NeedsCompilation: no

Author: Richard Iannone [aut, cre](https://orcid.org/0000-0003-3925-190X),
Mauricio Vargas [aut](https://orcid.org/0000-0003-1017-7574),
June Choe [aut](https://orcid.org/0000-0002-0701-921X)

Maintainer: Richard Iannone <rich@posit.co>

Repository: CRAN

Date/Publication: 2024-03-25 16:50:02 UTC

R topics documented:

- action_levels
- activate_steps
- affix_date
- affix_datetime
- all_passed
- col_count_match
- col_exists
- col_is_character
- col_is_date
- col_is_factor
- col_is_integer
- col_is_logical
- col_is_numeric
- col_is_posix
- col_schema
- col_schema_match
- col_vals_between
- col_vals_decreasing
- col_vals_equal
- col_vals_expr
- col_vals_gt
- col_vals_gte
- col_vals_increasing
- col_vals_in_set
- col_vals_lt
- col_vals_lte
- col_vals_make_set
- col_vals_make_subset
- col_vals_not_between
- col_vals_not_equal
- col_vals_not_in_set
- col_vals_not_null
- col_vals_null
- col_vals_regex
- col_vals_within_spec
- jointly
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>create_agent</td>
<td>239</td>
</tr>
<tr>
<td>create_informant</td>
<td>247</td>
</tr>
<tr>
<td>create_multiagent</td>
<td>252</td>
</tr>
<tr>
<td>db_tbl</td>
<td>255</td>
</tr>
<tr>
<td>deactivate_steps</td>
<td>261</td>
</tr>
<tr>
<td>draft_validation</td>
<td>262</td>
</tr>
<tr>
<td>email_blast</td>
<td>268</td>
</tr>
<tr>
<td>email_create</td>
<td>272</td>
</tr>
<tr>
<td>export_report</td>
<td>274</td>
</tr>
<tr>
<td>file_tbl</td>
<td>277</td>
</tr>
<tr>
<td>from_github</td>
<td>281</td>
</tr>
<tr>
<td>game_revenue</td>
<td>283</td>
</tr>
<tr>
<td>game_revenue_info</td>
<td>284</td>
</tr>
<tr>
<td>get_agent_report</td>
<td>285</td>
</tr>
<tr>
<td>get_agent_x_list</td>
<td>290</td>
</tr>
<tr>
<td>get_data_extracts</td>
<td>293</td>
</tr>
<tr>
<td>get_informant_report</td>
<td>295</td>
</tr>
<tr>
<td>get_multiagent_report</td>
<td>297</td>
</tr>
<tr>
<td>get_sundered_data</td>
<td>302</td>
</tr>
<tr>
<td>get_tt_param</td>
<td>306</td>
</tr>
<tr>
<td>has_columns</td>
<td>308</td>
</tr>
<tr>
<td>incorporate</td>
<td>311</td>
</tr>
<tr>
<td>info_columns</td>
<td>313</td>
</tr>
<tr>
<td>info_columns_from_tbl</td>
<td>317</td>
</tr>
<tr>
<td>info_section</td>
<td>319</td>
</tr>
<tr>
<td>info_snippet</td>
<td>323</td>
</tr>
<tr>
<td>info_tabular</td>
<td>326</td>
</tr>
<tr>
<td>interrogate</td>
<td>329</td>
</tr>
<tr>
<td>log4r_step</td>
<td>331</td>
</tr>
<tr>
<td>read_disk_multiagent</td>
<td>334</td>
</tr>
<tr>
<td>remove_steps</td>
<td>335</td>
</tr>
<tr>
<td>rows_complete</td>
<td>337</td>
</tr>
<tr>
<td>rows_distinct</td>
<td>343</td>
</tr>
<tr>
<td>row_count_match</td>
<td>350</td>
</tr>
<tr>
<td>scan_data</td>
<td>358</td>
</tr>
<tr>
<td>serially</td>
<td>360</td>
</tr>
<tr>
<td>set_tbl</td>
<td>368</td>
</tr>
<tr>
<td>small_table</td>
<td>369</td>
</tr>
<tr>
<td>small_table_sqlite</td>
<td>370</td>
</tr>
<tr>
<td>snip_highest</td>
<td>371</td>
</tr>
<tr>
<td>snip_list</td>
<td>372</td>
</tr>
<tr>
<td>snip_lowest</td>
<td>375</td>
</tr>
<tr>
<td>snip_stats</td>
<td>376</td>
</tr>
<tr>
<td>specially</td>
<td>377</td>
</tr>
<tr>
<td>specifications</td>
<td>384</td>
</tr>
<tr>
<td>stock_msg_body</td>
<td>386</td>
</tr>
<tr>
<td>stock_msg_footer</td>
<td>386</td>
</tr>
<tr>
<td>stop_if_not</td>
<td>387</td>
</tr>
</tbody>
</table>
action_levels

Set action levels: failure thresholds and functions to invoke

Description

The `action_levels()` function works with the actions argument that is present in the `create_agent()` function and in every validation step function (which also has an actions argument). With it, we can provide threshold failure values for any combination of warn, stop, or notify failure states.

We can react to any entering of a state by supplying corresponding functions to the fns argument. They will undergo evaluation at the time when the matching state is entered. If provided to `create_agent()` then the policies will be applied to every validation step, acting as a default for the validation as a whole.

Calls of `action_levels()` could also be applied directly to any validation step and this will act as an override if set also in `create_agent()`. Usage of `action_levels()` is required to have any useful side effects (i.e., warnings, throwing errors) in the case of validation functions operating directly on data (e.g., `mtcars %>% col_vals_lt("mpg", 35)`). There are two helper functions that are convenient when using validation functions directly on data (the agent-less workflow): `warn_on_fail()` and `stop_on_fail()`. These helpers either warn or stop (default failure threshold for each is set to 1), and, they do so with informative warning or error messages. The `stop_on_fail()` helper is applied by default when using validation functions directly on data (more information on this is provided in Details).
action_levels

Usage

```r
action_levels(warn_at = NULL, stop_at = NULL, notify_at = NULL, fns = NULL)
warn_on_fail(warn_at = 1)
stop_on_fail(stop_at = 1)
```

Arguments

- **warn_at**: Threshold value for the 'warn' failure state
 - `scalar<integer|numeric>(val>=0)` // default: NULL (optional)
 - Either the threshold number or the threshold fraction of failing test units that result in entering the warn failure state.

- **stop_at**: Threshold value for the 'stop' failure state
 - `scalar<integer|numeric>(val>=0)` // default: NULL (optional)
 - Either the threshold number or the threshold fraction of failing test units that result in entering the stop failure state.

- **notify_at**: Threshold value for the 'notify' failure state
 - `scalar<integer|numeric>(val>=0)` // default: NULL (optional)
 - Either the threshold number or the threshold fraction of failing test units that result in entering the notify failure state.

- **fns**: Functions to execute when entering failure states
 - `list` // default: NULL (optional)
 - A named list of functions that is to be paired with the appropriate failure states. The syntax for this list involves using failure state names from the set of warn, stop, and notify. The functions corresponding to the failure states are provided as formulas (e.g., `list(warn = ~ warning("Too many failures.")))`. A series of expressions for each named state can be used by enclosing the set of statements with `{ }`.

Details

The output of the `action_levels()` call in `actions` will be interpreted slightly differently if using an `agent` or using validation functions directly on a data table. For convenience, when working directly on data, any values supplied to warn_at or stop_at will be automatically given a stock `warning()` or `stop()` function. For example, using `small_table %>% col_is_integer("date")` will provide a detailed stop message by default, indicating the reason for the failure. If you were to supply the `fns` for stop or warn manually then the stock functions would be overridden. Furthermore, if `actions` is NULL in this workflow (the default), `pointblank` will use a stop_at value of 1 (providing a detailed, context-specific error message if there are any failing units). We can absolutely suppress this automatic stopping behavior by setting `active = FALSE`. In this interactive data case, there is no stock function given for notify_at. The notify failure state is less commonly used in this workflow as it is in the `agent-based` one.

When using an `agent`, we often opt to not use any functions in `fns` as the warn, stop, and notify failure states will be reported on when using `create_agent_report()` (and, usually that's sufficient). Instead, using the `end_fns` argument is a better choice since that scheme provides useful
data on the entire interrogation, allowing for finer control on side effects and reducing potential for duplicating any side effects.

Value

An action_levels object.

Defining threshold values

Any threshold values supplied for the warn_at, stop_at, or notify_at arguments correspond to the warn, stop, and notify failure states, respectively. A threshold value can either relates to an absolute number of test units or a fraction-of-total test units that are failing. Exceeding the threshold means entering one or more of the warn, stop, or notify failure states.

If a threshold value is a decimal value between 0 and 1 then it’s a proportional failure threshold (e.g., 0.15 indicates that if 15 percent of the test units are found to be failing, then the designated failure state is entered). Absolute values starting from 1 can be used instead, and this constitutes an absolute failure threshold (e.g., 10 means that if 10 of the test units are found to be failing, the failure state is entered).

Examples

For these examples, we will use the included small_table dataset.

```
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Create an action_levels object with fractional values for the warn, stop, and notify states.

```
al <- action_levels(
 warn_at = 0.2,
 stop_at = 0.8,
 notify_at = 0.5
)
```
A summary of settings for the `al` object is shown by printing it.

Create a pointblank agent and apply the `al` object to `actions`. Add two validation steps and interrogate the `small_table`.

```r
agent_1 <- create_agent(
 tbl = small_table,
 actions = al
) %>%
 col_vals_gt(
 columns = a, value = 2
) %>%
 col_vals_lt(
 columns = d, value = 20000
) %>%
 interrogate()
```

The report from the agent will show that the `warn` state has been entered for the first validation step but not the second one. We can confirm this in the console by inspecting the `warn` component in the agent's `x-list`.

```r
x_list <- get_agent_x_list(agent = agent_1)

x_list$warn

[1] TRUE FALSE
```

Applying the `action_levels` object to the agent means that all validation steps will inherit these settings but we can override this by applying another such object to the validation step instead (this time using the `warn_on_fail()` shorthand).

```r
agent_2 <- create_agent(
 tbl = small_table,
 actions = al
) %>%
 col_vals_gt(
 columns = a, value = 2,
 actions = warn_on_fail(warn_at = 0.5)
) %>%
 col_vals_lt(
 columns = d, value = 20000
) %>%
 interrogate()
```

In this case, the first validation step has a less stringent failure threshold for the `warn` state and it’s high enough that the condition is not entered. This can be confirmed in the console through inspection of the `x-list` `warn` component.
In the context of using validation functions directly on data (i.e., no involvement of an agent) we want to trigger warnings and raise errors. The following will yield a warning if it is executed (returning the `small_table` data).

```r
small_table %>%
 col_vals_gt(
 columns = a, value = 2,
 actions = warn_on_fail(warn_at = 2)
)
```

## # A tibble: 13 × 8
## #  
## #  date_time  date  a  b  c  d  e
## # <dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
## # 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
## # 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
## # 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
## # 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
## # 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE
## # 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
## # 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
## # 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
## # 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## # 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## # 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE
## # 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE
## # 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE
## # . . . with 1 more variable: f <chr>
## Warning message:
## Exceedance of failed test units where values in `a` should have been > `2`.
## The `col_vals_gt()` validation failed beyond the absolute threshold # level (2).
## * failure level (4) >= failure threshold (2)

With the same pipeline, not supplying anything for `actions` (it's NULL by default) will have the same effect as using `stop_on_fail(stop_at = 1).

```r
small_table %>%
 col_vals_gt(columns = a, value = 2)
```

## Error: Exceedance of failed test units where values in `a` should have been > `2`.

---

x_list <- get_agent_x_list(agent = agent_2)

x_list$warn

## [1] FALSE FALSE

# [1] FALSE FALSE

With the same pipeline, not supplying anything for `actions` (it's NULL by default) will have the same effect as using `stop_on_fail(stop_at = 1).`
## The \texttt{col_vals_gt()} validation failed beyond the absolute threshold level (1).
## * failure level (4) >= failure threshold (1)

Here’s the equivalent set of statements:

```r
small_table %>%
 col_vals_gt(
 columns = a, value = 2,
 actions = stop_on_fail(stop_at = 1)
)
```

## Error: Exceedance of failed test units where values in \texttt{a} should have been > \texttt{2}.
## The \texttt{col_vals_gt()} validation failed beyond the absolute threshold level (1).
## * failure level (4) >= failure threshold (1)

This is because the \texttt{stop_on_fail()} call is auto-injected in the default case (when operating on data) for your convenience. Behind the scenes a ‘secret agent’ uses ‘covert actions’: all so you can type less.

### Function ID

1-5

### See Also

Other Planning and Prep: \texttt{create_agent()}, \texttt{create_informant()}, \texttt{db_tbl()}, \texttt{draft_validation()}, \texttt{file_tbl()}, \texttt{scan_data()}, \texttt{tbl_get()}, \texttt{tbl_source()}, \texttt{tbl_store()}, \texttt{validate_rmd()}

---

### activate_steps

* Activate one or more of an agent’s validation steps*

#### Description

If certain validation steps need to be activated after the creation of the validation plan for an \textit{agent}, use the \texttt{activate_steps()} function. This is equivalent to using the \texttt{active = TRUE} for the selected validation steps (active is an argument in all validation functions). This will replace any function that may have been defined for the \texttt{active} argument during creation of the targeted validation steps.

#### Usage

```r
activate_steps(agent, i = NULL)
```
activate_steps

Arguments

agent

*The pointblank agent object*

obj:<ptblank_agent>// **required**

A **pointblank** agent object that is commonly created through the use of the `create_agent()` function.

i

*A validation step number*

scalar<integer>/default: NULL (optional)

The validation step number, which is assigned to each validation step in the order of definition. If NULL (the default) then step activation won’t occur by index.

Value

A ptblank_agent object.

Function ID

9.5

See Also

For the opposite behavior, use the `deactivate_steps()` function.

Other Object Ops: `deactivate_steps()`, `export_report()`, `remove_steps()`, `set_tbl()`, `x_read_disk()`, `x_write_disk()`

Examples

```r
Create an agent that has the
`small_table` object as the
target table, add a few inactive
validation steps, and then use
`interrogate()`
agent_1 <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example."
)
 #> %>%
 col_exists(
 columns = date,
 active = FALSE
)
 #> %>%
 col_vals_regex(
 columns = b,
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 active = FALSE
)
 #> %>%
 investigate()

In the above, the data is
not actually interrogated
```
affix_date

# because the 'active' setting # was 'FALSE' in all steps; we # can selectively change this # with 'activate_steps()'
agent_2 <-
agent_1 %>%
activate_steps(i = 1) %>%
interrogate()

affix_date  Put the current date into a file name

Description
This function helps to affix the current date to a filename. This is useful when writing agent and/or informant objects to disk as part of a continuous process. The date can be in terms of UTC time or the local system time. The date can be affixed either to the end of the filename (before the file extension) or at the beginning with a customizable delimiter.

The x_write_disk(), yaml_write() functions allow for the writing of pointblank objects to disk. Furthermore the log4r_step() function has the append_to argument that accepts filenames, and, it’s reasonable that a series of log files could be differentiated by a date component in the naming scheme. The modification of the filename string takes effect immediately but not at the time of writing a file to disk. In most cases, especially when using affix_date() with the aforementioned file-writing functions, the file timestamps should approximate the time components affixed to the filenames.

Usage
affix_date(
  filename,
  position = c("end", "start"),
  format = "%Y-%m-%d",
  delimiter = "_",
  utc_time = TRUE
)

Arguments
filename  The filename to modify.
position  Where to place the formatted date. This could either be at the "end" of the filename (the default) or at the "start".
format  A base::strptime() format string for formatting the date. By default, this is "%Y-%m-%d" which expresses the date according to the ISO 8601 standard (as YYYY-MM-DD). Refer to the documentation on base::strptime() for conversion specifications if planning to use a different format string.
delimiter  The delimiter characters to use for separating the date string from the original file name.
utc_time    An option for whether to use the current UTC time to establish the date (the default, with TRUE), or, use the system’s local time (FALSE).

Value
A character vector.

Examples

The basics of creating a filename with the current date:
Taking the generic "pb_file" name for a file, we add the current date to it as a suffix.

affix_date(filename = "pb_file")
## [1] "pb_file_2022-04-01"

File extensions won’t get in the way:

affix_date(filename = "pb_file.rds")
## [1] "pb_file_2022-04-01.rds"

The date can be used as a prefix.

affix_date(
    filename = "pb_file",
    position = "start"
)
## [1] "2022-04-01_pb_file"

The date pattern can be changed and so can the delimiter.

affix_date(
    filename = "pb_file.yml",
    format = "%Y%m%d",
    delimiter = "-")
## [1] "pb_file-20220401.yml"

Using a date-based filename in a pointblank workflow:
We can use a file-naming convention involving dates when writing output files immediately after interrogating. This is just one example (any workflow involving a filename argument is applicable). It’s really advantageous to use date-based filenames when interrogating directly from YAML in a scheduled process.
In the above, we used the written-to-disk agent (The "agent-small_table.yml" YAML file) for an interrogation via `yaml_agent_interrogate()`. Then, the results were written to disk as an RDS file. In the `filename` argument of `x_write_disk()`, the `affix_date()` function was used to ensure that a daily run would produce a file whose name indicates the day of execution.

### Function ID

13-3

### See Also

The `affix_datetime()` function provides the same features except it produces a datetime string by default.

Other Utility and Helper Functions: `affix_datetime()`, `col_schema()`, `from_github()`, `has_columns()`, `stop_if_not()`

---

**affix_datetime**

*Put the current datetime into a file name*

**Description**

This function helps to affix the current datetime to a filename. This is useful when writing `agent` and/or `informant` objects to disk as part of a continuous process. The datetime string can be based on the current UTC time or the local system time. The datetime can be affixed either to the end of the filename (before the file extension) or at the beginning with a customizable delimiter. Optionally, the time zone information can be included. If the datetime is based on the local system time, the user system time zone is shown with the format `<time>(+/-)hhmm`. If using UTC time, then the `<time>Z` format is adopted.

The `x_write_disk()`, `yaml_write()` functions allow for the writing of `pointblank` objects to disk. The modification of the filename string takes effect immediately but not at the time of writing a file to disk. In most cases, especially when using `affix_datetime()` with the aforementioned file-writing functions, the file timestamps should approximate the time components affixed to the filenames.
Usage

```r
affix_datetime(
 filename,
 position = c("end", "start"),
 format = "%Y-%m-%d_%H-%M-%S",
 delimiter = ",",
 utc_time = TRUE,
 add_tz = FALSE
)
```

Arguments

- **filename**: The filename to modify.
- **position**: Where to place the formatted datetime. This could either be at the "end" of the filename (the default) or at the "start".
- **format**: A `base::strptime()` format string for formatting the datetime. By default, this is "%Y-%m-%d'T%H:%M:%S" which expresses the date according to the ISO 8601 standard. For example, if the current datetime is 2020-12-04 13:11:23, the formatted string would become "2020-12-04T13:11:23". Refer to the documentation on `base::strptime()` for conversion specifications if planning to use a different format string.
- **delimiter**: The delimiter characters to use for separating the datetime string from the original file name.
- **utc_time**: An option for whether to use the current UTC time to establish the datetime (the default, with TRUE), or, use the system’s local time (FALSE).
- **add_tz**: Should the time zone (as an offset from UTC) be provided? If TRUE then the UTC offset will be either provided as <time>Z (if utc_time = TRUE) or <time>(+/-)hhmm. By default, this is FALSE.

Value

A character vector.

Examples

The basics of creating a filename with the current date and time:

Taking the generic "pb_file" name for a file, we add the current datetime to it as a suffix.

