaware.com>, Zementis Inc.

References

R project CRAN package: survival: Survival Analysis
https://CRAN.R-project.org/package=survival

pmml.cv.glmnet Generate PMML for glmnet objects

Description

Generate the PMML representation for a glmnet (elasticnet general linear regression) object. In
particular, this gives the PMML representation for an object created by the cv.glmnet function.

Usage

S3 method for class 'cv.glmnet'
pmml(model, model.name="Elasticnet_Model",

app.name="Rattle/PMML",
description="Generalized Linear Regression Model",
copyright=NULL, transforms=NULL, unknownValue=NULL,
dataset=NULL, s=NULL, ...)

Arguments

model a cv.glmnet object contained in an object of class glmnet, as contained in the
object returned by the function cv.glmnet.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset the dataset using which the model was built.

https://CRAN.R-project.org/package=survival

26 pmml.cv.glmnet

s ’lambda’ parameter at which to output the model. If not given, the lambda.1se
parameter from the model is used instead.

... further arguments passed to or from other methods.

Details

The glmnet package expects the input and predicted values in a matrix format; not as arrays or data
frames. As of now, it will also accept numerical values only. As such, any string variables must be
converted to numerical ones. One possible way to do so is to use data transformation functions, such
as from the pmmlTransformations package. However the result is a data frame. In all cases, lists,
arrays and data frames can be converted to a matrix format using the data.matrix function from the
base package. Given a data frame df, a matrix m can thus be created by using m <- data.matrix(df).

The PMML language requires variable names which will be read in as the column names of the
input matrix. If the matrix does not have variable names, they will be given the default values of
"X1", "X2", ...

Use of PMML and pmml.cv.glmnet requires the XML package. Be aware that XML is a very
verbose data format.

Currently, only gaussian and poisson family types are supported.

Author(s)

Zementis Inc.

References

R project CRAN package:
glmnet: Lasso and elastic-net regularized generalized linear models
https://CRAN.R-project.org/package=glmnet

Examples

library(glmnet)

create a simple predictor (x) and response(y) matrices
x=matrix(rnorm(100*20),100,20)
y=rnorm(100)

Build a simple gaussian model
model1 = cv.glmnet(x,y)
Output the model in PMML format
pmml(model1)

shift y between 0 and 1 to create a poisson response
y = y - min(y)
give the predictor variables names (default values are V1,V2,...)
name <- NULL
for(i in 1:20){

name <- c(name,paste("variable",i,sep=""))
}

https://CRAN.R-project.org/package=glmnet

pmml.gbm 27

colnames(x) <- name
create a simple poisson model
model2 <- cv.glmnet(x,y,family="poisson")
output in PMML format the regression model at the lambda
parameter = 0.006
pmml(model2,s=0.006)

pmml.gbm Generate PMML for genralized boosting tree objects

Description

Generate the PMML representation for a gbm object from package gbm.

Usage

S3 method for class 'gbm'
pmml(model, model.name="gbm_Model", app.name="R/PMML",

description="Generalized Boosted Tree Model", copyright=NULL, transforms=NULL,
unknownValue=NULL, ...)

Arguments

model a gbm object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via package pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

Details

This is an optimized function which outputs a gbm object produced by the gbm package in PMML
format. This output is processed to minimize the time and memory requirements.The model will
include not just the model but also any pre-processing applied to the training data.

The ’gbm’ function uses various distribution types to fit a model; currently only the "bernoulli",
"poisson" and "multinomial" distribution types are supported. For all cases the model output in-
cludes the gbm prediction type "link" and "response".

Author(s)

<tridivesh.jena@softwareag.com>

28 pmml.glm

References

R project CRAN package:
gbm: Generalized Boosted Regression Models
https://CRAN.R-project.org/package=gbm

Examples

Build a simple gbm model

library(gbm)
library(pmml)
data(audit)

mod<-gbm(Adjusted~.,data=audit[,-c(1,4,6,9,10,11,12)],n.trees=3,interaction.depth=4)
since distribution type is not given, a bernoulli distribution will be assumed

Convert to pmml
pmml(mod)

now try a classification case
mod2<-gbm(Species~.,data=iris,n.trees=2,interaction.depth=3,distribution="multinomial")

the PMML now will include a regression model to read the gbm object outputs
and convert to a "response" prediction type.
pmml(mod2)

pmml.glm Generate PMML for glm objects

Description

Generate the PMML representation for a glm object from package stats.

Usage

S3 method for class 'glm'
pmml(model, model.name="General_Regression_Model",

app.name="Rattle/PMML",
description="Generalized Linear Regression Model",
copyright=NULL, transforms=NULL, unknownValue=NULL,
weights=NULL, ...)

Arguments

model a glm object.

model.name a name to be given to the model in the PMML code.

https://CRAN.R-project.org/package=gbm

pmml.glm 29

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

weights the weights used for building the model.

... further arguments passed to or from other methods.

Details

The function exports the glm model in the PMML GeneralRegressionModel format.

Note on glm models for 2-class problems: a dataset where the target categorical variable has more
than 2 classes may be turned into a 2-class problem by creating a new target variable that is TRUE
for a particular class and FALSE for all other classes. While the R formula function allows such
a transformation to be passed directly to it, this may cause issues when the model is converted to
PMML. Therefore, it is advised to create a new 2-class separately, and then pass that variable to
glm(). This is shown in an example below.

Author(s)

Zementis Inc.

References

R project: Fitting Generalized Linear Models

Examples

data(iris)
mod <- glm(Sepal.Length ~ ., data=iris, family = "gaussian")
mod_pmml <- pmml(mod)
rm(mod,mod_pmml)

data(audit)
mod <- glm(Adjusted ~ Age + Employment + Education + Income, data=audit,family=binomial(logit))
mod_pmml <- pmml(mod)
rm(mod,mod_pmml)

creating a new 2-class target from a 3-class variable
data(iris)
dat <- iris[,1:4]
add a new 2-class target "Species_setosa" before passing it to glm()
dat$Species_setosa <- iris$Species=="setosa"
mod <- glm(Species_setosa ~ ., data=dat, family=binomial(logit))
mod_pmml <- pmml(mod)
rm(dat,mod,mod_pmml)

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

30 pmml.hclust

pmml.hclust Generate PMML for hclust objects

Description

Generate the PMML representation for a hierarchical cluster object. The hclust object will be
approximated by k centroids and is converted into a PMML representation for kmeans clusters.

Usage

S3 method for class 'hclust'
pmml(model, model.name="HClust_Model", app.name="Rattle/PMML",

description="Hierarchical cluster model", copyright=NULL,
transforms=NULL, unknownValue=NULL, centers, ...)

Arguments

model a hclust object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

centers a list of means to represent the clusters.

... further arguments passed to or from other methods.

Details

This function converts a hclust object created by the ’hclusterpar’ function from the ’amap’ package.
A hclust object is a cluster model created hierarchically. The data is divided recursively until a
criteria is met. This function then takes the final model and represents it as a standard k-means
cluster model. This is possible since while the method of constructing the model is different, the
final model can be represented in the same way.

To use this pmml function, therefore, one must pick the number of clusters desired and the coor-
dinate values at those cluster centers. This can be done using the ’hclusterpar’ and ’centers.hclust’
functions from the ’amap’ and ’rattle’ packages repectively.

Author(s)

<Graham.Williams@togaware.com>

pmml.iForest 31

References

R project: Hierarchical Clustering

Examples

Not run:
cluster the 4 numeric variables of the iris dataset
library(amap)
model <- hclusterpar(iris[,-5])

Get the information about the cluster centers. The last
parameter of the function used is the number of clusters
desired.
library(rattle)
centerInfo <- centers.hclust(iris[,-5],model,3)

convert to pmml
library(pmml)
pmml(model,centers=centerInfo)

End(Not run)

pmml.iForest Generate PMML for an iForest object from the isofor package.

Description

Generate PMML for an iForest object from the isofor package.

Usage

S3 method for class 'iForest'
pmml(model, model.name = "isolationForest_Model",
app.name = "R", description = "Isolation Forest", copyright = NULL,
transforms = NULL, unknownValue = NULL, anomalyThreshold = 0.6,
parentInvalidValueTreatment = "returnInvalid",
childInvalidValueTreatment = "asIs", ...)

Arguments

model an iForest object from package isofor
model.name optional; the model name.

app.name optional; name where the model was created.

description optional; description of the model.

copyright optional; a copyright statement.

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html

32 pmml.iForest

transforms optional; any pre-processing information from the pmmlTransformations pack-
age.

unknownValue optional; a missing value replacement.

anomalyThreshold

double between 0 and 1. Predicted values greater than this are classified as
anomalies.

parentInvalidValueTreatment

invalid value treatment at the top MiningField level.

childInvalidValueTreatment

invalid value treatment at the model segment MiningField level.

... further arguments passed to other methods.