```r
affix_datetime(filename = "pb_file")
[1] "pb_file_2022-04-01_00-32-53"
```

File extensions won’t get in the way:

```r
affix_datetime(filename = "pb_file.rds")
[1] "pb_file_2022-04-01_00-32-53.rds"
```

The datetime can be used as a prefix.
The datetime pattern can be changed and so can the delimiter.

```r
affix_datetime(
 filename = "pb_file",
 position = "start"
)
```

## [1] "2022-04-01_00-32-53_pb_file"

Time zone information can be included. By default, all datetimes are given in the UTC time zone.

```r
affix_datetime(
 filename = "pb_file.yml",
 add_tz = TRUE
)
```

## [1] "pb_file_2022-04-01_00-32-53Z.yml"

We can use the system's local time zone with `utc_time = FALSE`.

```r
affix_datetime(
 filename = "pb_file.yml",
 utc_time = FALSE,
 add_tz = TRUE
)
```


### Using a datetime-based filename in a pointblank workflow:

We can use a file-naming convention involving datetimes when writing output files immediately after interrogating. This is just one example (any workflow involving a filename argument is applicable). It's really advantageous to use datetime-based filenames when interrogating directly from YAML in a scheduled process, especially if multiple validation runs per day are being executed on the same target table.

```r
yaml_agent_interrogate("yaml", "agent-small_table.yml", package = "pointblank")
```  

```r
x_write_disk(filename = affix_datetime(filename = "small_table_agent.rds", delimiter = ",-"))
```
In the above, we used the written-to-disk agent (The "agent-small_table.yaml" YAML file) for an interrogation via `yaml_agent_interrogate()`. Then, the results were written to disk as an RDS file. In the filename argument of `x_write_disk()`, the `affix_datetime()` function was used to ensure that frequent runs would produce files whose names indicate the day and time of execution.

**Function ID**

13-4

**See Also**

The `affix_date()` function provides the same features except it produces a date string by default.

Other Utility and Helper Functions: `affix_date()`, `col_schema()`, `from_github()`, `has_columns()`, `stop_if_not()`

---

**all_passed**

*Did all of the validations fully pass?*

**Description**

Given an agent’s validation plan that had undergone interrogation via `interrogate()`, did every single validation step result in zero failing test units? Using the `all_passed()` function will let us know whether that’s TRUE or not.

**Usage**

`all_passed(agent, i = NULL)`

**Arguments**

- `agent` *The pointblank agent object*
  
  `obj:<ptblank_agent>` // **required**

  A `pointblank` agent object that is commonly created through the use of the `create_agent()` function.

- `i` *Validation step numbers*
  
  `vector<integer>` // **default: NULL** (optional)

  A vector of validation step numbers. These values are assigned to each validation step by `pointblank` in the order of definition. If NULL (the default), all validation steps will be used for the evaluation of complete passing.
Details

The all_passed() function provides a single logical value based on an interrogation performed in the agent-based workflow. For very large-scale validation (where data quality is a known issue, and is perhaps something to be tamed over time) this function is likely to be less useful since it is quite stringent (all test units must pass across all validation steps).

Should there be a requirement for logical values produced from validation, a more flexible alternative is in using the test (test_*()) variants of the validation functions. Each of those produce a single logical value and each and have a threshold option for failure levels. Another option is to utilize post-interrogation objects within the agent’s x-list (obtained by using the get_agent_x_list() function). This allows for many possibilities in producing a single logical value from an interrogation.

Value

A logical value.

Examples

Create a simple table with a column of numerical values.

```r
tbl <- dplyr::tibble(a = c(4, 5, 7, 8))
```

```r
tbl
#> # A tibble: 4 x 1
#> a
#> <dbl>
#> 1 4
#> 2 5
#> 3 7
#> 4 8
```

Validate that values in column a are always greater than 4.

```r
agent <-
create_agent(tbl = tbl) %>%
col_vals_gt(columns = a, value = 3) %>%
col_vals_lte(columns = a, value = 10) %>%
col_vals_increasing(columns = a) %>%
interrogate()
```

Determine if these column validations have all passed by using all_passed() (they do).

```r
all_passed(agent = agent)
```

```r
#> [1] TRUE
```

Function ID

8-4
See Also

Other Post-interrogation: 
- `get_agent_x_list()`, `get_data_extracts()`, `get_sundered_data()`, `write_testthat_file()`

---

**col_count_match**

*Does the column count match that of a different table?*

**Description**

The `col_count_match()` validation function, the `expect_col_count_match()` expectation function, and the `test_col_count_match()` test function all check whether the column count in the target table matches that of a comparison table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. As a validation step or as an expectation, there is a single test unit that hinges on whether the column counts for the two tables are the same (after any preconditions have been applied).

**Usage**

```r
col_count_match(
 x,
 count,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r```
expect_col_count_match(object, count, preconditions = NULL, threshold = 1)
```

```r```
test_col_count_match(object, count, preconditions = NULL, threshold = 1)
```

**Arguments**

- `x`  
  *A pointblank agent or a data table*
  
  `obj:<ptblank_agent>|obj:<tbl_*>` // **required**
  
  A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is commonly created with `create_agent()`.

- `count`  
  *The count comparison*
  
  `scalar<numeric|integer>|obj:<tbl_*>` // **required**
  
  Either a literal value for the number of columns, or, a table to compare against the target table in terms of column count values. If supplying a comparison table, it can either be a table object such as a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object. Alternatively, a table-prep formula (`~ <tbl reading code>`)
or a function (function() <tbl reading code>) can be used to lazily read
in the comparison table at interrogation time.

preconditions

*Input table modification prior to validation*

*<table mutation expression> // default: NULL (optional)*

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ x %>% dplyr::mutate(col = col + 10)), or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10)). See the *Preconditions* section for more information.

actions

*Thresholds and actions for different states*

*<obj: action_levels> // default: NULL (optional)*

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
*action_levels()* helper function.

step_id

*Manual setting of the step ID value*

*scalar<character> // default: NULL (optional)*

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and *pointblank* will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label

*Optional label for the validation step*

*vector<character> // default: NULL (optional)*

Optional label for the validation step. This label appears in the *agent* report and,
for the best appearance, it should be kept quite short. See the *Labels* section for
more information.

brief

*Brief description for the validation step*

*scalar<character> // default: NULL (optional)*

A brief is a short, text-based description for the validation step. If nothing is
provided here then an *autobrief* is generated by the *agent*, using the language
provided in *create_agent()*’s lang argument (which defaults to "en" or Eng-
lish). The *autobrief* incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active

*Is the validation step active?*

*scalar<logical> // default: TRUE*

A logical value indicating whether the validation step should be active. If the
validation function is working with an *agent*, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no *agent*
involvement), then any step with *active = FALSE* will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(c(d, e))).

object

* A data table for expectations or tests
  
  obj:<tbl_*> // required
  
  A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

* The failure threshold
  
  scalar<integer|numeric>(val>=0) // default: 1
  
  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

* data frames (data.frame) and tibbles (tbl_df)
* Spark DataFrames (tbl_spark)
* the following database tables (tbl_dbi):
  
  – *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
  – *MySQL* tables (with RMySQL::MySQL())
  – *Microsoft SQL Server* tables (via odbc)
  – *BigQuery* tables (using bigquery::bigquery())
  – *DuckDB* tables (through duckdb::duckdb())
  – *SQLite* (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the column count comparison takes place. Using preconditions can be useful at times since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_count_match() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_count_match() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:
agent %>%
  col_count_match(
    count = ~ file_tbl(
      file = from_github(
        file = "sj_all_revenue_large.rds",
        repo = "rich-iannone/intendo",
        subdir = "data-large"
      ),
    ),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The 'col_count_match()' step.",
    active = FALSE
  )

YAML representation:

steps:
  - col_count_match:
      count: ~ file_tbl(
        file = from_github(
          file = "sj_all_revenue_large.rds",
          repo = "rich-iannone/intendo",
          subdir = "data-large"
        ),
      ),
      preconditions: ~ . %>% dplyr::filter(a < 10)
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The 'col_count_match()' step.
      active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns and three rows of values:

tbl <-
  dplyr::tibble(
    a = c(5, 7, 6),
    b = c(7, 1, 0),
    c = c(1, 1, 1)
  )
Create a second table which is quite different but has the same number of columns as \( \text{tbl} \).

\[
\begin{align*}
\text{tbl}_2 & \leftarrow \\
 & \text{dplyr::tibble(} \\
 & \quad \text{e} = \text{c("a", NA, "a", "c"),} \\
 & \quad \text{f} = \text{c(2.6, 1.2, 0, NA),} \\
 & \quad \text{g} = \text{c("f", "g", "h", "i")} \\
\text{)}
\end{align*}
\]

\[
\begin{align*}
\text{tbl}_2 & \# \# \text{A tibble: 4 x 3} \\
\#> & \text{e f g} \\
\#> & \text{<chr> <dbl> <chr>} \\
\#> & 1 \text{ a 2.6 f} \\
\#> & 2 \text{ <NA> 1.2 g} \\
\#> & 3 \text{ a 0 h} \\
\#> & 4 \text{ c NA i}
\end{align*}
\]

We’ll use these tables with the different function variants.

**A: Using an agent with validation functions and then \texttt{interrogate()}:**

Validate that the count of columns in the target table (\( \text{tbl} \)) matches that of the comparison table (\( \text{tbl}_2 \)).

\[
\begin{align*}
\text{agent} & \leftarrow \\
 & \text{create_agent(tbl = tbl) %>%} \\
 & \text{col_count_match(count = tbl}_2 \text{) %>%} \\
 & \text{interrogate()}
\end{align*}
\]

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter: data is passed through but should \texttt{stop()} if there is a single test unit failing. The behavior of side effects can be customized with the \texttt{actions} option.

\[
\begin{align*}
\text{tbl %>% col_count_match(count = tbl}_2 \text{)} \\
\#> & \# \text{ A tibble: 3 x 3}
\end{align*}
\]
# col_exists

Do one or more columns actually exist?

**Description**

The `col_exists()` validation function, the `expect_col_exists()` expectation function, and the `test_col_exists()` test function all check whether one or more columns exist in the target table. The only requirement is specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column exists or not.
col_exists

Usage

```r
col_exists(
 x,
 columns = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_exists(object, columns, threshold = 1)
```

```r
test_col_exists(object, columns, threshold = 1)
```

Arguments

- **x** *A pointblank agent or a data table*
  
  A data frame, tibble (``tbl_df`` or ``tbl_dbi``), Spark DataFrame (``tbl_spark``), or, an `agent` object of class `ptblank_agent` that is commonly created with `create_agent()`.

- **columns** *The target columns*
  
  A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the `Column Names` section for more information.

- **actions** *Thresholds and actions for different states*
  
  A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

- **step_id** *Manual setting of the step ID value*
  
  One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of `columns` provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label** *Optional label for the validation step*
  
  A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the `Column Names` section for more information.
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief  
*Brief description for the validation step*

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active  
*Is the validation step active?*

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object  
*A data table for expectations or tests*

obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold  
*The failure threshold*

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_\_\_) and the test (test\_\_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test\_\_\_ test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank\_\_agent object or a table object (depending on whether an agent object or a table was passed to \_\_). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:
col_exists

• data frames (data.frame) and tibbles (tbl_df)
• Spark DataFrames (tbl_spark)
• the following database tables (tbl_dbi):
  – *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
  – *MySQL* tables (with RMySQL::MySQL())
  – *Microsoft SQL Server* tables (via odbc)
  – *BigQuery* tables (using bigquery::bigquery())
  – *DuckDB* tables (through duckdb::duckdb())
  – *SQLite* (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

**Column Names**

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c)
or c("a", "b", "c")). {tidyselect} helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

**Labels**

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

• ".{step}": The validation step name
• ".{col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_exists()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_exists()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_exists(
 columns = a,
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \code{col_exists()} step."
)
```

YAML representation:

```yaml
steps:
 - col_exists:
 columns: c(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `\code{col_exists()}` step.
 active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with two columns: `a` and `b`.

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
```
b = c(7, 1, 0, 0, 0, 3)

We’ll use this table with the different function variants.

A: Using an agent with validation functions and then `interrogate()`:
Validate that column `a` exists in the `tbl` table with `col_exists()`.

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_exists(columns = a) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 col_exists(columns = a)
```

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_exists(tbl, columns = a)
```
**col_is_character**

---

### D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_exists(columns = a)
#> [1] TRUE
```

### Function ID

2-29

### See Also

Other validation functions: `col_count_match()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

**col_is_character**  
Do the columns contain character/string data?

### Description

The `col_is_character()` validation function, the `expect_col_is_character()` expectation function, and the `test_col_is_character()` test function all check whether one or more columns in a table is of the character type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a character-type column or not.

### Usage

```r
col_is_character(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_is_character(object, columns, threshold = 1)
```

```r
test_col_is_character(object, columns, threshold = 1)
```
Arguments

A pointblank agent or a data table

\( \text{obj: ptblank\_agent | obj: tbl\_\rightarrow} \) // required

A data frame, tibble (\( \text{tbl\_df} \) or \( \text{tbl\_dbi} \)), Spark DataFrame (\( \text{tbl\_spark} \)), or, an agent object of class \( \text{ptblank\_agent} \) that is commonly created with \text{create\_agent()}.

columns

The target columns

\( \text{<tidy\_select>} \) // required

A column-selecting expression, as one would use inside \text{dplyr::select()}. Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

actions

Thresholds and actions for different states

\( \text{obj: \langle\text{action\_levels}\rangle} \) // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the \text{action\_levels()} helper function.

step_id

Manual setting of the step ID value

\( \text{scalar\langle\text{character}\rangle} \) // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and \text{pointblank} will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

\( \text{vector\langle\text{character}\rangle} \) // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

\( \text{scalar\langle\text{character}\rangle} \) // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in \text{create\_agent()}'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

\( \text{scalar\langle\text{logical}\rangle} \) // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

obj: <tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).
Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"). \{tidyselect\} helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of(). When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when \(x\) is a table object because, otherwise, nothing happens. For the \(\text{col_is}_\ast()\)-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports \{glue\} syntax and exposes the following dynamic variables contextualized to the current step:

- "\{.step\}": The validation step name
- "\{.col\}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "\{toupper(.step)\}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x\) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When \(\text{col_is_character()}\) is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of \(\text{col_is_character()}\) as a validation step is expressed in R code and in the corresponding YAML representation.

**R statement:**
agent %>%
  col_is_character(
    columns = a,
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_character()` step."
  )

YAML representation:

steps:
- col_is_character:
  columns: c(a)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `col_is_character()` step.
  active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with a numeric column (a) and a character column (b).

tbl <-
  dplyr::tibble(  
    a = c(5, 7, 6, 5, 8, 7),
    b = LETTERS[1:6]
  )

tbl
#> # A tibble: 6 x 2
#>    a    b
#>  <dbl><chr>
#> 1   5 A
#> 2   7 B
#> 3   6 C
#> 4   5 D
#> 5   8 E
#> 6   7 F

We’ll use this table with the different function variants.
A: Using an agent with validation functions and then interrogate():
Validate that column b has the character class.

```r
agent <-
create_agent(tbl = tbl) %>%
col_is_character(columns = b) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
col_is_character(columns = b) %>%
dplyr::slice(1:5)
```

#> # A tibble: 5 x 2
#> a b
#> <dbl> <chr>
#> 1 5 A
#> 2 7 B
#> 3 6 C
#> 4 5 D
#> 5 8 E

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_character(tbl, columns = b)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_is_character(columns = b)
```

#> [1] TRUE

Function ID

2-22

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`.
The `col_is_date()` validation function, the `expect_col_is_date()` expectation function, and the `test_col_is_date()` test function all check whether one or more columns in a table is of the R `Date` type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a `Date`-type column or not.

**Usage**

```r
col_is_date(
 x,
columns,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)
```

```r
expect_col_is_date(object, columns, threshold = 1)
```

```r
test_col_is_date(object, columns, threshold = 1)
```

**Arguments**

- `x`  
  A `pointblank` agent or a data table  
  `obj:<ptblank_agent>|obj:<tbl_*>` // **required**  
  A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is commonly created with `create_agent()`.

- `columns`  
  The target columns  
  `<tidy-select>` // **required**  
  A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the **Column Names** section for more information.
**actions**

Thresholds and actions for different states

```r
obj::<action_levels> // default: NULL (optional)
```

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

**step_id**

Manual setting of the step ID value

```r
scalar<character> // default: NULL (optional)
```

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

Optional label for the validation step

```r
vector<character> // default: NULL (optional)
```

Optional label for the validation step. This label appears in the `agent` report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

**brief**

Brief description for the validation step

```r
scalar<character> // default: NULL (optional)
```

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the `agent`, using the language provided in `create_agent()`’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

Is the validation step active?

```r
scalar<logical> // default: TRUE
```

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(c(d, e))).

**object**

A data table for expectations or tests

```r
obj::<tbl_*> // required
```

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
threshold  

*The failure threshold*

`scalar<integer|numeric>(val>=0) // default: 1`

A simple failure threshold value for use with the expectation (expect_...) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

Columns may be a single column (as symbol `a` or string "a") or a vector of columns (`c(a, b, c)` or `c(“a”, “b”, “c”)`). `{tidyselect}` helpers are also supported, such as `contains(“date”)` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in columns.
**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

**Labels**

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAMl with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_date()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_date()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_is_date(
 columns = a,
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`col_is_date\` step.",
 active = FALSE
)
```

YAML representation:
steps:
- col_is_date:
  columns: c(a)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `col_is_date()` step.
    active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a date column. The following examples will validate that that column is of the Date class.

A: Using an agent with validation functions and then `interrogate()`:

Validate that the column date has the Date class.

```
agent <-
 create_agent(tbl = small_table) %>%
 col_is_date(columns = date) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
 col_is_date(columns = date) %>%
dplyr::slice(1:5)
```

```r
#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

**C: Using the expectation function:**

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_date(small_table, columns = date)
```

**D: Using the test function:**

With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>% test_col_is_date(columns = date)
```

```r
#> [1] TRUE
```

**Function ID**

2-26

**See Also**

Do the columns contain R factor objects?

Description

The col_is_factor() validation function, the expect_col_is_factor() expectation function, and the test_col_is_factor() test function all check whether one or more columns in a table is of the factor type. Like many of the col_is_*()-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a factor-type column or not.

Usage

```r
Validation function
col_is_factor(
 x, columns, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE
)

Expectation function
expect_col_is_factor(object, columns, threshold = 1)

Test function
test_col_is_factor(object, columns, threshold = 1)
```

Arguments

- **x**
  A pointblank agent or a data table
  
  obj:<ptblank_agent>|obj:<tbl_*> // required
  
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

- **columns**
  The target columns
  
  <tidy-select> // required
  
  A column-selecting expression, as one would use inside dplyr::select(). Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

- **actions**
  Thresholds and actions for different states
  
  obj:<action_levels> // default: NULL (optional)
  
  A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.
**step_id**  
*Manual setting of the step ID value*

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**  
*Optional label for the validation step*

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the `agent` report and, for the best appearance, it should be kept quite short. See the **Labels** section for more information.

**brief**  
*Brief description for the validation step*

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in `create_agent()`’s lang argument (which defaults to ”en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**  
*Is the validation step active?*

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with `.` (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

**object**  
*A data table for expectations or tests*

obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**  
*The failure threshold*

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
- SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"). tidyselect helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the
col_is_*-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_is_factor() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_is_factor() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_is_factor(
 columns = a,
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_is_factor()` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - col_is_factor:
 columns: c(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_factor()` step.
 active: false
```
In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using \texttt{yaml\_write()} (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the \texttt{yaml\_agent\_string()} function.

**Examples**

Let’s modify the \texttt{f} column in the \texttt{small\_table} dataset so that the values are factors instead of having the character class. The following examples will validate that the \texttt{f} column was successfully mutated and now consists of factors.

\begin{verbatim}
tbl <-
  small_table %>%
  dplyr::mutate(f = factor(f))

tbl
#> # A tibble: 13 x 8
#> date_time    date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <fct>
#> 1 2016-01-04 2016-01-04 2 bcd-345 3 3423. TRUE high
#> 2 2016-01-04 2016-01-04 3 egh-163 8 10000. TRUE low
#> 3 2016-01-05 2016-01-05 6 kdg-938 3 2343. TRUE high
#> 4 2016-01-06 2016-01-06 2 jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 2016-01-09 8 ldm-038 7 284. TRUE low
#> 6 2016-01-11 2016-01-11 4 dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 2016-01-15 7 knw-093 3 843. TRUE high
#> 8 2016-01-17 2016-01-17 4 boe-639 2 1036. FALSE low
#> 9 2016-01-20 2016-01-20 3 bce-642 9 838. FALSE high
#> 10 2016-01-20 2016-01-20 3 bce-642 9 838. FALSE high
#> 11 2016-01-26 2016-01-26 4 dmx-010 7 834. TRUE low
#> 12 2016-01-28 2016-01-28 2 dmx-010 8 188. FALSE low
#> 13 2016-01-30 2016-01-30 1 dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then \texttt{interrogate()}: Validate that the column \texttt{f} in the \texttt{tbl} object is of the factor class.

agent <-
  create\_agent(tbl = tbl) %>%
  col\_is\_factor(columns = f) %>%
  investigate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent): This way of using validation functions acts as a data filter. Data is passed through but should \texttt{stop()} if there is a single test unit failing. The behavior of side effects can be customized with the actions option.
C: Using the expectation function:

With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```
expect_col_is_factor(tbl, f)
```

D: Using the test function:

With the `test_*()` form, we should get a single logical value returned to us.

```
tbl %>% test_col_is_factor(columns = f)
#> [1] TRUE
```

Function ID

2-28

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

The `col_is_integer()` validation function, the `expect_col_is_integer()` expectation function, and the `test_col_is_integer()` test function all check whether one or more columns in a table is of the integer type. Like many of the `col_is_*()`-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is an integer-type column or not.

Usage

```r
col_is_integer(
 x,
 columns,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_is_integer(object, columns, threshold = 1)

test_col_is_integer(object, columns, threshold = 1)
```

Arguments

- **x**: A pointblank agent or a data table
  - `obj:<ptblank_agent>|obj:<tbl_*>` // required
  - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.

- **columns**: The target columns
  - `<tidy-select>` // required
  - A column-selecting expression, as one would use inside dplyr::select(). Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

- **actions**: Thresholds and actions for different states
  - `obj:<action_levels>` // default: NULL (optional)
  - A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

- **step_id**: Manual setting of the step ID value
  - scalar<character> // default: NULL (optional)
  - One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL,
and **pointblank** will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

*Optional label for the validation step*

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the *Labels* section for more information.

**brief**

*Brief description for the validation step*

scalar<character> // default: NULL (optional)

A *brief* is a short, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s *lang* argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

**active**

*Is the validation step active?*

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with *active* = `FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the **pointblank** function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . ~ . %>% has_columns(c(d, e)))`.

**object**

*A data table for expectations or tests*

obj:<tbl_*> // **required**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

*The failure threshold*

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where `0.15` means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a 
\texttt{ptblank\_agent} \ object or a table \ object (de-\ pending on whether an \ agent \ object \ or \ a \ table \ was \ passed \ to \ \texttt{x}). \ The \ expectation \ function \ invisibly \ returns \ its \ input \ but, \ in \ the \ context \ of \ testing \ data, \ the \ function \ is \ called \ primarily \ for \ its \ potential \ side-effects \ (e.g., \ signaling \ failure). \ The \ test \ function \ returns \ a \ logical \ value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (\texttt{data.frame}) and tibbles (\texttt{tbl\_df})
- Spark DataFrames (\texttt{tbl\_spark})
- the following database tables (\texttt{tbl\_dbi}):
  - \textit{PostgreSQL} \ tables \ (using \ \texttt{RPostgres}\::\texttt{Postgres}() \ as \ driver)
  - \textit{MySQL} \ tables \ (with \ \texttt{RMySQL}\::\texttt{MySQL}())
  - \textit{Microsoft SQL Server} \ tables \ (via \ \texttt{odbc})
  - \textit{BigQuery} \ tables \ (using \ \texttt{bigrquery}\::\texttt{bigquery}())
  - \textit{DuckDB} \ tables \ (through \ \texttt{duckdb}\::\texttt{duckdb}())
  - \textit{SQLite} \ (with \ \texttt{RSQLite}\::\texttt{SQLite}())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with \texttt{pointblank}).

Column Names

columns \ may \ be \ a \ single \ column \ (as \ symbol \ \texttt{a} \ or \ string \ \texttt{"a"}) \ or \ a \ vector \ of \ columns \ \texttt{(c(a, b, c)} \ or \ \texttt{c("a", "b", "c")}). \ \texttt{tidyselect} \ helpers \ are \ also \ supported, \ such \ as \ \texttt{contains("date")} \ and \ \texttt{where(is.double)}. \ If \ passing \ an \ \texttt{external} \ \texttt{vector} \ of \ columns, \ it \ should \ be \ wrapped \ in \ \texttt{all\_of}().

When multiple columns are selected by \texttt{columns}, \ the \ result \ will \ be \ an \ expansion \ of \ validation \ steps \ to \ that \ number \ of \ columns \ \texttt{(e.g., c\(col\_a, \ col\_b\)) \ will \ result \ in \ the \ entry \ of \ two \ validation \ steps).}

Previously, \ columns \ could \ be \ specified \ in \ \texttt{vars}(). \ This \ continuously \ to \ work, \ but \ \texttt{c()} \ offers \ the \ same \ capability \ and \ \texttt{supersedes} \ \texttt{vars()} \ in \ \texttt{columns}.

Actions

Often, \ we \ will \ want \ to \ specify \ actions \ for \ the \ validation. \ This \ argument, \ present \ in \ every \ validation \ function, \ takes \ a \ specially-crafted \ list \ object \ that \ is \ best \ produced \ by \ the \ \texttt{action\_levels()} \ function. \ Read \ that \ function’s \ documentation \ for \ the \ lowdown \ on \ how \ to \ create \ reactions \ to \ above-threshold \ failure \ levels \ in \ validation. \ The \ basic \ gist \ is \ that \ you’ll \ want \ at \ least \ a \ single \ threshold \ level \ (specified \ as \ either \ the \ fraction \ of \ test \ units \ failed, \ or, \ an \ absolute \ value), \ often \ using \ the \ \texttt{warn\_at} \ argument. \ This \ is \ especially \ true \ when \ \texttt{x} \ is \ a \ table \ object \ because, \ otherwise, \ nothing \ happens. \ For \ the \ \texttt{col\_is\_\_\_\_\_}\_\_() \-type \ functions, \ using \ \texttt{action\_levels(warn\_at = 1)} \ or \ \texttt{action\_levels(stop\_at = 1)} \ are \ good \ choices \ depending \ on \ the \ situation \ (the \ first \ produces \ a \ warning, \ the \ other \ will \ \texttt{stop}()).
Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_is_integer() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_is_integer() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_is_integer(
 columns = a,
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_is_integer()` step."
)
```

YAML representation:

```yaml
steps:
 - col_is_integer:
 columns: c(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_integer()` step.
 active: false
```
In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Examples**

For all examples here, we’ll use a simple table with a character column (`a`) and an integer column (`b`).

```r
tbl <-
dplyr::tibble(
a = letters[1:6],
b = 2:7
)

tbl
#> # A tibble: 6 x 2
#> a b
#> <chr> <int>
#> 1 a 2
#> 2 b 3
#> 3 c 4
#> 4 d 5
#> 5 e 6
#> 6 f 7
```

**A: Using an agent with validation functions and then `interrogate()`:**

Validate that column `b` has the integer class.

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_is_integer(columns = b) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>%
 col_is_integer(columns = b)
#> # A tibble: 6 x 2
#> a b
#> <chr> <int>
#> 1 a 2
C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_is_integer(tbl, columns = b)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_is_integer(columns = b)
#> [1] TRUE
```

Function ID

2-24

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

col_is_logical

Do the columns contain logical values?

Description

The `col_is_logical()` validation function, the `expect_col_is_logical()` expectation function, and the `test_col_is_logical()` test function all check whether one or more columns in a table is of the logical (TRUE/FALSE) type. Like many of the `col_is_*()`-type functions in pointblank, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is an logical-type column or not.
Usage

```r
col_is_logical(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
effect_col_is_logical(object, columns, threshold = 1)

test_col_is_logical(object, columns, threshold = 1)
```

Arguments

- `x`
 A pointblank agent or a data table
 `obj:<ptblank_agent>|obj:<tbl_*>` // required
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.

- `columns`
 The target columns
 `<tidy-select>` // required
 A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

- `actions`
 Thresholds and actions for different states
 `obj:<action_levels>` // default: NULL (optional)
 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

- `step_id`
 Manual setting of the step ID value
 `scalar<character>` // default: NULL (optional)
 One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- `label`
 Optional label for the validation step
 `vector<character>` // default: NULL (optional)
Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the *Labels* section for more information.

brief

Brief description for the validation step

```
 brief<character> // default: NULL (optional)
```

A brief is a short, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s *lang* argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active

Is the validation step active?

```
 active<logical> // default: TRUE
```

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, *FALSE* will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with *active = FALSE* will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e))`).

object

A data table for expectations or tests

```
 object<tbl_*> // required
```

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

```
 threshold<integer|numeric>(val>=0) // default: 1
```

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a *ptblank_agent* object or a table object (depending on whether an agent object or a table was passed to *x*). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:
• data frames (data.frame) and tibbles (tbl_df)
• Spark DataFrames (tbl_spark)
• the following database tables (tbl_dbi):
 – PostgreSQL tables (using the RPostgres::Postgres() as driver)
 – MySQL tables (with RMySQL::MySQL())
 – Microsoft SQL Server tables (via odbc)
 – BigQuery tables (using bigquery::bigquery())
 – DuckDB tables (through duckdb::duckdb())
 – SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c")). tidyselect helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_is_*()-type functions, using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other will stop()).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

• "{.step}": The validation step name
• "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_is_logical() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_is_logical() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_is_logical(
    columns = a,
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_logical()` step."
  ,
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
  - col_is_logical:
      columns: c(a)
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
        label: The `col_is_logical()` step.
        active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using yaml_write() (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the yaml_agent_string() function.

Examples

The small_table dataset in the package has an e column which has logical values. The following examples will validate that that column is of the logical class.

```r
col_is_logical
small_table
# A tibble: 13 x 8
```
A: Using an agent with validation functions and then `interrogate()`:
Validate that the column e has the logical class.

```r
agent <-
  create_agent(tbl = small_table) %>%
  col_is_logical(columns = e) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
  col_is_logical(columns = e) %>%
dplyr::slice(1:5)
#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_is_logical(small_table, columns = e)
```
D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

```r
colon::small_table %>% test_col_is_logical(columns = e)
#> [1] TRUE
```

Function ID

2-25

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_le()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

Description

The `col_is_numeric()` validation function, the `expect_col_is_numeric()` expectation function, and the `test_col_is_numeric()` test function all check whether one or more columns in a table is of the numeric type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a numeric-type column or not.

Usage

```r
col_is_numeric(
  x,  
  columns,  
  actions = NULL,  
  step_id = NULL,  
  label = NULL,  
  brief = NULL,  
  active = TRUE  
)

expect_col_is_numeric(object, columns, threshold = 1)

test_col_is_numeric(object, columns, threshold = 1)
```
Arguments

x
A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

columns
The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select(). Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

actions
Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id
Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief
Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

`obj:<tbl_*> // required`

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

`scalar<integer|numeric>(val>=0) // default: 1`

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to it). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - `PostgreSQL` tables (using `RPostgres::Postgres()` as driver)
 - `MySQL` tables (with `RMySQL::MySQL()`)
 - `Microsoft SQL Server` tables (via `odbc`)
 - `BigQuery` tables (using `bigquery::bigquery()`)
 - `DuckDB` tables (through `duckdb::duckdb()`)
 - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).
Column Names

Columns may be a single column (as symbol `a` or string "a") or a vector of columns `(c(a, b, c)` or `c("a", "b", "c")`). `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`)) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_numeric()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_numeric()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:
```r
agent %>%
  col_is_numeric(  
    columns = a,  
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),  
    label = "The `col_is_numeric()` step.",  
    active = FALSE
  )
```

YAML representation:

```yaml
steps:  
  - col_is_numeric:  
    columns: c(a)  
    actions:  
      warn_fraction: 0.1  
      stop_fraction: 0.2  
      label: The `col_is_numeric()` step.  
      active: false
```

In practice, both of these will often be shorter as only the `columns` argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a `d` column that is known to be numeric. The following examples will validate that that column is indeed of the numeric class.

```r
table <- readRDS(system.file("extdata", "small_table.rds", package = "tibble") )
table[:10]
```

```r
table %>%  
  dplyr::mutate(d = as.numeric(d))
```
A: Using an agent with validation functions and then `interrogate()`:

Validate that the column `d` has the numeric class.

```r
agent <-
  create_agent(tbl = small_table) %>%
  col_is_numeric(columns = d) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
small_table %>%
  col_is_numeric(columns = d) %>%
  dplyr::slice(1:5)
```

#> # A tibble: 5 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low

C: Using the expectation function:

With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_is_numeric(small_table, columns = d)
```

D: Using the test function:

With the `test_*()` form, we should get a single logical value returned to us.

```r
small_table %>% test_col_is_numeric(columns = d)
```

#> [1] TRUE

Function ID

2-23

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`.
col_is_posix

Do the columns contain POSIXct dates?

Description

The `col_is_posix()` validation function, the `expect_col_is_posix()` expectation function, and the `test_col_is_posix()` test function all check whether one or more columns in a table is of the R POSIXct date-time type. Like many of the `col_is_*()`-type functions in `pointblank`, the only requirement is a specification of the column names. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over a single test unit, which is whether the column is a POSIXct-type column or not.

Usage

```r
col_is_posix(
  x,
  columns,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

epect_col_is_posix(object, columns, threshold = 1)
test_col_is_posix(object, columns, threshold = 1)
```

Arguments

- **x**
 - A pointblank agent or a data table
 - `obj:<ptblank_agent>|obj:<tbl_*>` **required**
 - A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an agent object of class `ptblank_agent` that is commonly created with `create_agent()`.

- **columns**
 - The target columns
 - `<tidy-select>` **required**
 - A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.
actions

Thresholds and actions for different states

obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.
The failure threshold

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to \(x \)). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (\texttt{data.frame}) and tibbles (\texttt{tbl_df})
- Spark DataFrames (\texttt{tbl_spark})
- the following database tables (\texttt{tbl_dbi}):
 - \texttt{PostgreSQL} tables (using the \texttt{RPostgres::Postgres()} as driver)
 - \texttt{MySQL} tables (with \texttt{RMysql::MySQL()})
 - \texttt{Microsoft SQL Server} tables (via \texttt{odbc})
 - \texttt{BigQuery} tables (using \texttt{bigquery::bigquery()})
 - \texttt{DuckDB} tables (through \texttt{duckdb::duckdb()})
 - \texttt{SQLite} (with \texttt{RSQLite::SQLite()})

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string “a”) or a vector of columns (\texttt{c(a, b, c)} or \texttt{c(“a”, “b”, “c”)}). \{tidyselect\} helpers are also supported, such as \texttt{contains(“date”) and where(is.double)}. If passing an external vector of columns, it should be wrapped in \texttt{all_of()}.

When multiple columns are selected by \texttt{columns}, the result will be an expansion of validation steps to that number of columns (e.g., \texttt{c(col_a, col_b)} will result in the entry of two validation steps).

Previously, columns could be specified in \texttt{vars()}. This continues to work, but \texttt{c()} offers the same capability and supersedes \texttt{vars()} in columns.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_is_*()`-type functions, using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other will `stop()`).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_is_posix()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_is_posix()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_is_posix(
    columns = a,
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_is_posix()` step."
  )
```

YAML representation:
steps:
- col_is_posix:
 columns: c(a)
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_is_posix()` step.
 active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a `date_time` column. The following examples will validate that that column is of the POSIXct and POSIXt classes.

```
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then interrogate():

Validate that the column `date_time` is indeed a date-time column.

```
agent <-
create_agent(tbl = small_table) %>%
col_is_posix(columns = date_time) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
col_is_posix(columns = date_time) %>%
dplyr::slice(1:5) #> # A tibble: 5 x 8 #> date_time    date      a  b       c  d      e  f #> <dttm>      <date>  <int> <chr> <dbl> <dbl> <lgl> <chr> #> 1 2016-01-04 2016-01-04 2 1-bcd-345 3 3423. TRUE high #> 2 2016-01-04 2016-01-04 3 5-egh-163 8 10000. TRUE low #> 3 2016-01-05 2016-01-05 6 8-kdg-938 3 2343. TRUE high #> 4 2016-01-06 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid #> 5 2016-01-09 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

C: Using the expectation function:

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
eexpect_col_is_posix(small_table, columns = date_time)
```

D: Using the test function:

With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>% test_col_is_posix(columns = date_time) #> [1] TRUE
```

Function ID

2-27

See Also

col_schema

Generate a table column schema manually or with a reference table

Description
A table column schema object, as can be created by col_schema(), is necessary when using the col_schema_match() validation function (which checks whether the table object under study matches a known column schema). The col_schema object can be made by carefully supplying the column names and their types as a set of named arguments, or, we could provide a table object, which could be of the data.frame, tbl_df, tbl_dbi, or tbl_spark varieties. There’s an additional option, which is just for validating the schema of a tbl_dbi or tbl_spark object: we can validate the schema based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL column types ("DoubleType", "StringType", etc.). This is great if we want to validate table column schemas both on the server side and when tabular data is collected and loaded into R.

Usage

col_schema(..., .tbl = NULL, .db_col_types = c("r", "sql"))

Arguments

... Column-by-column schema definition
<multiple expressions> // required (or, use .tbl)
A set of named arguments where the names refer to column names and the values are one or more column types.