Details

This function converts the iForest model object to the PMML format. The PMML outputs the
anomaly score as well as a boolean value indicating whether the input is an anomaly or not. This
is done by simply comparing the anomaly score with anomalyThreshold, a parameter in the pmml
function. The iForest function automatically adds an extra level to all categorical variables, labelled
"."; this is kept in the PMML representation even though the use of this extra factor in the predict
function is unclear.

Value

PMML representation of the iForest object.

See Also

pmml, isofor package

Examples

Not run:
Any anomalous data points in the Iris dataset? Hopefully none of the
anomaly scores are high!
library(isofor)
create an isolation forest with 10 trees. Sample 30 data points at a time
from the iris dataset to fit the trees
mod <- iForest(iris,nt=10,phi=30)
#convert to PMML
pm <- pmml(mod)

End(Not run)

https://github.com/Zelazny7/isofor

pmml.kmeans 33

pmml.kmeans Generate PMML for kmeans objects

Description

Generate the PMML representation for a kmeans object (cluster) from package stats. The kmeans
object (a cluster described by k centroids) is converted into a PMML representation.

Usage

S3 method for class 'kmeans'
pmml(model, model.name="KMeans_Model", app.name="Rattle/PMML",

description="KMeans cluster model", copyright=NULL,
transforms=NULL, unknownValue=NULL,
algorithm.name="KMeans: Hartigan and Wong", ...)

Arguments

model a kmeans object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

algorithm.name the variety of kmeans used.

... further arguments passed to or from other methods.

Details

A kmeans object is obtained by applying the kmeans function from the stats package. This method
typically requires the user to normalize all the variables, these operations can be done using the
pmmlTransformations package so that the normalization information is included in the pmml
model format.

Author(s)

<Graham.Williams@togaware.com>

References

R project: K-Means Clustering

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html

34 pmml.ksvm

Examples

ds <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

colnames(ds) <- c("Dimension1", "Dimension2")
cl <- kmeans(ds, 2)
pmml(cl)

pmml.ksvm Generate PMML for ksvm objects

Description

Generate the PMML representation for a ksvm object from package kernlab.

Usage

S3 method for class 'ksvm'
pmml(model, model.name="SVM_model",

app.name="Rattle/PMML",
description="Support Vector Machine PMML Model",
copyright=NULL, transforms=NULL, unknownValue=NULL,
dataset=NULL, ...)

Arguments

model a ksvm object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset required since the ksvm object does not record information about the used cate-
gorical variable; the original dataset used to train the SVM model in ksvm.

... further arguments passed to or from other methods.

Details

Both classification (multi-class and binary) as well as regression cases are supported.

The following ksvm kernels are currently supported: rbfdot, polydot, vanilladot, tanhdot.

pmml.lm 35

Author(s)

Zementis Inc.

References

R project CRAN package: kernlab: Kernel-based Machine Learning Lab
https://CRAN.R-project.org/package=kernlab

Examples

Train a support vector machine to perform classification.
library(kernlab)
model <- ksvm(Species ~ ., data=iris)
p <- pmml(model, dataset=iris)

To make predictions using this model, the new data must be given;
without it and by simply using the "predict" function without an
input dataset, the predicted value will not be the true predicted
value. It will be a raw predicted value which must be
post-processed to get the final correct predicted value.

Make predictions using same iris input data. Even though it is the
same dataset, it must be provided as an input parameter for the
"predict" function.

predict(model,iris[,1:4])

rm(model)
rm(p)

pmml.lm Generate PMML for lm objects

Description

Generate the PMML representation for a lm object from package stats.

Usage

S3 method for class 'lm'
pmml(model, model.name="Linear_Regression_Model",

app.name="Rattle/PMML",
description="Linear Regression Model", copyright=NULL,
transforms=NULL, unknownValue=NULL, dataset=NULL,
weights=NULL, ...)

https://CRAN.R-project.org/package=kernlab

36 pmml.multinom

Arguments

model a lm object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset the orginal training dataset, if available.

weights the weights used for building the model.

... further arguments passed to or from other methods.

Details

Note that the resulting PMML representation will not encode interaction terms. Currently, only
numeric regression is supported.

Author(s)

<rguha@indiana.edu>

References

R project: Fitting Linear Models
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html

Examples

fit <- lm(Sepal.Length ~ ., data=iris)
pmml(fit)

rm(fit)

pmml.multinom Generate PMML for multinom objects

Description

Generate the PMML representation for a multinom object from package nnet.

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html

pmml.naiveBayes 37

Usage

S3 method for class 'multinom'
pmml(model, model.name="multinom_Model", app.name="Rattle/PMML",

description="Multinomial Logistic Model", copyright = NULL,
transforms = NULL, unknownValue=NULL, ...)

Arguments

model a multinom object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

Details

This function outputs the multinomial logistic model in the PMML RegressionModel format. It
implements the use of numerical, categorical and multiplicative terms involving both numerical and
categorical variables.

Author(s)

Zementis Inc.

References

R project CRAN package:
nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models
https://CRAN.R-project.org/package=nnet

pmml.naiveBayes Generate PMML for naiveBayes objects

Description

Generate the PMML representation for a naiveBayes object from package e1071.

https://CRAN.R-project.org/package=nnet

38 pmml.naiveBayes

Usage

S3 method for class 'naiveBayes'
pmml(model, model.name="naiveBayes_Model",

app.name="Rattle/PMML", description="NaiveBayes Model",
copyright=NULL, transforms=NULL, unknownValue=NULL,
predictedField, ...)

Arguments

model a naiveBayes object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

predictedField Required parameter; the name of the predicted field.

... further arguments passed to or from other methods.

Details

The PMML representation of the NaiveBayes model implements the definition as specified by the
Data Mining Group: intermediate probability values which are less than the threshold value are
replaced by the threshold value. This is different from the prediction function of the e1071 in which
only probability values of 0 and standard deviations of continuous variables of with the value 0 are
replaced by the threshold value. The two values will therefore not match exactly for cases involving
very small probabilities.

Author(s)

Zementis Inc.

References

• R project CRAN package:
e1071: Misc Functions of the Department of Statistics (e1071), TU Wien
https://CRAN.R-project.org/package=e1071

• A. Guazzelli, T. Jena, W. Lin, M. Zeller (2013). Extending the Naive Bayes Model Element
in PMML: Adding Support for Continuous Input Variables. In Proceedings of the 19th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining.

https://CRAN.R-project.org/package=e1071

pmml.neighbr 39

Examples

Build a simple Naive Bayes model

Upload the required library
library(e1071)
library(pmml)

download an example dataset
data(houseVotes84)
house <- na.omit(houseVotes84)

Construct an example model defining a threshold value of 0.003
model<-naiveBayes(Class~V1+V2+V3,data=house,threshold=0.003)

Output the PMML representation
pmml(model,dataset=house,predictedField="Class")

rm(model)

pmml.neighbr Generate PMML for a neighbr object from the neighbr package.

Description

Generate PMML for a neighbr object from the neighbr package.

Usage

S3 method for class 'neighbr'
pmml(model, model.name = "kNN_model",
app.name = "Rattle/PMML", description = "K Nearest Neighbors Model",
copyright = NULL, transforms = NULL, unknownValue = NULL, ...)

Arguments

model a neighbr object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

40 pmml.neighbr

Details

The model is represented in the PMML NearestNeighborModel format.

The current version of this converter does not support transformations (transforms must be left
as NULL), sets categoricalScoringMethod to "majorityVote", sets continuousScoringMethod to
"average", and isTransoformed to "false".

Value

PMML representation of the neighbr object.

See Also

pmml, PMML KNN specification

Examples

continuous features with continuous target, categorical target,
and neighbor ranking

Not run:
library(neighbr)
data(iris)

add an ID column to the data for neighbor ranking
iris$ID <- c(1:150)

train set contains all predicted variables, features, and ID column
train_set <- iris[1:140,]

omit predicted variables or ID column from test set
test_set <- iris[141:150,-c(4,5,6)]

fit <- knn(train_set=train_set,test_set=test_set,
k=3,
categorical_target="Species",
continuous_target= "Petal.Width",
comparison_measure="squared_euclidean",
return_ranked_neighbors=3,
id="ID")

pmml(fit)

logical features with categorical target and neighbor ranking

library(neighbr)
data("houseVotes84")

remove any rows with N/A elements
dat <- houseVotes84[complete.cases(houseVotes84),]

http://dmg.org/pmml/v4-3/KNN.html

pmml.nnet 41

change all {yes,no} factors to {0,1}
feature_names <- names(dat)[!names(dat) %in% c("Class","ID")]
for (n in feature_names) {

levels(dat[,n])[levels(dat[,n])=="n"] <- 0
levels(dat[,n])[levels(dat[,n])=="y"] <- 1

}

change factors to numeric
for (n in feature_names) {dat[,n] <- as.numeric(levels(dat[,n]))[dat[,n]]}

add an ID column for neighbor ranking
dat$ID <- c(1:nrow(dat))

train set contains features, predicted variable, and ID
train_set <- dat[1:225,]

test set contains features only
test_set <- dat[226:232,!names(dat) %in% c("Class","ID")]

fit <- knn(train_set=train_set,test_set=test_set,
k=5,
categorical_target = "Class",
comparison_measure="jaccard",
return_ranked_neighbors=3,
id="ID")

pmml(fit)

End(Not run)

pmml.nnet Generate PMML for nnet objects

Description

Generate the PMML representation for a nnet object from package nnet.