.tbl A data table for defining a schema
obj:<tbl_*> // optional
An option to use a table object to define the schema. If this is provided then any values provided to ... will be ignored. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~<tbl reading code>) or a function (function() <tbl reading code>) can be used to lazily read in the table at interrogation time.

.db_col_types Use R column types or database column types?
sing1-kw:[r|sql] // default: "r"
Determines whether the column types refer to R column types ("r") or SQL column types ("sql").

Examples

Create a simple table with two columns: one integer and the other character.

tbl <-
dplyr::tibble(
a = 1:5,

Create a column schema object that describes the columns and their types (in the expected order).

```r

b = letters[1:5]


_tbl
#> # A tibble: 5 x 2
#> a b
#> <int> <chr>
#> 1 1 a
#> 2 2 b
#> 3 3 c
#> 4 4 d
#> 5 5 e

Create a column schema object that describes the columns and their types (in the expected order).

```r
col_schema(
a = "integer",
b = "character"
)

```r

schema_obj <-
col_schema(  
a = "integer",  
b = "character"
)

```r

Validate that the schema object `schema_obj` exactly defines the column names and column types of the tbl table.

```r

agent <-
create_agent(tbl = tbl) %>%
col_schema_match(schema_obj) %>%
interrogate()

Determine if this validation step passed by using `all_passed()`.

```r

all_passed(agent)

[1] TRUE

We can alternatively create a column schema object from a tbl_df object.
schema_obj <-
 col_schema(
 .tbl = dplyr::tibble(
 a = integer(0),
 b = character(0)
)
)
)

This should provide the same interrogation results as in the previous example.

create_agent(tbl = tbl) %>%
 col_schema_match(schema_obj) %>%
 interrogate() %>%
 all_passed()

[1] TRUE

Function ID
13-1

See Also
Other Utility and Helper Functions: affix_date(), affix_datetime(), from_github(), has_columns(), stop_if_not()

col_schema_match
Do columns in the table (and their types) match a predefined schema?

Description

The `col_schema_match()` validation function, the `expect_col_schema_match()` expectation function, and the `test_col_schema_match()` test function all work in conjunction with a `col_schema` object (generated through the `col_schema()` function) to determine whether the expected schema matches that of the target table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table.

The validation step or expectation operates over a single test unit, which is whether the schema matches that of the table (within the constraints enforced by the `complete`, `in_order`, and `is_exact` options). If the target table is a `tbl_dbi` or a `tbl_spark` object, we can choose to validate the column schema that is based on R column types (e.g., "numeric", "character", etc.), SQL column types (e.g., "double", "varchar", etc.), or Spark SQL types (e.g., "DoubleType", "StringType", etc.). That option is defined in the `col_schema()` function (it is the `.db_col_types` argument).

There are options to make schema checking less stringent (by default, this validation operates with highest level of strictness). With the complete option set to `FALSE`, we can supply a `col_schema` object with a partial inclusion of columns. Using `in_order` set to `FALSE` means that there is no requirement for the columns defined in the schema object to be in the same order as in the target table. Finally, the `is_exact` option set to `FALSE` means that all column classes/types don’t have to be provided for a particular column. It can even be `NULL`, skipping the check of the column type.
Usage

col_schema_match(
 x,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_schema_match(
 object,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 threshold = 1
)

test_col_schema_match(
 object,
 schema,
 complete = TRUE,
 in_order = TRUE,
 is_exact = TRUE,
 threshold = 1
)

Arguments

x A pointblank agent or a data table
 obj:<ptblank_agent>|obj:<tbl_*> // required
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
 an agent object of class ptblank_agent that is commonly created with create_agent().

schema The table schema
 obj:<col_schema> // required
 A table schema of type col_schema which can be generated using the col_schema() function.

complete Requirement for columns specified to exist
 scalar<logical> // default: TRUE
 A requirement to account for all table columns in the provided schema. By
 default, this is TRUE and so that all column names in the target table must be
present in the schema object. This restriction can be relaxed by using FALSE, where we can provide a subset of table columns in the schema.

in_order

Requirement for columns in a specific order

Scalar<logical> // default: TRUE

A stringent requirement for enforcing the order of columns in the provided schema. By default, this is TRUE and the order of columns in both the schema and the target table must match. By setting to FALSE, this strict order requirement is removed.

is_exact

Requirement for column types to be exactly specified

Scalar<logical> // default: TRUE

Determines whether the check for column types should be exact or even performed at all. For example, columns in R data frames may have multiple classes (e.g., a date-time column can have both the "POSIXct" and the "POSIXt" classes). If using is_exact == FALSE, the column type in the user-defined schema for a date-time value can be set as either "POSIXct" or "POSIXt" and pass validation (with this column, at least). This can be taken a step further and using NULL for a column type in the user-defined schema will skip the validation check of a column type. By default, is_exact is set to TRUE.

actions

Thresholds and actions for different states

Obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

Scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

Vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

Scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to succcinctly describe the validation).

active

Is the validation step active?

`scalar<logical> // default: TRUE`

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

object

A data table for expectations or tests

`obj:<tbl_*> // required`

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

`scalar<integer|numeric>(val>=0) // default: 1`

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `pointblank_agent` object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - *PostgreSQL* tables (using the `RPostgres::Postgres()` as driver)
 - *MySQL* tables (with `RMySQL::MySQL()`)
 - *Microsoft SQL Server* tables (via `odbc`)
– *BigQuery* tables (using bigquery::bigquery())
– *DuckDB* tables (through duckdb::duckdb())
– *SQLite* (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

• "{.step}“: The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_schema_match() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_schema_match() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_schema_match(
    schema = col_schema(
      a = "integer",
      b = "character"
  )
```
YAML representation:

```
steps:
  - col_schema_match:
      schema:
        a: integer
        b: character
      complete: false
      in_order: false
      is_exact: false
      actions:
        stop_count: 1.0
      label: The `col_schema_match()` step.
      active: false
```

In practice, both of these will often be shorter as only the schema argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with two columns: one integer (a) and the other character (b). The following examples will validate that the table columns abides match a schema object as created by `col_schema()`.

```r
tbl <-
  dplyr::tibble(
    a = 1:5,
    b = letters[1:5]
  )

tbl
#> # A tibble: 5 x 2
#>   a   b
#> <int> <chr>
#> 1    1 a
#> 2    2 b
```
Create a column schema object with the helper function `col_schema()` that describes the columns and their types (in the expected order).

```r
col_schema(a = "integer", b = "character")
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that the schema object `schema_obj` exactly defines the column names and column types. We’ll determine if this validation has a failing test unit (there is a single test unit governed by whether there is a match).

```r
agent <-
  create_agent(tbl = tbl) %>%
  col_schema_match(schema = schema_obj) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>% col_schema_match(schema = schema_obj)
```

```r
#> # A tibble: 5 x 2
#>   a   b
#> <int> <chr>
#>  1 a
#>  2 b
#>  3 c
#>  4 d
#>  5 e
C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_schema_match(tbl, scheam = schema_obj)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_schema_match(schema = schema_obj)
#> [1] TRUE
```

Function ID
2-30

See Also
Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

---

**col_vals_between**

Do column data lie between two specified values or data in other columns?

**Description**

The `col_vals_between()` validation function, the `expect_col_vals_between()` expectation function, and the `test_col_vals_between()` test function all check whether column values in a table fall within a range. The range specified with three arguments: `left`, `right`, and `inclusive`. The `left` and `right` values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The inclusive argument, as a vector of two logical values relating to `left` and `right`, states whether each bound is inclusive or not. The default is `c(TRUE, TRUE)`, where both endpoints are inclusive (i.e., `[left, right]`). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).
Usage

```r
col_vals_between(
 x, columns, left, right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_between(
 object, columns, left, right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_between(
 object, columns, left, right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

Arguments

- **x**
  
  A pointblank agent or a data table

  | obj:<ptblank_agent>|obj:<tbl_*> | required |

  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

- **columns**
  
  The target columns

  <tidy-select> | required
A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

**left**

*Definition of left bound*

<value expression> // required

The lower bound for the range. The validation includes this bound value (if the first element in `inclusive` is TRUE) in addition to values greater than `left`. This can be a single value or a compatible column given in `vars()`.

**right**

*Definition of right bound*

<value expression> // required

The upper bound for the range. The validation includes this bound value (if the second element in `inclusive` is TRUE) in addition to values lower than `right`. This can be a single value or a compatible column given in `vars()`.

**inclusive**

*Inclusiveness of bounds*

vector<logical> // default: c(TRUE, TRUE)

A two-element logical value that indicates whether the `left` and `right` bounds should be inclusive. By default, both bounds are inclusive.

**na_pass**

*Allow missing values to pass validation*

scalar<logical> // default: FALSE

Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

**preconditions**

*Input table modification prior to validation*

<table mutation expression> // default: NULL (optional)

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% `dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

**segments**

*Expressions for segmenting the target table*

<segmentation expressions> // default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

**actions**

*Thresholds and actions for different states*

obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

**step_id**

*Manual setting of the step ID value*

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

`label`  
Optional label for the validation step  
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

`brief`  
Brief description for the validation step  
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

`active`  
Is the validation step active?  
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

`object`  
A data table for expectations or tests  
obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

`threshold`  
The failure threshold  
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigrquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

columns may be a single column (as symbol `a` or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c")). `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an NA value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*() -type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:
• "{.step}": The validation step name
• "{.col}": The current column name
• "{.seg_col}": The current segment's column name
• "{.seg_val}": The current segment's value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that's the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_between() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_between() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_between(
 columns = a,
 left = 1,
 right = 2,
 inclusive = c(TRUE, FALSE),
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`col_vals_between\` step."
 ,
 active = FALSE
)```

YAML representation:

```yaml
steps:
- col_vals_between:
  columns: c(a)
  left: 1.0
  right: 2.0
  inclusive:
    - true
```
col_vals_between

- false
na_pass: true
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
label: The `col_vals_between()` step.
active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a column of numeric values in c (there are a few NAs in that column). The following examples will validate the values in that numeric column.

```r
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column c are all between 1 and 9. Because there are NA values, we’ll choose to let those pass validation by setting `na_pass = TRUE`.

agent <-
  create_agent(tbl = small_table) %>%
col_vals_between(
  columns = c,
  left = 1, right = 9,
  na_pass = TRUE
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
  col_vals_between(
    columns = c,
    left = 1, right = 9,
    na_pass = TRUE
  ) %>%
dplyr::pull(c)
#> [1] 3 8 3 NA 7 4 3 2 9 9 7 8 NA
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_between(
  small_table, columns = c,
  left = 1, right = 9,
  na_pass = TRUE
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>%
  test_col_vals_between(
    columns = c,
    left = 1, right = 9,
    na_pass = TRUE
  )
#> [1] TRUE
```

An additional note on the bounds for this function: they are inclusive by default (i.e., values of exactly 1 and 9 will pass). We can modify the inclusiveness of the upper and lower bounds with the inclusive option, which is a length-2 logical vector.

Testing with the upper bound being non-inclusive, we get FALSE since two values are 9 and they now fall outside of the upper (or right) bound.

```r
small_table %>%
  test_col_vals_between(
    columns = c, left = 1, right = 9,
    inclusive = TRUE
  )
```
col_vals_decreasing

Are column data decreasing by row?

Description

The col_vals_decreasing() validation function, the expect_col_vals_decreasing() expectation function, and the test_col_vals_decreasing() test function all check whether column values in a table are decreasing when moving down a table. There are options for allowing NA values in the target column, allowing stationary phases (where consecutive values don’t change), and even on for allowing increasing movements up to a certain threshold. The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_decreasing(
 x,
 columns,
 allow_stationary = FALSE,
 increasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 inclusive = c(TRUE, FALSE),
 na_pass = TRUE
)

#> [1] FALSE

Function ID

2-7

See Also

The analogue to this function: col_vals_not_between().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

expect_col_vals_decreasing(
 object,
columns,
 allow_stationary = FALSE,
increasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_decreasing(
 object,
columns,
 allow_stationary = FALSE,
increasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

Arguments

x

A pointblank agent or a data table

obj:<ptblank_agent>|obj:<tbl_*> // **required**

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.

columns

The target columns
<tidy-select> // **required**

A column-selecting expression, as one would use inside `dplyr::select()`.

Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

allow_stationary

Allowance for stationary pauses in values
scalar<logical> // **default**: FALSE

An option to allow pauses in decreasing values. For example if the values for the test units are [85, 82, 82, 80, 77] then the third unit (82, appearing a second time) would be marked with `fail` when `allow_stationary` is FALSE. Using `allow_stationary = TRUE` will result in all the test units in [85, 82, 82, 80, 77] to be marked with `pass`.

increasing_tol

Optional tolerance threshold for backtracking
scalar<numeric>(val>=0) // **default**: NULL (optional)
An optional threshold value that allows for movement of numerical values in the positive direction. By default this is **NULL** but using a numerical value with set the absolute threshold of positive travel allowed across numerical test units. Note that setting a value here also has the effect of setting allow_stationary to **TRUE**.

na_pass

Allow missing values to pass validation

scalar<logical> // **default**: **FALSE**

Should any encountered NA values be considered as passing test units? By default, this is **FALSE**. Set to **TRUE** to give NAs a pass.

preconditions

Input table modification prior to validation

<table mutation expression> // **default**: **NULL** (optional)

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

segments

Expressions for segmenting the target table

<segmentation expressions> // **default**: **NULL** (optional)

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states

obj: <action_levels> // **default**: **NULL** (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

step_id

Manual setting of the step ID value

scalar<character> // **default**: **NULL** (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is **NULL**, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // **default**: **NULL** (optional)

Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the Labels section for more information.
brief

Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . `>%` has_columns(c(d, e))).

object

A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0 .15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
Spark DataFrames (tbl_spark)

- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"), tidyselect) helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want
to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_decreasing()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_decreasing()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_decreasing(
    columns = a,
    allow_stationary = TRUE,
    increasing_tol = 0.5,
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The \`\texttt{col_vals_decreasing()}\` step."
  ,
    active = FALSE
)
```

YAML representation:

```yaml
steps:
  - col_vals_decreasing:
      columns: c(a)
      allow_stationary: true
      increasing_tol: 0.5
      na_pass: true
      preconditions: ~ . %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The \`\texttt{col_vals_decreasing()}\` step.
      active: false
```

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.
Examples

The game_revenue dataset in the package has the column session_start, which contains date-time values. Let’s create a column of difftime values (in time_left) that describes the time remaining in the month relative to the session start.

```r
game_revenue_2 <-
game_revenue %>%
dplyr::mutate(
  time_left =
    lubridate::ymd_hms("2015-02-01 00:00:00") - session_start
)
```

Let’s ensure that the “difftime” values in the new time_left column has values that are decreasing from top to bottom.

A: Using an agent with validation functions and then interrogate():

Validate that all “difftime” values in the column time_left are decreasing, and, allow for repeating values (allow_stationary will be set to TRUE).

```r
agent <-
create_agent(tbl = game_revenue_2) %>%
col_vals_decreasing(
  columns = time_left,
  allow_stationary = TRUE
) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
B: Using the validation function directly on the data (no agent):

```game_revenue_2 %>%
col_vals_decreasing(
 columns = time_left,
 allow_stationary = TRUE
) %>%
dplyr::select(time_left) %>%
dplyr::distinct() %>%
dplyr::count()
```

```r
#> # A tibble: 1 x 1
#> n
#> <int>
#> 1 618

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_decreasing(
  game_revenue_2,
  columns = time_left,
  allow_stationary = TRUE
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
game_revenue_2 %>%
test_col_vals_decreasing(
  columns = time_left,
  allow_stationary = TRUE
)
```

```r
#> [1] TRUE
```

Function ID

2-14

See Also
The analogous function that moves in the opposite direction: *col_vals_increasing()*.
Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

col_vals_equal

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

The `col_vals_equal()` validation function, the `expect_col_vals_equal()` expectation function, and the `test_col_vals_equal()` test function all check whether column values in a table are equal to a specified value. The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
</table>

col_vals_equal(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
test_col_vals_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

Arguments

x
A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

columns
The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select(). Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

value
Value for comparison
<value expression> // required
A value used for this test of equality. This can be a single value or a compatible column given in vars(). Any column values equal to what is specified here will pass validation.

na_pass
Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

preconditions
Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ x %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments
Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

step_id

Manual setting of the step ID value

```r
scalar<character> // default: NULL (optional)
```

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

```r
vector<character> // default: NULL (optional)
```

Optional label for the validation step. This label appears in the `agent` report and, for the best appearance, it should be kept quite short. See the `Labels` section for more information.

brief

Brief description for the validation step

```r
scalar<character> // default: NULL (optional)
```

A brief is a short, text-based description for the validation step. If nothing is provided here then an `autobrief` is generated by the `agent`, using the language provided in `create_agent()`’s `lang` argument (which defaults to "en" or English). The `autobrief` incorporates details of the validation step so it’s often the preferred option in most cases (where a `label` might be better suited to succinctly describe the validation).

active

Is the validation step active?

```r
scalar<logical> // default: TRUE
```

A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent` involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

object

A data table for expectations or tests

```r
obj:<tbl_*> // required
```

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold
col_vals_equal

scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and
the test (test_) function variants. By default, this is set to 1 meaning that any
single unit of failure in data validation results in an overall test failure. Whole
numbers beyond 1 indicate that any failing units up to that absolute threshold
value will result in a succeeding testthat test or evaluate to TRUE. Likewise,
fractional values (between 0 and 1) act as a proportional failure threshold, where
0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (de-
pending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl.spark)
- the following database tables (tbl.dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Column Names
columns may be a single column (as symbol a or string “a”) or a vector of columns (c(a, b, c)
or c(“a”, “b”, “c”)). {tidyselect} helpers are also supported, such as contains("date") and
where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps
to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).
Previously, columns could be specified in vars(). This continues to work, but c() offers the same
capability and supersedes vars() in columns.

Missing Values
This validation function supports special handling of NA values. The na_pass argument will deter-
ine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default
of na_pass = FALSE means that any NAs encountered will accumulate failing test units.
Preconditions

Providing expressions as preconditions means **pointblank** will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using **dplyr** code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided **R** formula (using a leading `~`). In the formula representation, the . serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the **action_levels()** function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).
Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_equal() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_equal() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_equal(
  columns = a,
  value = 1,
  na_pass = TRUE,
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_vals_equal()` step.",
  active = FALSE
)
```

YAML representation:

```yaml
steps:
  - col_vals_equal:
      columns: c(a)
```
In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 2, 2),
  d = LETTERS[c(1:3, 5:7)],
  e = LETTERS[c(1:6)],
  f = LETTERS[c(1:6)]
)
tbl
```

```r
#> # A tibble: 6 x 6
#>   a b c d  e  f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1  5  1  1   A  A  A
#> 2  5  1  1   B  B  B
#> 3  5  1  1   C  C  C
#> 4  5  2  2   D  D  D
#> 5  5  2  2   E  E  E
#> 6  5  2  2   F  F  F
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `a` are all equal to the value of 5. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
create_agent(tbl = tbl) %>%
col_vals_equal(columns = a, value = 5) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
  col_vals_equal(columns = a, value = 5) %>%
dplyr::pull(a)
#> [1] 5 5 5 5 5
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_equal(tbl, columns = a, value = 5)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
test_col_vals_equal(tbl, columns = a, value = 5)
#> [1] TRUE
```

Function ID

2-3

See Also

The analogue to this function: `col_vals_not_equal()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Do column data agree with a predicate expression?

Description

The `col_vals_expr()` validation function, the `expect_col_vals_expr()` expectation function, and the `test_col_vals_expr()` test function all check whether column values in a table agree with a user-defined predicate expression. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_expr(
  x,
  expr,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)
```

```r
test_col_vals_expr(object, expr, preconditions = NULL, threshold = 1)
```

Arguments

- **x**
 - A `pointblank` agent or a data table
 - `obj:<ptblank_agent>|obj:<tbl_*>` // **required**
 - A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is commonly created with `create_agent()`.