Usage

S3 method for class 'nnet'
pmml(model, model.name="NeuralNet_model",

app.name="Rattle/PMML",
description="Neural Network PMML Model",
copyright=NULL, transforms=NULL, unknownValue=NULL,
...)

42 pmml.randomForest

Arguments

model a nnet object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

Details

The pmml function supports both regression and classification neural network models. The model is
represented in the PMML NeuralNetwork format.

Author(s)

Zementis Inc.

References

R project CRAN package:
nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models
https://CRAN.R-project.org/package=nnet

Examples

library(nnet)
fit <- nnet(Species ~ ., data=iris, size=4)
pmml(fit)

rm(fit)

pmml.randomForest Generate PMML for randomForest objects

Description

Generate the PMML representation for a randomForest object from package randomForest.

https://CRAN.R-project.org/package=nnet

pmml.randomForest 43

Usage

S3 method for class 'randomForest'
pmml(model, model.name="randomForest_Model",

app.name="Rattle/PMML",
description="Random Forest Tree Model",
copyright=NULL, transforms=NULL, unknownValue=NULL,
parentInvalidValueTreatment="returnInvalid",
childInvalidValueTreatment="asIs", ...)

Arguments

model a randomForest object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

parentInvalidValueTreatment

invalid value treatment at the top MiningField level.
childInvalidValueTreatment

invalid value treatment at the model segment MiningField level.

... further arguments passed to or from other methods.

Details

This function outputs a Random Forest in PMML format. The model will include not just the forest
but also any pre-processing applied to the training data.

Author(s)

Zementis Inc.

References

R project CRAN package:
randomForest: Breiman and Cutler’s random forests for classification and regression
https://CRAN.R-project.org/package=randomForest

Examples

Build a simple randomForest model

library(randomForest)
iris.rf <- randomForest(Species ~ ., data=iris, ntree=20)

https://CRAN.R-project.org/package=randomForest

44 pmml.rfsrc

Convert to pmml

pmml(iris.rf)

rm(iris.rf)

pmml.rfsrc Generate PMML for rfsrc objects

Description

Generate the PMML representation for a randomSurvivalForest forest object.

Usage

S3 method for class 'rfsrc'
pmml(model, model.name="rsf_Model",

app.name="Rattle/PMML",
description="Random Survival Forest Model",
copyright=NULL, transforms=NULL, unknownValue=NULL, ...)

Arguments

model a forest object contained in an object of class randomSurvivalForest, as that
contained in the object returned by the function rfsrc with the parameter “for-
est=TRUE”.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

... further arguments passed to or from other methods.

Details

This function is used to export the geometry of the forest to other PMML compliant applications,
including graphics packages that are capable of printing binary trees. In addition, the user may
wish to save the geometry of the forest for later retrieval and prediction on new data sets using
pmml.rfsrc together with pmml_to_rsf.

The pmml package supports randomSurvivalForest up to version 2.5.0.

pmml.rpart 45

Author(s)

Zementis Inc.

References

• H. Ishwaran, U.B. Kogalur, E.H. Blackstone, M.S. Lauer (2008), /emphRANDOM SUR-
VIVAL FORESTS. The Annals of Applied Statistics, Vol. 2, No. 3, 841-860

• H. Ishwaran and Udaya B. Kogalur (2006). Random Survival Forests. Cleveland Clinic Tech-
nical Report.

Examples

Not run:
Works with randomForestSRC version 2.5.0.
library(randomForestSRC)
data(veteran)
veteran.out <- rfsrc(Surv(time, status)~., data = veteran, ntree = 5,

forest = TRUE, membership = TRUE)
pmml(veteran.out)

End(Not run)

pmml.rpart Generate PMML for rpart objects

Description

Generate the PMML representation for a rpart object from package rpart.

Usage

S3 method for class 'rpart'
pmml(model, model.name="RPart_Model",

app.name="Rattle/PMML",
description="RPart Decision Tree Model",
copyright=NULL, transforms=NULL,
unknownValue=NULL, dataset=NULL, ...)

Arguments

model a rpart object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

46 pmml.rules

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset the original dataset used to train the model.

... further arguments passed to or from other methods.

Details

The pmml function supports regression tree as well as classification tree of a rpart object. The
object is represented in the PMML TreeModel format.

Author(s)

<Graham.Williams@togaware.com>, Zementis Inc.

References

R project CRAN package: rpart: Recursive Partitioning
https://CRAN.R-project.org/package=rpart

Examples

library(rpart)
fit <- rpart(Species ~ ., data=iris)
pmml(fit)

rm(fit)

pmml.rules Generate PMML for arules objects

Description

Generate the PMML representation for a rules or an itemset object from package arules.

Usage

S3 method for class 'rules'
pmml(model, model.name="arules_Model",

app.name="Rattle/PMML",
description="arules association rules model",
copyright=NULL, transforms = NULL, ...)

S3 method for class 'itemsets'
pmml(model, model.name="arules_Model",

app.name="Rattle/PMML",
description="arules frequent itemsets model",
copyright=NULL, transforms = NULL, ...)

https://CRAN.R-project.org/package=rpart

pmml.svm 47

Arguments

model a rules or itemsets object.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms not used in present version.

... further arguments passed to or from other methods.

Details

The model is represented in the PMML AssociationModel format.

Author(s)

Michael Hahsler (<michael@hahsler.net>)

References

R project CRAN package: arules: Mining Association Rules and Frequent Itemsets
https://CRAN.R-project.org/package=arules

pmml.svm Generate the PMML representation of an svm object from the e1071
package.

Description

Generate the PMML representation of an svm object from the e1071 package.

Usage

S3 method for class 'svm'
pmml(model, model.name = "LIBSVM_Model",
app.name = "R-PMML", description = "Support Vector Machine Model",
copyright = NULL, transforms = NULL, unknownValue = NULL,
dataset = NULL, ...)

https://CRAN.R-project.org/package=arules

48 pmml.svm

Arguments

model an svm object from package e1071.

model.name a name to be given to the model in the PMML code.

app.name the name of the application that generated the PMML code.

description a descriptive text for the Header element of the PMML code.

copyright the copyright notice for the model.

transforms data transformations represented in PMML via pmmlTransformations.

unknownValue value to be used as the ’missingValueReplacement’ attribute for all Mining-
Fields.

dataset required for one-classification only; data used to train one-class SVM model.

... further arguments passed to or from other methods.

Details

The model is represented in the PMML SupportVectorMachineModel format.

Note that the sign of the coefficient of each support vector flips between the R object and the
exported PMML file for classification and regression models. This is due to the minor difference
in the training/scoring formula between the LIBSVM algorithm and the DMG specification. Hence
the output value of each support vector machine has a sign flip between the DMG definition and the
svm prediction function.

In a classification model, even though the output of the support vector machine has a sign flip, it
does not affect the final predicted category. This is because in the DMG definition, the winning
category is defined as the left side of threshold 0 while the LIBSVM defines the winning category
as the right side of threshold 0.

For a regression model, the exported PMML code has two OutputField elements. The OutputField
predictedValue shows the support vector machine output per DMG definition. The OutputField
svm_predict_function gives the value corresponding to the R predict function for the svm model.
This output should be used when making model predictions.

For a one-classification svm (OCSVM) model, the PMML has three OutputField elements. The
OutputField anomaly is a boolean value that conforms to the DMG definition of an anomaly de-
tection model; this value is TRUE when an anomaly is detected. This value is the opposite of the
prediction by the e1071 object, which predicts FALSE when an anomaly is detected; that is, the
R svm model predicts whether an input is an inlier. The OutputField anomalyScore is the signed
distance to the separating boundary; anomalyScore corresponds to the decision.values attribute
of the output of the svm predict function in R.

For example, say that for an input of observations, the R OCSVM model predicts a positive decision
value of 0.4 and label of TRUE According to the R object, this means that the observation is an inlier.
The PMML export of this model will give the following for the same input: anomalyScore = 0.4,
anomaly = "false". According to the PMML, the observation is not an anomaly. Note that there
is no sign flip between R and PMML for OCSVM models.

To export a OCSVM model, an additional argument, dataset, is required by the function. This
argument expects a dataframe with data that was used to train the model. This is necessary be-
cause for one-class svm, the R svm object does not contain information about the data types of
the features used to train the model. The exporter does not yet support the formula interface for

pmml.svm 49

one-classification models, so the default S3 method must be used to train the SVM. The data used
to train the one-class SVM must be numeric and not of integer class.