- **expr**
 - Predicate expression
 - `<predicate expression>` // **required**
 - A predicate expression to use for this validation. This can either be in the form of a call made with the `expr()` function or as a one-sided R formula (using a leading `~`).

- **preconditions**
 - Input table modification prior to validation
 - `<table mutation expression>` // **default:** NULL (optional)
 - An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments

Expressions for segmenting the target table

<segmentation expressions> // default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states

obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

object

* A data table for expectations or tests

 A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

* The failure threshold

 A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_expr() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_expr() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_expr(
  expr = ~ a %% 1 == 0,
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The \`col_vals_expr\` step."
)
```

YAML representation:

```yaml
steps:
- col_vals_expr:
  expr: ~ a %% 1 == 0
  preconditions: ~ . %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
```
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_expr()` step.
 active: false

In practice, both of these will often be shorter as only the expr argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
  a = c(1, 2, 1, 7, 8, 6),
  b = c(0, 0, 0, 1, 1, 1),
  c = c(0.5, 0.3, 0.8, 1.4, 1.9, 1.2),
)
tbl
#> # A tibble: 6 x 3
#>   a   b   c
#> <dbl> <dbl> <dbl>
#> 1 1 0 0.5
#> 2 2 0 0.3
#> 3 1 0 0.8
#> 4 7 1 1.4
#> 5 8 1 1.9
#> 6 6 1 1.2

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column a are integer-like by using the R modulo operator and expecting 0. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
create_agent(tbl = tbl) %>%
col_vals_expr(expr = expr(a %% 1 == 0)) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```
tbl %>%
 col_vals_expr(expr = expr(a %% 1 == 0)) %>%
dplyr::pull(a)
#> [1] 1 2 1 7 8 6
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```
expect_col_vals_expr(tbl, expr = ~ a %% 1 == 0)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```
test_col_vals_expr(tbl, expr = ~ a %% 1 == 0)
#> [1] TRUE
```

Variations:
We can do more complex things by taking advantage of the case_when() and between() functions (available for use in the pointblank package).

```
tbl %>%
 test_col_vals_expr(expr = ~ case_when(
 b == 0 ~ a %>% between(0, 5) & c < 1,
 b == 1 ~ a > 5 & c >= 1
))
#> [1] TRUE
```

If you only want to test a subset of rows, then the case_when() statement doesn’t need to be exhaustive. Any rows that don’t fall into the cases will be pruned (giving us less test units overall).

```
tbl %>%
 test_col_vals_expr(expr = ~ case_when(
 b == 1 ~ a > 5 & c >= 1
))
#> [1] TRUE
```

Function ID

2-19
col_vals_gt  Are column data greater than a fixed value or data in another column?

Description

The col_vals_gt() validation function, the expect_col_vals_gt() expectation function, and the test_col_vals_gt() test function all check whether column values in a table are greater than a specified value (the exact comparison used in this function is col_val > value). The value can be specified as a single, literal value or as a column name given in vars(). The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

col_vals_gt(
  x,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_gt(
  object,
  columns,
  value,
Arguments

\texttt{x}  
A pointblank agent or a data table  
\texttt{obj:<ptblank_agent>|obj:<tbl_*>}  // required  
A data frame, tibble (\texttt{tbl_df} or \texttt{tbl_dbi}), Spark DataFrame (\texttt{tbl_spark}), or, an agent object of class \texttt{ptblank\_agent} that is commonly created with \texttt{create\_agent()}.

\texttt{columns}  
The target columns  
\texttt{<tidy\_select>}  // required  
A column-selecting expression, as one would use inside \texttt{dplyr::select()}. Specifies the column (or a set of columns) to which this validation should be applied. See the \texttt{Column Names} section for more information.

\texttt{value}  
Value for comparison  
\texttt{<value\ expression>}  // required  
A value used for this comparison. This can be a single value or a compatible column given in \texttt{vars()}. Any column values greater than what is specified here will pass validation.

\texttt{na\_pass}  
Allow missing values to pass validation  
\texttt{scalar<logical>}  // default: \texttt{FALSE}  
Should any encountered NA values be considered as passing test units? By default, this is \texttt{FALSE}. Set to \texttt{TRUE} to give NAs a pass.

\texttt{preconditions}  
Input table modification prior to validation  
\texttt{<table\ mutation\ expression>}  // default: \texttt{NULL} (optional)  
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading \texttt{~} (e.g., \texttt{~ . \%\% dplyr::mutate(col = col + 10)}) or as a function (e.g., \texttt{function(x) dplyr::mutate(x, col = col + 10)}). See the \texttt{Preconditions} section for more information.

\texttt{segments}  
Expressions for segmenting the target table  
\texttt{<segmentation expressions>}  // default: \texttt{NULL} (optional)  
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

**actions**

*Thresholds and actions for different states*

\[
\text{obj: <action_levels> // default: NULL (optional)}
\]

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
\text{action_levels()} helper function.

**step_id**

*Manual setting of the step ID value*

\[
\text{scalar<character> // default: NULL (optional)}
\]

One or more optional identifiers for the single or multiple validation steps generated
from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and \text{pointblank} will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

*Optional label for the validation step*

\[
\text{vector<character> // default: NULL (optional)}
\]

Optional label for the validation step. This label appears in the \text{agent} report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

**brief**

*Brief description for the validation step*

\[
\text{scalar<character> // default: NULL (optional)}
\]

A \textit{brief} is a short, text-based description for the validation step. If nothing is provided here then an \textit{autobrief} is generated by the \text{agent}, using the language provided in \text{create_agent()}’s \text{lang} argument (which defaults to "en" or English). The \textit{autobrief} incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

*Is the validation step active?*

\[
\text{scalar<logical> // default: TRUE}
\]

A logical value indicating whether the validation step should be active. If the validation function is working with an \text{agent}, \text{FALSE} will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (\text{no agent involvement}), then any step with \text{active = FALSE} will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided \text{R} formula using a leading `~` can be used with \texttt{.} (serving as the input data table) to evaluate to a single logical value. With this approach, the \text{pointblank} function \text{has_columns()} can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . >> has_columns(c(d, e)))`.

**object**

*A data table for expectations or tests*
obj: <tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names
Columns may be a single column (as symbol a or string “a”) or a vector of columns (c(a, b, c) or c("a", "b", "c"), {tidyselect} helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.
Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_gt() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_gt() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_gt(
columns = a,
value = 1,
nna_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_gt()` step.",
active = FALSE
```
YAML representation:

```yaml
steps:
- col_vals_gt:
 columns: c(a)
 value: 1.0
 na_pass: true
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_gt()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
 dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)
```

```r
tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D
```
A: Using an agent with validation functions and then \texttt{interrogate()}: 
Validate that values in column \texttt{a} are all greater than the value of 4. We'll determine if this validation had any failing test units (there are 6 test units, one for each row).

\begin{verbatim}
agent <-
create_agent(tbl = tbl) %>%
  col_vals_gt(columns = a, value = 4) %>%
  interrogate()
\end{verbatim}

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should \texttt{stop()} if there is a single test unit failing. The behavior of side effects can be customized with the \texttt{actions} option.

\begin{verbatim}
tbl %>% col_vals_gt(columns = a, value = 4)
\end{verbatim}

\begin{verbatim}
#> # A tibble: 6 x 6
#>    a    b    c    d    e    f
#> <dbl> <dbl> <chr> <chr> <chr> <chr>
#> 1   5     1   E    A    A
#> 2   5     1   E    A    A
#> 3   5     1   E    A    A
#> 4   5     2   E    B    B
#> 5   5     2   3   E    B    C
#> 6   5     2   4   E    B    D
\end{verbatim}

C: Using the expectation function:
With the \texttt{expect_*()} form, we would typically perform one validation at a time. This is primarily used in \texttt{testthat} tests.

\begin{verbatim}
expect_col_vals_gt(tbl, columns = a, value = 4)
\end{verbatim}

D: Using the test function:
With the \texttt{test_*()} form, we should get a single logical value returned to us.

\begin{verbatim}
test_col_vals_gt(tbl, columns = a, value = 4)
\end{verbatim}

\begin{verbatim}
#> [1] TRUE
\end{verbatim}

Function ID

2-6

See Also

The analogous function with a left-closed bound: \texttt{col_vals_gte()}.
Other validation functions: \texttt{col_count_match()}, \texttt{col_exists()}, \texttt{col_is_character()}, \texttt{col_is_date()}, \texttt{col_is_factor()}, \texttt{col_is_integer()}, \texttt{col_is_logical()}, \texttt{col_is_numeric()}, \texttt{col_is_posix()}.  

col_vals_gte

The `col_vals_gte()` validation function, the `expect_col_vals_gte()` expectation function, and the `test_col_vals_gte()` test function all check whether column values in a table are greater than or equal to a specified value (the exact comparison used in this function is `col_val >= value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_gte(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_gte(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```
test_col_vals_gte(
  object,
  columns,
  value,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)

Arguments

x
  A pointblank agent or a data table
  obj:<ptblank_agent>|obj:<tbl_*> // required
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
  an agent object of class ptblank_agent that is commonly created with create_agent().

columns
  The target columns
  <tidy-select> // required
  A column-selecting expression, as one would use inside dplyr::select().
  Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

value
  Value for comparison
  <value expression> // required
  A value used for this comparison. This can be a single value or a compatible column given in vars(). Any column values greater than or equal to what is specified here will pass validation.

na_pass
  Allow missing values to pass validation
  scalar<logical> // default: FALSE
  Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

preconditions
  Input table modification prior to validation
  <table mutation expression> // default: NULL (optional)
  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments
  Expressions for segmenting the target table
  <segmentation expressions> // default: NULL (optional)
  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
  Thresholds and actions for different states
  obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>step_id</strong></td>
<td>Manual setting of the step ID value</td>
</tr>
<tr>
<td></td>
<td><code>scalar&lt;character&gt; // default: NULL (optional)</code></td>
</tr>
<tr>
<td></td>
<td>One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and <code>pointblank</code> will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.</td>
</tr>
<tr>
<td><strong>label</strong></td>
<td>Optional label for the validation step</td>
</tr>
<tr>
<td></td>
<td><code>vector&lt;character&gt; // default: NULL (optional)</code></td>
</tr>
<tr>
<td></td>
<td>Optional label for the validation step. This label appears in the <code>agent</code> report and, for the best appearance, it should be kept quite short. See the <code>Labels</code> section for more information.</td>
</tr>
<tr>
<td><strong>brief</strong></td>
<td>Brief description for the validation step</td>
</tr>
<tr>
<td></td>
<td><code>scalar&lt;character&gt; // default: NULL (optional)</code></td>
</tr>
<tr>
<td></td>
<td>A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the <code>agent</code>, using the language provided in <code>create_agent()</code>’s lang argument (which defaults to &quot;en&quot; or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).</td>
</tr>
<tr>
<td><strong>active</strong></td>
<td>Is the validation step active?</td>
</tr>
<tr>
<td></td>
<td><code>scalar&lt;logical&gt; // default: TRUE</code></td>
</tr>
<tr>
<td></td>
<td>A logical value indicating whether the validation step should be active. If the validation function is working with an <code>agent</code>, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no <code>agent</code> involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the <code>pointblank</code> function <code>has_columns()</code> can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %&gt;% <code>has_columns(c(d, e)))</code>.</td>
</tr>
<tr>
<td><strong>object</strong></td>
<td>A data table for expectations or tests</td>
</tr>
<tr>
<td></td>
<td><code>obj:&lt;tbl_~&gt; // required</code></td>
</tr>
<tr>
<td></td>
<td>A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.</td>
</tr>
<tr>
<td><strong>threshold</strong></td>
<td>The failure threshold</td>
</tr>
</tbody>
</table>


A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"). {tidyselect} helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of()

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps). Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAS encountered will accumulate failing test units.
Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it's own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).
Labels

text_explain_here

Briefs

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_gte() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_gte() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
col_vals_gte(
columns = a,
value = 1,
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_gte()` step.",
active = FALSE
)

YAML representation:

steps:
- col_vals_gte:
  columns: c(a)
col_vals_gte

value: 1.0
na_pass: true
preconditions: ~ . %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
  warn_fraction: 0.1
  stop_fraction: 0.2
label: The 'col_vals_gte()' step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won't be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we'll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 3, 4),
 d = LETTERS[a],
 e = LETTERS[b],
 f = LETTERS[c]
)
tbl
```

```r
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column `a` are all greater than or equal to the value of 5. We'll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
create_agent(tbl = tbl) %>%
col_vals_gte(columns = a, value = 5) %>%
interrogate()
```
Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% col_vals_gte(columns = a, value = 5)
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D
```

**C: Using the expectation function:**
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_gte(tbl, columns = a, value = 5)
```

**D: Using the test function:**
With the `test_*()` form, we should get a single logical value returned to us.

```r
test_col_vals_gte(tbl, columns = a, value = 5)
#> [1] TRUE
```

**Function ID**

2-5

**See Also**
The analogous function with a left-open bound: `col_vals_gt()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Are column data increasing by row?

Description

The `col_vals_increasing()` validation function, the `expect_col_vals_increasing()` expectation function, and the `test_col_vals_increasing()` test function all check whether column values in a table are increasing when moving down a table. There are options for allowing NA values in the target column, allowing stationary phases (where consecutive values don’t change), and even on for allowing decreasing movements up to a certain threshold. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_increasing(
 x,
 columns,
 allow_stationary = FALSE,
 decreasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_increasing(
 object,
 columns,
 allow_stationary = FALSE,
 decreasing_tol = NULL,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_increasing(
 object,
 columns,
 allow_stationary = FALSE,
 decreasing_tol = NULL,
```
```r
na_pass = FALSE,
preconditions = NULL,
threshold = 1
)
```

**Arguments**

- **x**
  - A pointblank agent or a data table
  - `obj:<ptblank_agent>|obj:<tbl_*>` // required
  - A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is commonly created with `create_agent()`.

- **columns**
  - The target columns
  - `<tidy-select>` // required
  - A column-selecting expression, as one would use inside `dplyr::select()`.
  - Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

- **allow_stationary**
  - Allowance for stationary pauses in values
  - `scalar<logical>` // default: FALSE
  - An option to allow pauses in decreasing values. For example if the values for the test units are `[80, 82, 82, 85, 88]` then the third unit (82, appearing a second time) would be marked with `fail` when `allow_stationary` is FALSE. Using `allow_stationary = TRUE` will result in all the test units in `[80, 82, 82, 85, 88]` to be marked with `pass`.

- **decreasing_tol**
  - Optional tolerance threshold for backtracking
  - `scalar<numeric>(val>=0)` // default: NULL (optional)
  - An optional threshold value that allows for movement of numerical values in the negative direction. By default this is NULL but using a numerical value with set the absolute threshold of negative travel allowed across numerical test units. Note that setting a value here also has the effect of setting `allow_stationary` to TRUE.

- **na_pass**
  - Allow missing values to pass validation
  - `scalar<logical>` // default: FALSE
  - Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

- **preconditions**
  - Input table modification prior to validation
  - `<table mutation expression>` // default: NULL (optional)
  - An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

- **segments**
  - Expressions for segmenting the target table
  - `<segmentation expressions>` // default: NULL (optional)
  - An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states

obj: <action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(c(d, e))).
A data table for expectations or tests

**object**  
`obj: <tbl_*> // required`  
A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**  
*The failure threshold*

`scalar<integer|numeric>(val>=0) // default: 1`  
A simple failure threshold value for use with the expectation (`expect_*`) and the test (`test_*`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**  
For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMySQL::MySQL()`)
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite tables (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Column Names**

Columns may be a single column (as symbol `a` or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c")). `tidyselect` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`. 
Missing Values

This validation function supports special handling of NA values. The \texttt{na_pass} argument will determine whether an NA value appearing in a test unit should be counted as a \textit{pass} or a \textit{fail}. The default of \texttt{na_pass = FALSE} means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means \texttt{pointblank} will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an \textit{agent}-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using \texttt{dplyr} code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \texttt{R} formula (using a leading \texttt{~}). In the formula representation, the \\texttt{.} serves as the input data table to be transformed (e.g., \texttt{~ . \%>% dplyr::mutate(col_b = col_a + 10)}). Alternatively, a function could instead be supplied (e.g., \texttt{function(x) dplyr::mutate(x, col_b = col_a + 10)}).

Segments

By using the \texttt{segments} argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \texttt{vars(a_column)} will segment the target table in however many unique values are present in the column called \texttt{a_column}. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \texttt{a_column ~ c("group_1", "group_2")} will attempt to obtain two segments where one is a slice of data where the value \texttt{"group_1"} exists in the column named \texttt{"a_column"}, and, the other is a slice where \texttt{"group_2"} exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \(m\) columns multiplied by \(n\) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in \texttt{segments} without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the \texttt{action_levels()}
function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

**Labels**

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name
- `{.seg_col}`: The current segment’s column name
- `{.seg_val}`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_increasing()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_increasing()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_increasing(
 columns = a,
 allow_stationary = TRUE,
 decreasing_tol = 0.5,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_increasing()` step."
)```

YAML representation:

```
steps:
  - name: `col_vals_increasing`
    columns: a
    allow_stationary: true
    decreasing_tol: 0.5
    na_pass: true
    preconditions: ~ . %>% dplyr::filter(a < 10)
    segments: b ~ c("group_1", "group_2")
    actions: action_levels(warn_at: 0.1, stop_at: 0.2)
    label: "The `col_vals_increasing()` step."
```
active = FALSE
)

YAML representation:

steps:
 ~ col_vals_increasing:
 columns: c(a)
 allow_stationary: true
 decreasing_tol: 0.5
 na_pass: true
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_increasing()` step.
 active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `game_revenue` dataset in the package has the column `session_start`, which contains date-time values. Let’s ensure that this column has values that are increasing from top to bottom.

game_revenue
#> # A tibble: 2,000 x 11
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
#> 4 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:42:33 ad
#> 6 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:08:56 ad
#> 7 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:14:08 ad
#> 8 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:21:44 ad
#> 9 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 11:50:02 2015-01-01 12:24:20 ad
#> # i 1,990 more rows
#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>
A: Using an agent with validation functions and then \texttt{interrogate}():
Validate that all date-time values in the column \texttt{session_start} are increasing, and, allow for repeating values (\texttt{allow_stationary} will be set to \texttt{TRUE}). We'll determine if this validation has any failing test units (there are 2000 test units).

\begin{verbatim}
agent <- create_agent(tbl = game_revenue) %>%
 col_vals_increasing(
 columns = session_start,
 allow_stationary = TRUE
) %>%
 interrogate()
\end{verbatim}

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the \texttt{actions} option.

\begin{verbatim}
game_revenue %>%
 col_vals_increasing(
 columns = session_start,
 allow_stationary = TRUE
) %>%
dplyr::select(session_start) %>%
dplyr::distinct() %>%
dplyr::count()
\end{verbatim}

\begin{verbatim}#> # A tibble: 1 x 1
#> n
#> 1 618\end{verbatim}

C: Using the expectation function:
With the \texttt{expect_*()} form, we would typically perform one validation at a time. This is primarily used in \texttt{testthat} tests.

\begin{verbatim}
expect_col_vals_increasing(
 game_revenue,
 columns = session_start,
 allow_stationary = TRUE
)
\end{verbatim}

D: Using the test function:
With the \texttt{test_*()} form, we should get a single logical value returned to us.

\begin{verbatim}
game_revenue %>%
 test_col_vals_increasing(
\end{verbatim}
col_vals_in_set

 columns = session_start,
 allow_stationary = TRUE
)
#> [1] TRUE

Function ID

2-13

See Also

The analogous function that moves in the opposite direction: col_vals_decreasing().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_lt(), col_vals_lte(), col_vals_make_set(),
col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(),
col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(),
row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

<table>
<thead>
<tr>
<th>col_vals_in_set</th>
<th>Are column data part of a specified set of values?</th>
</tr>
</thead>
</table>

Description

The col_vals_in_set() validation function, the expect_col_vals_in_set() expectation function,
and the test_col_vals_in_set() test function all check whether column values in a table
are part of a specified set of values. The validation function can be used directly on a data table or
with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions
can only be used with a data table. Each validation step or expectation will operate over the
number of test units that is equal to the number of rows in the table (after any preconditions have
been applied).

Usage

col_vals_in_set(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
expect_col_vals_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_in_set(object, columns, set, preconditions = NULL, threshold = 1)

Arguments

- **x**
 - A pointblank agent or a data table
 - obj:<ptblank_agent>|obj:<tbl_*>// required
 - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

- **columns**
 - The target columns
 - <tidy-select>// required
 - A column-selecting expression, as one would use inside dplyr::select().
 - Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

- **set**
 - Set of values
 - vector<integer|numeric|character>// required
 - A vector of numeric or string-based elements, where column values found within this set will be considered as passing.

- **preconditions**
 - Input table modification prior to validation
 - <table mutation expression>// default: NULL (optional)
 - An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

- **segments**
 - Expressions for segmenting the target table
 - <segmentation expressions>// default: NULL (optional)
 - An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

- **actions**
 - Thresholds and actions for different states
 - obj:<action_levels>// default: NULL (optional)
 - A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.
step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and *pointblank* will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the *Labels* section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s lang argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% *has_columns*(c(d, e))).

object

A data table for expectations or tests

obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any...
single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
 - PostgreSQL tables (using the RPostgres::Postgres() as driver)
 - MySQL tables (with RMySQL::MySQL())
 - Microsoft SQL Server tables (via odbc)
 - BigQuery tables (using bigquery::bigquery())
 - DuckDB tables (through duckdb::duckdb())
 - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Column Names

columns may be a single column (as symbol a or string “a”) or a vector of columns (c(a, b, c) or c("a", "b", "c")). tidyselect helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:
col_vals_in_set

• "\{.step\}": The validation step name
• "\{.col\}": The current column name
• "\{.seg_col\}": The current segment’s column name
• "\{.seg_val\}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "\{toupper(.step)\}"") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yamla_write() and the resulting YAML can be used to regenerate an agent (with yamla_read_agent()) or interrogate the target table (via yamla_agent_interrogate()). When col_vals_in_set() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_in_set() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_in_set(
    columns = a,
    set = c(1, 2, 3, 4),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The \`col_vals_in_set\` step."
  )
```

YAML representation:

```yaml
steps:
  - col_vals_in_set:
    columns: c(a)
    set:
      - 1.0
      - 2.0
      - 3.0
      - 4.0
    preconditions: ~. %>% dplyr::filter(a < 10)
    segments: b ~ c("group_1", "group_2")
```
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2

label: The `col_vals_in_set()` step.

active: false

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set.

```
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 1000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `f` are all part of the set of values containing `low`, `mid`, and `high`. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```
agent <-
  create_agent(tbl = small_table) %>%
  col_vals_in_set(
    columns = f, set = c("low", "mid", "high")
  ) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```
small_table %>%
    col_vals_in_set(
        columns = f, set = c("low", "mid", "high")
    ) %>%
    dplyr::pull(f) %>%
    unique()
#> [1] "high" "low" "mid"
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```
expect_col_vals_in_set(
    small_table,
    columns = f, set = c("low", "mid", "high")
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```
small_table %>%
    test_col_vals_in_set(
        columns = f, set = c("low", "mid", "high")
    )
#> [1] TRUE
```

Function ID
2-9

See Also
The analogue to this function: col_vals_not_in_set().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(), col_vals_gte(), col_vals_increasing(), col_vals_lt(), col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regexp(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()

Description

The `col_vals_lt()` validation function, the `expect_col_vals_lt()` expectation function, and the `test_col_vals_lt()` test function all check whether column values in a table are *less than* a specified value (the exact comparison used in this function is `col_val < value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_lt(x, columns, value, na_pass = FALSE, preconditions = NULL, segments = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE)
```

```r
expect_col_vals_lt(object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1)
```

```r
test_col_vals_lt(object, columns, value, na_pass = FALSE, preconditions = NULL, threshold = 1)
```
Arguments

x A pointblank agent or a data table
 obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

columns The target columns
 <tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select().
Specifies the column (or a set of columns) to which this validation should be
applied. See the Column Names section for more information.

value Value for comparison
 <value expression> // required
A value used for this comparison. This can be a single value or a compatible
column given in vars(). Any column values less than what is specified here
will pass validation.

na_pass Allow missing values to pass validation
 scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By de-
default, this is FALSE. Set to TRUE to give NAs a pass.

preconditions Input table modification prior to validation
 <table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10). See the Preconditions sec-
tion for more information.

segments Expressions for segmenting the target table
 <segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions Thresholds and actions for different states
 obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id Manual setting of the step ID value
 scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>col_vals.lt</td>
<td>Optional label for the validation step</td>
</tr>
<tr>
<td>label</td>
<td>Vector of character strings, default: NULL (optional)</td>
</tr>
<tr>
<td>brief</td>
<td>A brief description for the validation step</td>
</tr>
<tr>
<td>active</td>
<td>Logical value indicating whether the validation step should be active</td>
</tr>
<tr>
<td>object</td>
<td>A data table for expectations or tests</td>
</tr>
<tr>
<td>threshold</td>
<td>The failure threshold</td>
</tr>
</tbody>
</table>

One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

Optional label for the validation step

Vector of character strings, default: NULL (optional)

Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the *Labels* section for more information.

Brief description for the validation step

Scalar of character string, default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the *agent*, using the language provided in *create_agent()*'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

Is the validation step active?

Scalar of logical, default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(c(d, e))).

A data table for expectations or tests

Object of type tbl_*

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

The failure threshold

Scalar of integer or numeric, default: 1

A simple failure threshold value for use with the expectation (expect_*) and the test (test_*) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
 - `MySQL` tables (with `RMySQL::MySQL()`)
 - `Microsoft SQL Server` tables (via `odbc`)
 - `BigQuery` tables (using `bigrquery::bigrquery()`)
 - `DuckDB` tables (through `duckdb::duckdb()`)
 - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

columns may be a single column (as symbol `a` or string “a”) or a vector of columns `c(a, b, c)` or `c("a", "b", "c")`. `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an `external vector` of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NA`s encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R
formula (using a leading ~). In the formula representation, the . serves as the input data table to be
transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could
instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or
row slices) of the target table. An optional expression or set of expressions that serve to segment
the target table by column values. Each expression can be given in one of two ways: (1) as column
names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains
the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the
target table in however many unique values are present in the column called a_column. This is great
if every unique value in a particular column (like different locations, or different dates) requires it’s
own repeating validation.

With a formula, we can be more selective with which column values should be used for segmen-
tation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where
one is a slice of data where the value "group_1" exists in the column named a_column, and, the
other is a slice where "group_2" exists in the same column. Each group of rows resolved from the
formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m
columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table),
if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation
using an expression for preconditions and refer to those labels in segments without having to
generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every vali-
dation function, takes a specially-crafted list object that is best produced by the action_levels()
function. Read that function’s documentation for the lowdown on how to create reactions to above-
threshold failure levels in validation. The basic gist is that you’ll want at least a single thresh-
old level (specified as either the fraction of test units failed, or, an absolute value), often using
the warn_at argument. This is especially true when x is a table object because, otherwise, noth-
ing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces
a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps.
label also supports {glue} syntax and exposes the following dynamic variables contextualized to
the current step:
• "{.step}": The validation step name
• "{.col}": The current column name
• "{.seg_col}": The current segment's column name
• "{.seg_val}": The current segment's value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that's the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The *autobrief* protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_lt()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_lt()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_lt(
    columns = a,
    value = 1,
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_lt()` step."
  )
```

YAML representation:

```yaml
steps:
  - col_vals_lt:
      columns: c(a)
      value: 1.0
      na_pass: true
      preconditions: ~. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
```

stop_fraction: 0.2
label: The `col_vals_lt()` step.
active: false

In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(  
a = c(5, 5, 5, 5, 5, 5),  
b = c(1, 1, 1, 2, 2, 2),  
c = c(1, 1, 1, 2, 3, 4),  
d = LETTERS[a],  
e = LETTERS[b],  
f = LETTERS[c])
```

```r
tbl
#> # A tibble: 6 x 6
#>   a  b  c  d  e  f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1    5    1    1   E    A    A
#> 2    5    1    1   E    A    A
#> 3    5    1    1   E    A    A
#> 4    5    2    2   E    B    B
#> 5    5    2    3   E    B    C
#> 6    5    2    4   E    B    D
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column c are all less than the value of 5. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
create_agent(tbl = tbl) %>%
col_vals_lt(columns = c, value = 5) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
  col_vals_lte(columns = c, value = 5) %>%
dplyr::pull(c)
#> [1] 1 1 1 2 3 4
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_lte(tbl, columns = c, value = 5)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
test_col_vals_lte(tbl, columns = c, value = 5)
#> [1] TRUE
```

Function ID

2-1

See Also

The analogous function with a right-closed bound: col_vals_lte().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lte(),
col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(),
col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
Description

The `col_vals_lte()` validation function, the `expect_col_vals_lte()` expectation function, and the `test_col_vals_lte()` test function all check whether column values in a table are less than or equal to a specified value (the exact comparison used in this function is `col_val <= value`). The value can be specified as a single, literal value or as a column name given in `vars()`. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_lte(
    x,
    columns,
    value,
    na_pass = FALSE,
    preconditions = NULL,
    segments = NULL,
    actions = NULL,
    step_id = NULL,
    label = NULL,
    brief = NULL,
    active = TRUE
)
```

```r
expect_col_vals_lte(
    object,
    columns,
    value,
    na_pass = FALSE,
    preconditions = NULL,
    threshold = 1
)
```

```r
test_col_vals_lte(
    object,
    columns,
    value,
    na_pass = FALSE,
    preconditions = NULL,
    threshold = 1
)
```

Arguments

- `x`
 A `pointblank_agent` or a data table

 `obj:<ptblank_agent>|obj:<tbl_*> // required`
A data frame, tibble (tbl_df or tbl_dbj), Spark DataFrame (tbl_spark), or, an agent object of class `ptblank_agent` that is commonly created with `create_agent()`.

columns

The target columns

<tidy-select> // **required**

A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the **Column Names** section for more information.

value

Value for comparison

<value expression> // **required**

A value used for this comparison. This can be a single value or a compatible column given in `vars()`. Any column values less than or equal to what is specified here will pass validation.

na_pass

Allow missing values to pass validation

scalar<logical> // default: `FALSE`

Should any encountered NA values be considered as passing test units? By default, this is `FALSE`. Set to `TRUE` to give NAs a pass.

preconditions

Input table modification prior to validation

<table mutation expression> // default: `NULL` (optional)

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the **Preconditions** section for more information.

segments

Expressions for segmenting the target table

<segmentation expressions> // default: `NULL` (optional)

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the **Segments** section for more details on this.

actions

Thresholds and actions for different states

obj:<action_levels> // default: `NULL` (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: `NULL` (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is `NULL`, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief
Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active
Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object
A data table for expectations or tests
obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold
The failure threshold
scalar<integer|numeric>(val>=0) // default: 1
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
 - MySQL tables (with `RMySQL::MySQL()`)
 - Microsoft SQL Server tables (via `odbc`)
 - BigQuery tables (using `bigquery::bigquery()`)
 - DuckDB tables (through `duckdb::duckdb()`)
 - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

Columns may be a single column (as symbol `a` or string “a”) or a vector of columns (c(a, b, c) or c(“a”, “b”, “c”). `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `{dplyr}` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided `{R}` formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \texttt{vars(a_column)} will segment the target table in however many unique values are present in the column called \texttt{a_column}. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \texttt{a_column ~ c("group_1", "group_2")} will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \(m \) columns multiplied by \(n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the \texttt{action_levels()} function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the \texttt{warn_at} argument. This is especially true when \(x \) is a table object because, otherwise, nothing happens. For the \texttt{col_vals_*()}-type functions, using \texttt{action_levels(warn_at = 0.25)} or \texttt{action_levels(stop_at = 0.25)} are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other \texttt{stop()}s at the same threshold level).

Labels

\texttt{label} may be a single string or a character vector that matches the number of expanded steps. \texttt{label} also supports \{glue\} syntax and exposes the following dynamic variables contextualized to the current step:

- \"{.step}\":: The validation step name
- \"{.col}\":: The current column name
- \"{.seg_col}\":: The current segment’s column name
- \"{.seg_val}\":: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., \"{toupper(.step)}\") as long as they return a length-1 string.
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The *autobrief* protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`), or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_lte()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_lte()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  col_vals_lte(
    columns = a,
    value = 1,
    na_pass = TRUE,
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `col_vals_lte()` step.",
    active = FALSE
  )
```

YAML representation:

```yaml
steps:
- col_vals_lte:
  columns: c(a)
  value: 1.0
  na_pass: true
  preconditions: ~ . %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_lte()` step.
  active: false
```

In practice, both of these will often be shorter as only the `columns` and `value` arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.
Examples

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 3, 4),
  d = LETTERS[a],
  e = LETTERS[b],
  f = LETTERS[c]
)
tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 E A A
#> 2 5 1 1 E A A
#> 3 5 1 1 E A A
#> 4 5 2 2 E B B
#> 5 5 2 3 E B C
#> 6 5 2 4 E B D
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column c are all less than or equal to the value of 4. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
create_agent(tbl = tbl) %>%
  col_vals_lte(columns = c, value = 4) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>%
  col_vals_lte(columns = c, value = 4) %>%
dplyr::pull(c)
#> [1] 1 1 1 2 3 4
```

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.
The `col_vals_make_set()` validation function, the `expect_col_vals_make_set()` expectation function, and the `test_col_vals_make_set()` test function all check whether set values are all seen at least once in a table column. A necessary criterion here is that no additional values (outside those defined in the set) should be seen (this requirement is relaxed in the `col_vals_make_subset()` validation function and in its expectation and test variants). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set plus a test unit reserved for detecting column values outside of the set (any outside value seen will make this additional test unit fail).

Usage

```r
col_vals_make_set(
  x,
  columns,
  set,
  preconditions = NULL,
```

```r
doctest
#> [1] TRUE
```

Description

The `col_vals_make_set()` validation function, the `expect_col_vals_make_set()` expectation function, and the `test_col_vals_make_set()` test function all check whether set values are all seen at least once in a table column. A necessary criterion here is that no additional values (outside those defined in the set) should be seen (this requirement is relaxed in the `col_vals_make_subset()` validation function and in its expectation and test variants). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set plus a test unit reserved for detecting column values outside of the set (any outside value seen will make this additional test unit fail).
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE
)

expect_col_vals_make_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_make_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)

Arguments

x
 A pointblank agent or a data table
 obj:<ptblank_agent>|obj:<tbl_*> // required
 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
 an agent object of class ptblank_agent that is commonly created with create_agent().

columns
 The target columns
 <tidy-select> // required
 A column-selecting expression, as one would use inside dplyr::select().
 Specifies the column (or a set of columns) to which this validation should be
 applied. See the Column Names section for more information.

set
 Set of values
 vector<integer|numeric|character> // required
 A vector of elements that is expected to be equal to the set of unique values in
 the target column.

preconditions
 Input table modification prior to validation
 <table mutation expression> // default: NULL (optional)
 An optional expression for mutating the input table before proceeding with
 the validation. This can either be provided as a one-sided R formula using a
 leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g.,
 function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions sec-
 tion for more information.

segments
 Expressions for segmenting the target table
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states

obj:<action_levels>// default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

**scalar<character> // default: NULL (optional)*

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

**vector<character> // default: NULL (optional)*

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

**scalar<character> // default: NULL (optional)*

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

**scalar<logical> // default: TRUE*

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

object

A data table for expectations or tests

```r
obj: <tbl_*> // **required**
```

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

```r
scalar<integer|numeric>(val>=0) // **default:** 1
```

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
 - MySQL tables (with `RMySQL::MySQL()`)
 - Microsoft SQL Server tables (via `odbc`)
 - BigQuery tables (using `bigquery::bigquery()`)
 - DuckDB tables (through `duckdb::duckdb()`)
 - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

columns may be a single column (as symbol `a` or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"). `tidyselect` helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).
Previously, columns could be specified in \texttt{vars()}. This continues to work, but \texttt{c()} offers the same capability and supersedes \texttt{vars()} in \texttt{columns}.

\textbf{Preconditions}

Providing expressions as \texttt{preconditions} means \textbf{pointblank} will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an \textit{agent}-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where \texttt{preconditions} is used. Using \texttt{dplyr} code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \texttt{R} formula (using a leading \texttt{~}). In the formula representation, the \texttt{.} serves as the input data table to be transformed (e.g., \texttt{~ . %>% dplyr::mutate(col_b = col_a + 10)}). Alternatively, a function could instead be supplied (e.g., \texttt{function(x) dplyr::mutate(x, col_b = col_a + 10)}).

\textbf{Segments}

By using the \texttt{segments} argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \texttt{vars(a_column)} will segment the target table in however many unique values are present in the column called \texttt{a_column}. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \texttt{a_column ~ c("group_1", "group_2" cupboard)} will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple \texttt{columns} specified then the potential number of validation steps will be \texttt{m} columns multiplied by \texttt{n} segments resolved.

Segmentation will always occur after \texttt{preconditions} (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for \texttt{preconditions} and refer to those labels in \texttt{segments} without having to generate a separate version of the target table.

\textbf{Actions}

Often, we will want to specify \texttt{actions} for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the \texttt{action_levels()} function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using
the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name
- `{.seg_col}`: The current segment's column name
- `{.seg_val}`: The current segment's value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that's the case, `brief` the agent with some text that fits. Don't worry if you don't want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_make_set()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_make_set()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_make_set(
  columns = a,
  set = c(1, 2, 3, 4),
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_vals_make_set()` step."
  active = FALSE
)
```

YAML representation:
steps:
- col_vals_make_set:
 columns: c(a)
 set:
 - 1.0
 - 2.0
 - 3.0
 - 4.0
preconditions: ~. %>% dplyr::filter(a < 10)
segments: b ~ c("group_1", "group_2")
actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_make_set()` step.
active: false

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set.

```r
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-ehg-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-lmd-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that values in column f comprise the values of low, mid, and high, and, no other values. We’ll determine if this validation has any failing test units (there are 4 test units).
agent <-
create_agent(tbl = small_table) %>%
 col_vals_make_set(
 columns = f, set = c("low", "mid", "high")
) %>%
 interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

small_table %>%
 col_vals_make_set(
 columns = f, set = c("low", "mid", "high")
) %>%
 dplyr::pull(f) %>%
 unique()
#> [1] "high" "low" "mid"

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

expect_col_vals_make_set(
 small_table,
 columns = f, set = c("low", "mid", "high")
)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

small_table %>%
 test_col_vals_make_set(
 columns = f, set = c("low", "mid", "high")
)
#> [1] TRUE

Function ID
2-11

See Also
Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_vals_make_subset

Is a set of values a subset of a column of values?

Description

The `col_vals_make_subset()` validation function, the `expect_col_vals_make_subset()` expectation function, and the `test_col_vals_make_subset()` test function all check whether all set values are seen at least once in a table column. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of elements in the set.

Usage

```r
col_vals_make_subset(
  x,
  columns,
  set,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_col_vals_make_subset(
  object,
  columns,
  set,
  preconditions = NULL,
  threshold = 1
)

test_col_vals_make_subset(
  object,
  columns,
  set,
  preconditions = NULL,
  ...)
```
A pointblank agent or a data table

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

The target columns

A column-selecting expression, as one would use inside dplyr::select().

Sets of elements that is expected to be a subset of the unique values in the target column.

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step
vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step
scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the agent, using the language provided in `create_agent()`'s lang argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?
scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests
obj:<tbl_*> // **required**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold
scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly
returns its input but, in the context of testing data, the function is called primarily for its potential
side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
 - `MySQL` tables (with `RMySQL::MySQL()`)
 - `Microsoft SQL Server` tables (via `odbc`)
 - `BigQuery` tables (using `bigquery::bigquery()`)
 - `DuckDB` tables (through `duckdb::duckdb()`)
 - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with `pointblank`).

Column Names

columns may be a single column (as symbol `a` or string "a") or a vector of columns (`c(a, b, c)`
or `c("a", "b", "c")`). `tidyselect` helpers are also supported, such as `contains("date")` and
`where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps
to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same
capability and supersedes `vars()` in columns.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during
interrogation as a preparatory step. It might happen that a particular validation requires a calculated
column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-
based report this can be advantageous since we can develop a large validation plan with a single
target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is
used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary
(i.e., if the target table resides in a database). The code is most easily supplied as a one-sided `R`
formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be
transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could
instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when x is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name
- `{.seg_col}`: The current segment’s column name
- `{.seg_val}`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `"{toupper(.step)}"`) as long as they return a length-1 string.
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \(x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \(\text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_make_subset()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_make_subset()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_make_subset(
  columns = a,
  set = c(1, 2, 3, 4),
  preconditions = ~ . %>% dplyr::filter(a < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_vals_make_subset()` step."
  active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_make_subset:
  columns: c(a)
  set:  
  - 1.0
  - 2.0
  - 3.0
  - 4.0
  preconditions: ~ . %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_make_subset()` step.
  active: false
```

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It
is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package will be used to validate that column values are part of a given set.

```
small_table
```

```
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that the distinct set of values in column `f` contains at least the subset defined as `low` and `high` (the column actually has both of those and some `mid` values). We’ll determine if this validation has any failing test units (there are 2 test units, one per element in the set).

```
agent <-
create_agent(tbl = small_table) %>%
col_vals_make_subset(  
columns = f, set = c("low", "high")
) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```
small_table %>%
col_vals_make_subset(  
columns = f, set = c("low", "high")
)
Do column data lie outside of two specified values or data in other columns?

**Function ID**

2-12

**See Also**

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

The `col_vals_not_between()` validation function, the `expect_col_vals_not_between()` expectation function, and the `test_col_vals_not_between()` test function all check whether column values in a table do not fall within a range. The range specified with three arguments: `left`, `right`, and `inclusive`. The `left` and `right` values specify the lower and upper bounds. The bounds can be specified as single, literal values or as column names given in `vars()`. The `inclusive` argument, as a vector of two logical values relating to `left` and `right`, states whether each bound is inclusive or not. The default is `c(TRUE, TRUE)`, where both endpoints are inclusive (i.e., `[left, right]`). For partially-unbounded versions of this function, we can use the `col_vals_lt()`, `col_vals_lte()`, `col_vals_gt()`, or `col_vals_gte()` validation functions. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_between(
 x,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_col_vals_not_between(
 object,
 columns,
 left,
 right,
 inclusive = c(TRUE, TRUE),
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)

test_col_vals_not_between(
 object,
 columns,
 left,
```
Arguments

\(x\)

A pointblank agent or a data table
obj:<ptblank_agent>|obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

columns

The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select(). Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

left

Definition of left bound
<value expression> // required
The lower bound for the range. The validation includes this bound value (if the first element in inclusive is TRUE) in addition to values greater than left. This can be a single value or a compatible column given in vars().

right

Definition of right bound
<value expression> // required
The upper bound for the range. The validation includes this bound value (if the second element in inclusive is TRUE) in addition to values lower than right. This can be a single value or a compatible column given in vars().

inclusive

Inclusiveness of bounds
vector<logical> // default: c(TRUE, TRUE)
A two-element logical value that indicates whether the left and right bounds should be inclusive. By default, both bounds are inclusive.

na_pass

Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

preconditions

Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments

Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states

obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

**object**

A data table for expectations or tests

```r
obj: <tbl_> // required
```

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

The failure threshold

```r
scalar<integer|numeric>(val>=0) // default: 1
```

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

**Column Names**

columns may be a single column (as symbol `a` or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"). `{tidyselect}` helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).
Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in columns.

**Missing Values**

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a *pass* or a *fail*. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

**Preconditions**

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where `preconditions` is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be `m` columns multiplied by `n` segments resolved.

Segmentation will always occur after `preconditions` (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for `preconditions` and refer to those labels in `segments` without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \( x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `"{.step}"`: The validation step name
- `"{.col}"`: The current column name
- `"{.seg_col}"`: The current segment’s column name
- `"{.seg_val}"`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `"{toupper(.step)}"`) as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_between()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_between()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_not_between(
 columns = a,
 left = 1,
 right = 2,
 inclusive = c(TRUE, FALSE),
```
na_pass = TRUE,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_not_between()` step."
active = FALSE
)

YAML representation:

steps:
- col_vals_not_between:
  columns: c(a)
  left: 1.0
  right: 2.0
  inclusive:
    - true
    - false
  na_pass: true
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `col_vals_not_between()` step.
  active: false

In practice, both of these will often be shorter as only the columns, left, and right arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a column of numeric values in `c` (there are a few NAs in that column). The following examples will validate the values in that numeric column.
	small_table

<table>
<thead>
<tr>
<th>date_time</th>
<th>date</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;dttm&gt;</td>
<td>&lt;date&gt;</td>
<td>&lt;int&gt;</td>
<td>&lt;chr&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;dbl&gt;</td>
<td>&lt;chr&gt;</td>
</tr>
<tr>
<td>2016-01-04 11:00:00</td>
<td>2016-01-04</td>
<td>2</td>
<td>1-bcd-345</td>
<td>3</td>
<td>3423.</td>
<td>TRUE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-04 00:32:00</td>
<td>2016-01-04</td>
<td>3</td>
<td>5-egh-163</td>
<td>8</td>
<td>10000.</td>
<td>TRUE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-05 13:32:00</td>
<td>2016-01-05</td>
<td>6</td>
<td>8-kdg-938</td>
<td>3</td>
<td>2343.</td>
<td>TRUE</td>
<td>high</td>
</tr>
<tr>
<td>2016-01-06 17:23:00</td>
<td>2016-01-06</td>
<td>2</td>
<td>5-jdo-903</td>
<td>NA</td>
<td>3892.</td>
<td>FALSE</td>
<td>mid</td>
</tr>
<tr>
<td>2016-01-09 12:36:00</td>
<td>2016-01-09</td>
<td>8</td>
<td>3-ldm-038</td>
<td>7</td>
<td>284.</td>
<td>TRUE</td>
<td>low</td>
</tr>
<tr>
<td>2016-01-11 06:15:00</td>
<td>2016-01-11</td>
<td>4</td>
<td>2-dhe-923</td>
<td>4</td>
<td>3291.</td>
<td>TRUE</td>
<td>mid</td>
</tr>
</tbody>
</table>
A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `c` are all between 10 and 20. Because there are NA values, we’ll choose to let those pass validation by setting `na_pass = TRUE`. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```r
tag_agent <-
 create_agent(tbl = small_table) %>%
 col_vals_not_between(
 columns = c,
 left = 10, right = 20,
 na_pass = TRUE
) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
small_table %>%
 col_vals_not_between(
 columns = c,
 left = 10, right = 20,
 na_pass = TRUE
) %>%
 dplyr::pull(c)
#> 3 8 3 NA 7 4 3 2 9 7 8 NA
```

C: Using the expectation function:

With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_not_between(
 small_table, columns = c,
 left = 10, right = 20,
 na_pass = TRUE
)
```
D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>%
 test_col_vals_not_between(
 columns = c,
 left = 10, right = 20,
 na_pass = TRUE
)
#> [1] TRUE
```

An additional note on the bounds for this function: they are inclusive by default. We can modify the inclusiveness of the upper and lower bounds with the inclusive option, which is a length-2 logical vector.

In changing the lower bound to be 9 and making it non-inclusive, we get TRUE since although two values are 9 and they fall outside of the lower (or left) bound (and any values ‘not between’ count as passing test units).

```r
small_table %>%
 test_col_vals_not_between(
 columns = c,
 left = 9, right = 20,
 inclusive = c(FALSE, TRUE),
 na_pass = TRUE
)
#> [1] TRUE
```

Function ID

2-8

See Also

The analogue to this function: `col_vals_between()`. Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

The `col_vals_not_equal()` validation function, the `expect_col_vals_not_equal()` expectation function, and the `test_col_vals_not_equal()` test function all check whether column values in a table are not equal to a specified value. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_equal(
 x,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_not_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_not_equal(
 object,
 columns,
 value,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```
Arguments

x  
A pointblank agent or a data table  
\texttt{obj:<ptblank\_agent>|obj:<tbl\_\*>>} // \texttt{required}  
A data frame, tibble (\texttt{tbl\_df} or \texttt{tbl\_dbi}), Spark DataFrame (\texttt{tbl\_spark}), or, an agent object of class \texttt{ptblank\_agent} that is commonly created with \texttt{create\_agent()}.  

columns  
The target columns  
\texttt{<tidy\text{-}select>>} // \texttt{required}  
A column-selecting expression, as one would use inside \texttt{dplyr::select()}.

Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

value  
Value for comparison  
\texttt{<value\ expression>>} // \texttt{required}  
A value used for this test of inequality. This can be a single value or a compatible column given in \texttt{vars()}. Any column values not equal to what is specified here will pass validation.

na_pass  
Allow missing values to pass validation  
\texttt{scalar<logical>} // \texttt{default: FALSE}  
Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

preconditions  
Input table modification prior to validation  
\texttt{<table\ mutation\ expression>>} // \texttt{default: NULL (optional)}  
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading \texttt{~} (e.g., \texttt{~ . %>% dplyr::mutate(col = col + 10)} or as a function (e.g., \texttt{function(x) dplyr::mutate(x, col = col + 10)}). See the Preconditions section for more information.

segments  
Expressions for segmenting the target table  
\texttt{<segmentation\ expressions>>} // \texttt{default: NULL (optional)}  
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions  
Thresholds and actions for different states  
\texttt{obj:<action\_levels>>} // \texttt{default: NULL (optional)}  
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the \texttt{action\_levels()} helper function.

step_id  
Manual setting of the step ID value  
\texttt{scalar<character>>} // \texttt{default: NULL (optional)}  
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and \texttt{pointblank} will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

*label*  
Optional label for the validation step  
vector<character> // default: NULL (optional)  
Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

*brief*  
Brief description for the validation step  
scalar<character> // default: NULL (optional)  
A brief is a short, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s lang argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

*active*  
Is the validation step active?  
scalar<logical> // default: TRUE  
A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

*object*  
A data table for expectations or tests  
obj:<tbl_*> // required  
A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

*threshold*  
The failure threshold  
scalar<integer|numeric>(val>=0) // default: 1  
A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMySQL::MySQL()`)
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigrquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite (with `RSQLite::SQLite()`)  

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

columns may be a single column (as symbol `a` or string "a") or a vector of columns (`c(a, b, c)` or `c("a", "b", "c")`). `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an `external vector` of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:
• "\{.step\}": The validation step name
• "\{.col\}": The current column name
• "\{.seg_col\}": The current segment’s column name
• "\{.seg_val\}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "\{toupper(.step)\}") as long as they return a length-1 string.

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when \( \text{brief} = \text{NULL} \) and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_equal()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_equal()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_not_equal(
 columns = a,
 value = 1,
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The /grave.Var\ col_vals_not_equal() /grave.Var\ step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
- col_vals_not_equal:
 columns: c(a)
 value: 1.0
 na_pass: true
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
```
In practice, both of these will often be shorter as only the columns and value arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Examples**

For all of the examples here, we’ll use a simple table with three numeric columns (a, b, and c) and three character columns (d, e, and f).

```r
tbl <-
dplyr::tibble(
 a = c(5, 5, 5, 5, 5, 5),
 b = c(1, 1, 1, 2, 2, 2),
 c = c(1, 1, 1, 2, 2, 2),
 d = LETTERS[c(1:3, 5:7)],
 e = LETTERS[c(1:6)],
 f = LETTERS[c(1:6)]
)
tbl
#> # A tibble: 6 x 6
#> a b c d e f
#> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 5 1 1 A A A
#> 2 5 1 1 B B B
#> 3 5 1 1 C C C
#> 4 5 2 2 E D D
#> 5 5 2 2 F E E
#> 6 5 2 2 G F F
```

**A: Using an agent with validation functions and then `interrogate()`:**

Validate that values in column a are all not equal to the value of 6. We’ll determine if this validation has any failing test units (there are 6 test units, one for each row).

```r
agent <-
 create_agent(tbl = tbl) %>%
 col_vals_not_equal(columns = a, value = 6) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 col_vals_not_equal(columns = a, value = 6) %>%
dplyr::pull(a)
#> [1] 5 5 5 5 5
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_not_equal(tbl, columns = a, value = 6)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
test_col_vals_not_equal(tbl, columns = a, value = 6)
#> [1] TRUE
```

**Function ID**

2-4

**See Also**
The analogue to this function: `col_vals_equal()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`,
`col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`,
`col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`,
`col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`,
`col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`,
`col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`,
`conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`,
`tbl_match()`

---

col_vals_not_in_set  Are data not part of a specified set of values?

**Description**
The `col_vals_not_in_set()` validation function, the `expect_col_vals_not_in_set()` expectation function, and the `test_col_vals_not_in_set()` test function all check whether column values in a table are not part of a specified set of values. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).
Usage

```r
col_vals_not_in_set(
 x,
 columns,
 set,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
epect_col_vals_not_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_not_in_set(
 object,
 columns,
 set,
 preconditions = NULL,
 threshold = 1
)
```

Arguments

- `x` *A pointblank agent or a data table*
  obj:<ptblank_agent>|obj:<tbl_*> // **required**
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.

- `columns` *The target columns*
  <tidy-select> // **required**
  A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the *Column Names* section for more information.

- `set` *Set of values*
  vector<integer|numeric|character> // **required**
  A vector of numeric or string-based elements, where column values found within this set will be considered as failing.

- `preconditions` *Input table modification prior to validation*
  <table mutation expression> // **default**: NULL (optional)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>segments</td>
<td>An optional expression or set of expressions (held in a list) that serve to</td>
</tr>
<tr>
<td></td>
<td>segment the target table by column values. Each expression can be given in</td>
</tr>
<tr>
<td></td>
<td>one of two ways: (1) as column names, or (2) as a two-sided formula where</td>
</tr>
<tr>
<td></td>
<td>the LHS holds a column name and the RHS contains the column values to segment</td>
</tr>
<tr>
<td></td>
<td>on. See the Segments section for more details on this.</td>
</tr>
<tr>
<td>actions</td>
<td>A list containing threshold levels so that the validation step can react</td>
</tr>
<tr>
<td></td>
<td>accordingly when exceeding the set levels for different states. This is to</td>
</tr>
<tr>
<td></td>
<td>be created with the action_levels() helper function.</td>
</tr>
<tr>
<td>step_id</td>
<td>One or more optional identifiers for the single or multiple validation steps</td>
</tr>
<tr>
<td></td>
<td>generated from calling a validation function. The use of step IDs serves to</td>
</tr>
<tr>
<td></td>
<td>distinguish validation steps from each other and provide an opportunity for</td>
</tr>
<tr>
<td></td>
<td>supplying a more meaningful label compared to the step index. By default this</td>
</tr>
<tr>
<td></td>
<td>is NULL, and pointblank will automatically generate the step ID value (based</td>
</tr>
<tr>
<td></td>
<td>on the step index) in this case. One or more values can be provided, and the</td>
</tr>
<tr>
<td></td>
<td>exact number of ID values should (1) match the number of validation steps</td>
</tr>
<tr>
<td></td>
<td>that the validation function call will produce (influenced by the number of</td>
</tr>
<tr>
<td></td>
<td>columns provided), (2) be an ID string not used in any previous validation</td>
</tr>
<tr>
<td></td>
<td>step, and (3) be a vector with unique values.</td>
</tr>
<tr>
<td>label</td>
<td>Optional label for the validation step. This label appears in the agent report</td>
</tr>
<tr>
<td></td>
<td>and, for the best appearance, it should be kept quite short. See the Labels</td>
</tr>
<tr>
<td></td>
<td>section for more information.</td>
</tr>
<tr>
<td>brief</td>
<td>A brief is a short, text-based description for the validation step. If</td>
</tr>
<tr>
<td></td>
<td>nothing is provided here then an autobrief is generated by the agent, using</td>
</tr>
<tr>
<td></td>
<td>the language provided in create_agent()'s lang argument (which defaults to</td>
</tr>
<tr>
<td></td>
<td>&quot;en&quot; or English). The autobrief incorporates details of the validation step</td>
</tr>
<tr>
<td></td>
<td>so it’s often the preferred option in most cases (where a label might be</td>
</tr>
<tr>
<td></td>
<td>better suited to succinctly describe the validation).</td>
</tr>
<tr>
<td>active</td>
<td>A logical value indicating whether the validation step should be active. If</td>
</tr>
<tr>
<td></td>
<td>the validation function is working with an agent, FALSE will make the</td>
</tr>
<tr>
<td></td>
<td>validation function active, while TRUE will mark it as inactive.</td>
</tr>
</tbody>
</table>
step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

**object**

A data table for expectations or tests

`obj:<tbl_*> // required`

A data frame, tibble (`tbl_df` or `tbl_dbi`), or Spark DataFrame (`tbl_spark`) that serves as the target table for the expectation function or the test function.

**threshold**

The failure threshold

`scalar<integer|numeric>(val>=0) // default: 1`

A simple failure threshold value for use with the expectation (`expect_.`) and the test (`test_.`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMysql::MySQL()`)  
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven't been formally tested (so be mindful of this when using unsupported backends with `pointblank`).
Column Names

Columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c")). tidyselect helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \( m \) columns multiplied by \( n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function's documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.col}": The current column name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_not_in_set() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_not_in_set() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_not_in_set(
 columns = a,
 set = c(1, 2, 3, 4),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
```
```
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
label = "The `col_vals_not_in_set()` step.",
active = FALSE
)
```

YAML representation:
```
steps:
- col_vals_not_in_set:
 columns: c(a)
 set:
 - 1.0
 - 2.0
 - 3.0
 - 4.0
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `col_vals_not_in_set()` step.
 active: false
```

In practice, both of these will often be shorter as only the columns and set arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Examples**

The `small_table` dataset in the package will be used to validate that column values are not part of a given set.