Anomaly detection SVM models are not yet supported by DMG PMML schema version 4.3. The
PMML produced by this exporter uses an extended schema (4.3Ext), and can be consumed by
Zementis products.

Value

PMML representation of the svm object.

References

* R project CRAN package: e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien https://CRAN.R-project.org/package=e1071

* Chang, Chih-Chung and Lin, Chih-Jen, LIBSVM: a library for Support Vector Machines http:
//www.csie.ntu.edu.tw/~cjlin/libsvm

See Also

pmml, PMML SVM specification

Examples

Not run:
library(e1071)
data(iris)

Classification with a polynomial kernel
fit <- svm(Species ~ ., data=iris, kernel="polynomial")
pmml(fit)

Regression
fit <- svm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,data=iris)
pmml(fit)

Anomaly detection with one-classification
fit <- svm(iris[,1:4],y=NULL,type='one-classification')
pmml(fit,dataset=iris[,1:4])

End(Not run)

https://CRAN.R-project.org/package=e1071
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dmg.org/pmml/v4-3/SupportVectorMachine.html

50 pmml.xgb.Booster

pmml.xgb.Booster Generate PMML for a xgb.Booster object from the xgboost package

Description

Generate PMML for a xgb.Booster object from the xgboost package

Usage

S3 method for class 'xgb.Booster'
pmml(model, model.name = "xboost_Model",
app.name = "R", description = "Extreme Gradient Boosting Model",
copyright = NULL, transforms = NULL, inputFeatureNames = NULL,
outputLabelName = NULL, outputCategories = NULL,
xgbDumpFile = NULL, unknownValue = NULL,
parentInvalidValueTreatment = "returnInvalid",
childInvalidValueTreatment = "asIs", ...)

Arguments

model an object created by the ’xgboost’ function

model.name optional; the model name.

app.name optional; name where the model was created.

description optional; description of the model.

copyright optional; a copyright statement.

transforms optional; any pre-processing information from the pmmlTransformations pack-
age.

inputFeatureNames

input variable names used in training the model

outputLabelName

name of the predicted field

outputCategories

possible values of the predicted field, for classification models.

xgbDumpFile name of file saved using ’xgb.dump’ function.

unknownValue optional; a missing value replacement.

parentInvalidValueTreatment

invalid value treatment at the top MiningField level.

childInvalidValueTreatment

invalid value treatment at the model segment MiningField level.

... further arguments passed to other methods.

pmml.xgb.Booster 51

Details

The xgboost function takes as its input either an xgb.DMatrix object or a numeric matrix. The
input field information is not stored in the R model object, hence the field information must be
passed on as inputs. This enables the PMML to specify field names in its model representation.
The R model object does not store information about the fitted tree structure either. However, this
information can be extracted from the xgb.model.dt.tree function and the file saved using the
xgb.dump function. The xgboost library is therefore needed in the environmant and this saved file
is needed as an input as well.

The following objectives are currently supported: multi:softprob, multi:softmax, binary:logistic.

The pmml exporter will throw an error if the xgboost model model only has one tree.

The exporter only works with numeric matrices. Sparse matrices must be converted to matrix
objects before training an xgboost model for the export to work correctly.

Value

PMML representation of the xgb.Booster object.

See Also

pmml, PMML Schema

Examples

Standard example using the xgboost package example model
make the xgboost model using xgb.DMatrix object as inputs
Not run:
library(xgboost)
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
model1 <- xgboost(data = train$data, label = train$label, max_depth = 2,eta = 1, nthread = 2,

nrounds = 2, objective = "binary:logistic")

End(Not run)

the input feature names for the xgb.DMatrix object can be extracted as colnames(train$data)
the output field name and categories must be inferred. Looking at train$label informs us
that the output categories are either 0 or 1. The name cannot be inferred and so will be
given a name "prediction1" save the tree information required in an external file
Not run:
xgb.dump(model1, "model1.dumped.trees")

End(Not run)
Now all requiredinput parameters are known:
Not run:
pmml(model1,inputFeatureNames=colnames(train$data),outputLabelName="prediction1",
outputCategories=c("0","1"),xgbDumpFile="model1.dumped.trees")

End(Not run)

http://dmg.org/pmml/v4-3/GeneralStructure.html

52 pmmlCanExport

use iris dataset to make a multinomial model
input data as a matrix
Not run:
model2 <- xgboost(data = as.matrix(iris[,1:4]), label = as.numeric(iris[,5])-1,

max_depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "multi:softprob",
num_class=3)

End(Not run)

The field names are easily extracted from the columnnames and the categories are converted to
numeric format by xgboost.
save the tree information file
Not run:
xgb.dump(model2, "model2.dumped.trees")

pmml(model2,inputFeatureNames=colnames(as.matrix(iris[,1:4])),outputLabelName="Species",
outputCategories=c(1,2,3),xgbDumpFile="model2.dumped.trees")

End(Not run)

pmmlCanExport Can this installation export PMML variables (particularly trans-
forms).

Description

This function is designed to be overriden by other packages that implement PMML export, partic-
ularly of transformations.

Usage

pmmlCanExport(vname)

Arguments

vname a variable name to check whether it is exportable.

Author(s)

<Graham.Williams@togaware.com>

See Also

pmml.

pmmltoc 53

pmmltoc Generate C code from a PMML object - dummy function

Description

This is a dummy function that does nothing. Plugins for Rattle are starting to appear which imple-
ment this for specific environments. This is experimental.

Usage

pmmltoc(p, name=NULL, includePMML=TRUE, includeMetaData=TRUE,
exportClass=TRUE)

Arguments

p pmml.
name a name to give to the model in the C code.
includePMML include the actual PMML as comments.
includeMetaData

include model information as comments.
exportClass whether to export class or probability.

Author(s)

<Graham.Williams@togaware.com>

See Also

pmml.

savePMML saves a xml object as an external PMML file.

Description

A created pmml object can be saved for more efficient further processing via this function.

Usage

savePMML(doc, name, version=4.3)

Arguments

doc the XML model created in R.
name the name of the external file where the XML is to be saved.
version the PMML version number the model is compliant with.

54 savePMML

Author(s)

<tridivesh.jena@softwareag.net>

Examples

Not run:
make a sample model
library(gbm)
library(pmml)
data(audit)

mod<-gbm(Adjusted~.,data=audit[,-c(1,4,6,9,10,11,12)],n.trees=3,interaction.depth=4)
pmod <- pmml(mod)
Save to an external file
savePMML(pmod, "GBMModel.pmml")

End(Not run)

Index

∗Topic datasets
audit, 13
houseVotes84, 16

∗Topic interface
AddAttributes, 3
addDDAttributes, 5
addDFChildren, 7
addLT, 8
addMSAttributes, 10
fileToXMLNode, 14
pmmlCanExport, 52
pmmltoc, 53
savePMML, 53

AddAttributes, 3
addDDAttributes, 5
addDFChildren, 7, 18, 20
addLT, 8
addMSAttributes, 10
addOutputField, 11
audit, 13

fileToXMLNode, 14
functionToPMML, 15

houseVotes84, 16

makeIntervals, 17, 20
makeOutputNodes, 18
makeValues, 18, 19

pmml, 20, 32, 40, 49, 51–53
pmml.ada, 22, 23
pmml.coxph, 22, 24
pmml.cv.glmnet, 22, 25
pmml.gbm, 27
pmml.glm, 22, 28
pmml.hclust, 22, 30
pmml.iForest, 31
pmml.itemsets (pmml.rules), 46
pmml.kmeans, 22, 33

pmml.ksvm, 22, 34
pmml.lm, 22, 35
pmml.multinom, 22, 36
pmml.naiveBayes, 22, 37
pmml.neighbr, 22, 39
pmml.nnet, 22, 41
pmml.randomForest, 22, 42
pmml.rfsrc, 22, 44
pmml.rpart, 22, 45
pmml.rules, 22, 46
pmml.svm, 22, 47
pmml.xgb.Booster, 22, 50
pmmlCanExport, 52
pmmltoc, 53

savePMML, 53

55

	AddAttributes
	addDDAttributes
	addDFChildren
	addLT
	addMSAttributes
	addOutputField
	audit
	fileToXMLNode
	functionToPMML
	houseVotes84
	makeIntervals
	makeOutputNodes
	makeValues
	pmml
	pmml.ada
	pmml.coxph
	pmml.cv.glmnet
	pmml.gbm
	pmml.glm
	pmml.hclust
	pmml.iForest
	pmml.kmeans
	pmml.ksvm
	pmml.lm
	pmml.multinom
	pmml.naiveBayes
	pmml.neighbr
	pmml.nnet
	pmml.randomForest
	pmml.rfsrc
	pmml.rpart
	pmml.rules
	pmml.svm
	pmml.xgb.Booster
	pmmlCanExport
	pmmltoc
	savePMML
	Index