A: Using an agent with validation functions and then `interrogate()`:

Validate that values in column `f` contain none of the values `lows`, `mids`, and `highs`. We’ll determine if this validation has any failing test units (there are 13 test units, one for each row).

```
agent <-
 create_agent(tbl = small_table) %>%
 col_vals_not_in_set(
 columns = f, set = c("lows", "mids", "highs")
) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
 col_vals_not_in_set(
 columns = f, set = c("lows", "mids", "highs")
) %>%
dplyr::pull(f) %>
unique()
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_not_in_set(
 small_table,
 columns = f, set = c("lows", "mids", "highs")
)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>%
 test_col_vals_not_in_set(
 columns = f, set = c("lows", "mids", "highs")
)

#> [1] TRUE
```

Function ID
2-10

See Also
The analogue to this function: col_vals_in_set().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
col_vals_not_null  Are column data not NULL/NA?

Description

The `col_vals_not_null()` validation function, the `expect_col_vals_not_null()` expectation function, and the `test_col_vals_not_null()` test function all check whether column values in a table are not `NA` values or, in the database context, not `NULL` values. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_not_null(
 x, columns,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)
```

```r
test_col_vals_not_null(object, columns, preconditions = NULL, threshold = 1)
```

Arguments

- **x**  
  A `pointblank agent` or a `data table`  
  `obj:<ptblank_agent> | obj:<tbl_>> // required`  
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class `ptblank_agent` that is commonly created with `create_agent()`.

- **columns**  
  The target columns  
  `<tidy-select> // required`  
  A column-selecting expression, as one would use inside `dplyr::select()`.

- **preconditions**  
  Input table modification prior to validation  
  `<table mutation expression> // default: NULL (optional)`  
  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~. %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments

Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step
vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step
scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?
scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

**object**

A data table for expectations or tests

```
obj: <tbl_*> // required
```

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

The failure threshold

```
scalar<integer|numeric>(val>=0) // default: 1
```

A simple failure threshold value for use with the expectation (`expect_`) and the test (`test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).
Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns \( \text{c(a, b, c)} \) or \( \text{c("a", "b", "c").} \) \{tidyselect\} helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of(). When multiple columns are selected by \text{columns}, the result will be an expansion of validation steps to that number of columns (e.g., \text{c(col_a, col_b)} will result in the entry of two validation steps). Previously, columns could be specified in \text{vars()}. This continues to work, but \text{c()} offers the same capability and supersedes \text{vars()} in \text{columns}.

Preconditions

Providing expressions as preconditions means \text{pointblank} will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using \text{dplyr} code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \text{R} formula (using a leading \%). In the formula representation, the . serves as the input data table to be transformed (e.g., \text{~ . %>% dplyr::mutate(col_b = col_a + 10)}. Alternatively, a function could instead be supplied (e.g., \text{function(x) dplyr::mutate(x, col_b = col_a + 10)}).

Segments

By using the \text{segments} argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \text{vars(a_column)} will segment the target table in however many unique values are present in the column called \text{a_column}. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \text{a_column ~ c("group_1", "group_2")} will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple \text{columns} specified then the potential number of validation steps will be \text{m} columns multiplied by \text{n} segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for \text{preconditions} and refer to those labels in \text{segments} without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name
- `{.seg_col}`: The current segment’s column name
- `{.seg_val}`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_not_null()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_not_null()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_not_null(
columns = a,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
```

YAML representation:

```yaml
YAML representation of the `col_vals_not_null` function

```
col_vals_not_null

    label = "The `col_vals_not_null()` step.",
    active = FALSE
  )

YAML representation:

steps:
  - col_vals_not_null:
      columns: c(a)
      preconditions: ~. %>% dplyr::filter(a < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
        label: The `col_vals_not_null()` step.
        active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, c, and d.

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8),
 b = c(7, 1, 0, 0, 0),
 c = c(NA, NA, NA, NA, NA),
 d = c(35, 23, NA, NA, NA)
)

tbl
#> # A tibble: 5 x 4
#> a b c d
#> <dbl> <dbl> <lgl> <dbl>
#> 1 5 7 NA 35
#> 2 7 1 NA 23
#> 3 6 0 NA NA
#> 4 5 0 NA NA
#> 5 8 0 NA NA
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that all values in column b are not NA (they would be non-NULL in a database context, which isn’t the case here). We’ll determine if this validation has any failing test units (there are 5 test units, one for each row).
agent <-
create_agent(tbl = tbl) %>%
col_vals_not_null(columns = b) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

tbl %>%
col_vals_not_null(columns = b) %>%
dplyr::pull(b)
#> [1] 7 1 0 0 0

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

expect_col_vals_not_null(tbl, columns = b)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>% test_col_vals_not_null(columns = b)
#> [1] TRUE

Function ID
2-16

See Also
The analogue to this function: col_vals_null().

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is POSIX(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_null(), col_vals_regex(), col_vals_within_spec(),
conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(),
tbl_match()
Description

The `col_vals_null()` validation function, the `expect_col_vals_null()` expectation function, and the `test_col_vals_null()` test function all check whether column values in a table are NA values or, in the database context, NULL values. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_null(
 x,
 columns,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
epect_col_vals_null(object, columns, preconditions = NULL, threshold = 1)
```

```r
test_col_vals_null(object, columns, preconditions = NULL, threshold = 1)
```

Arguments

- **x**
  - A `pointblank` agent or a data table
    - `obj:<ptblank_agent>|obj:<tbl_*>` // required
  - A data frame, tibble (`tbl_df` or `tbl_dbi`), Spark DataFrame (`tbl_spark`), or, an `agent` object of class `ptblank_agent` that is commonly created with `create_agent()`.

- **columns**
  - The target columns
    - `<tidy-select>` // required
  - A column-selecting expression, as one would use inside `dplyr::select()`. Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

- **preconditions**
  - Input table modification prior to validation
    - `<table mutation expression>` // default: `NULL` (optional)
  - An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., `~ . %>% dplyr::mutate(col = col + 10)` or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

**segments**

*Expressions for segmenting the target table*

<segmentation expressions> // default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

**actions**

*Thresholds and actions for different states*

obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

**step_id**

*Manual setting of the step ID value*

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

*Optional label for the validation step*

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

**brief**

*Brief description for the validation step*

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

*Is the validation step active?*

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

obj: <tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

scalar<Integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).
Column Names

Columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c")). (tidyselect) helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

**Labels**

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name
- `{.seg_col}`: The current segment’s column name
- `{.seg_val}`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A `pointblank` agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_null()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_null()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_null(
columns = a,
preconditions = ~ . %>% dplyr::filter(a < 10),
segments = b ~ c("group_1", "group_2"),
actions = action_levels(warn_at = 0.1, stop_at = 0.2),
```

YAML:

```yaml

```
label = "The `col_vals_null()` step.",
active = FALSE
)

YAML representation:

steps:
- col_vals_null:
  columns: c(a)
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `col_vals_null()` step.
    active: false

In practice, both of these will often be shorter as only the columns argument requires a value. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with four columns: a, b, c, and d.

tbl <-
dplyr::tibble(
a = c( 5, 7, 6, 5, 8),
b = c( 7, 1, 0, 0, 0),
c = c(NA, NA, NA, NA, NA),
d = c(35, 23, NA, NA, NA)
)

tbl
#> # A tibble: 5 x 4
#>   a  b  c  d
#> <dbl> <dbl> <lgl> <dbl>
#> 1 5 7 NA 35
#> 2 7 1 NA 23
#> 3 6 0 NA NA
#> 4 5 0 NA NA
#> 5 8 0 NA NA

A: Using an agent with validation functions and then `interrogate()`:

Validate that all values in column c are NA (they would be NULL in a database context, which isn’t the case here). We’ll determine if this validation has any failing test units (there are 5 test units, one for each row).
agent <-
  create_agent(tbl = tbl) %>%
  col_vals_null(columns = c) %>%
  interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

**B: Using the validation function directly on the data (no agent):**

This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 col_vals_null(columns = c) %>%
dplyr::pull(c)
#> [1] NA NA NA NA NA
```

**C: Using the expectation function:**

With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_null(tbl, columns = c)
```

**D: Using the test function:**

With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_col_vals_null(columns = c)
#> [1] TRUE
```

### Function ID

2-15

### See Also

The analogue to this function: `col_vals_not_null()`.

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Description

The `col_vals_regex()` validation function, the `expect_col_vals_regex()` expectation function, and the `test_col_vals_regex()` test function all check whether column values in a table correspond to a regex matching expression. The validation function can be used directly on a data table or with an `agent` object (technically, a `p tblank_agent` object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_regex(
 x,
 columns,
 regex,
 na_pass = FALSE,
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_col_vals_regex(
 object,
 columns,
 regex,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```

```r
test_col_vals_regex(
 object,
 columns,
 regex,
 na_pass = FALSE,
 preconditions = NULL,
 threshold = 1
)
```
**Arguments**

**x**  
A pointblank agent or a data table  
obj:<ptblank_agent>|obj:<tbl_*>  
// required  
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,  
an agent object of class ptblank_agent that is commonly created with `create_agent()`.

**columns**  
The target columns  
<tidy-select>  
// required  
A column-selecting expression, as one would use inside dplyr::select().  
Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

**regex**  
Regex pattern  
scalar<character>  
// required  
A regular expression pattern to test for a match to the target column. Any regex matches to values in the target columns will pass validation.

**na_pass**  
Allow missing values to pass validation  
scalar<logical>  
// default: FALSE  
Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

**preconditions**  
Input table modification prior to validation  
<table mutation expression>  
// default: NULL (optional)  
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.

**segments**  
Expressions for segmenting the target table  
<segmentation expressions>  
// default: NULL (optional)  
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

**actions**  
Thresholds and actions for different states  
obj:<action_levels>  
// default: NULL (optional)  
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

**step_id**  
Manual setting of the step ID value  
scalar<character>  
// default: NULL (optional)  
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

- **label**
  Optional label for the validation step
  vector<character> // default: NULL (optional)
  Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

- **brief**
  Brief description for the validation step
  scalar<character> // default: NULL (optional)
  A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

- **active**
  Is the validation step active?
  scalar<logical> // default: TRUE
  A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

- **object**
  A data table for expectations or tests
  obj:<tbl_*> // required
  A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

- **threshold**
  The failure threshold
  scalar<integer|numeric>(val>=0) // default: 1
  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - `PostgreSQL` tables (using the `RPostgres::Postgres()` as driver)
  - `MySQL` tables (with `RMySQL::MySQL()`)
  - `Microsoft SQL Server` tables (via `odbc`)
  - `BigQuery` tables (using `bigrquery::bigquery()`)
  - `DuckDB` tables (through `duckdb::duckdb()`)
  - `SQLite` (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

Columns may be a single column (as symbol `a` or string "a") or a vector of columns (`c(a, b, c)` or `c("a", "b", "c")`). `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps). Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Missing Values

This validation function supports special handling of `NA` values. The `na_pass` argument will determine whether an `NA` value appearing in a test unit should be counted as a `pass` or a `fail`. The default of `na_pass = FALSE` means that any `NAs` encountered will accumulate failing test units.

Preconditions

Providing expressions as `preconditions` means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named a_column, and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be m columns multiplied by n segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. For the col_vals_*()-type functions, using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports (glue) syntax and exposes the following dynamic variables contextualized to the current step:
The glue context also supports ordinary expressions for further flexibility (e.g., ",\{toupper(.step)\}\) as long as they return a length-1 string.

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that's the case, brief the agent with some text that fits. Don't worry if you don't want to do it. The *autobrief* protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

**YAML**

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `col_vals_regex()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `col_vals_regex()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 col_vals_regex(
 columns = a,
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 na_pass = TRUE,
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `col_vals_regex()` step."
)
```

YAML representation:

```yaml
steps:
 - col_vals_regex:
 columns: c(a)
 regex: '^[0-9]-[a-z]{3}-[0-9]{3}$'
 na_pass: true
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
```

- "\{.step\}": The validation step name
- "\{.col\}": The current column name
- "\{.seg_col\}": The current segment's column name
- "\{.seg_val\}": The current segment's value/group
In practice, both of these will often be shorter as only the columns and regex arguments require values. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

The `small_table` dataset in the package has a character-based `b` column with values that adhere to a very particular pattern. The following examples will validate that that column abides by a regex pattern.

```
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 2343. TRUE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE mid
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

This is the regex pattern that will be used throughout:

```
pattern <- "\[0-9\]-\[a-z\]\{3\}-\[0-9\]\{3\}"``
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
small_table %>%
col_vals_regex(columns = b, regex = pattern) %>%
dplyr::slice(1:5)
#> A tibble: 5 x 8
#> date_time    date   a     b         c     d     e     f
#> <dttm>       <date> <int> <chr>      <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 2016-01-09 8 3-ldm-038 7 284. TRUE low
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_col_vals_regex(small_table, columns = b, regex = pattern)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
small_table %>% test_col_vals_regex(columns = b, regex = pattern)
#> [1] TRUE
```

Function ID

2-17

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), rows_distinct(), serially(), specially(), tbl_match()
col_vals_within_spec Do values in column data fit within a specification?

Description

The `col_vals_within_spec()` validation function, the `expect_col_vals_within_spec()` expectation function, and the `test_col_vals_within_spec()` test function all check whether column values in a table correspond to a specification (spec) type (details of which are available in the Specifications section). The validation function can be used directly on a data table or with an agent object (technically, a ptblank_agent object) whereas the expectation and test functions can only be used with a data table. Each validation step or expectation will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
col_vals_within_spec(
  x,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)
```

```r
expect_col_vals_within_spec(
  object,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)
```

```r
test_col_vals_within_spec(
  object,
  columns,
  spec,
  na_pass = FALSE,
  preconditions = NULL,
  threshold = 1
)
```
Arguments

x
A pointblank agent or a data table
obj:<ptblank_agent> | obj:<tbl_*> // required
A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

columns
The target columns
<tidy-select> // required
A column-selecting expression, as one would use inside dplyr::select(). Specifies the column (or a set of columns) to which this validation should be applied. See the Column Names section for more information.

spec
Specification type
scalar<character> // required
A specification string for defining the specification type. Examples are "email", "url", and "postal[USA]". All options are explained in the Specifications section.

na_pass
Allow missing values to pass validation
scalar<logical> // default: FALSE
Should any encountered NA values be considered as passing test units? By default, this is FALSE. Set to TRUE to give NAs a pass.

preconditions
Input table modification prior to validation
<table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments
Expressions for segmenting the target table
<segmentation expressions> // default: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
Thresholds and actions for different states
obj:<action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id
Manual setting of the step ID value
scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step
col_vals_within_spec

index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the *Labels* section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

obj:<tbl_*> // **required**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
 - MySQL tables (with `RMySQL::MySQL()`)
 - Microsoft SQL Server tables (via `odbc`)
 - BigQuery tables (using `bigrquery::bigquery()`)
 - DuckDB tables (through `duckdb::duckdb()`)
 - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Specifications

A specification type must be used with the `spec` argument. This is a character-based keyword that corresponds to the type of data in the specified columns. The following keywords can be used:

- "isbn": The International Standard Book Number (ISBN) is a unique numerical identifier for books, pamphlets, educational kits, microforms, and digital/electronic publications. The specification has been formalized in ISO 2108. This keyword can be used to validate 10- or 13-digit ISBNs.
- "VIN": A vehicle identification number (VIN) is a unique code (which includes a serial number) used by the automotive industry to identify individual motor vehicles, motorcycles, scooters, and mopeds as stipulated by ISO 3779 and ISO 4030.
- "postal_code[<country_code>]": A postal code (also known as postcodes, PIN, or ZIP codes, depending on region) is a series of letters, digits, or both (sometimes including spaces/punctuation) included in a postal address to aid in sorting mail. Because the coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for postal codes in Germany, "postal_code[DE]" or "postal_code[DEU]" can be used). The keyword alias "zip" can be used for US ZIP codes.
- "credit_card": A credit card number can be validated and this check works across a large variety of credit type issuers (where card numbers are allocated in accordance with ISO/IEC 7812). Numbers can be of various lengths (typically, they are of 14-19 digits) and the key validation performed here is the usage of the Luhn algorithm.
"iban[:<country_code>]": The International Bank Account Number (IBAN) is a system of identifying bank accounts across different countries for the purpose of improving cross-border transactions. IBAN values are validated through conversion to integer values and performing a basic mod-97 operation (as described in ISO 7064) on them. Because the length and coding varies by country, a country code in either the 2- (ISO 3166-1 alpha-2) or 3-letter (ISO 3166-1 alpha-3) formats needs to be supplied along with the keywords (e.g., for IBANs in Germany, "iban[DE]" or "iban[DEU]" can be used).

"swift": Business Identifier Codes (also known as SWIFT-BIC, BIC, or SWIFT code) are defined in a standard format as described by ISO 9362. These codes are unique identifiers for both financial and non-financial institutions. SWIFT stands for the Society for Worldwide Interbank Financial Telecommunication. These numbers are used when transferring money between banks, especially important for international wire transfers.

"phone", "email", "url", "ipv4", "ipv6", "mac": Phone numbers, email addresses, Internet URLs, IPv4 or IPv6 addresses, and MAC addresses can be validated with their respective keywords. These validations use regex-based matching to determine validity.

Only a single spec value should be provided per function call.

Column Names

columns may be a single column (as symbol a or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c"). {tidyselect} helpers are also supported, such as contains("date") and where(is.double). If passing an external vector of columns, it should be wrapped in all_of().

When multiple columns are selected by columns, the result will be an expansion of validation steps to that number of columns (e.g., c(col_a, col_b) will result in the entry of two validation steps).

Previously, columns could be specified in vars(). This continues to work, but c() offers the same capability and supersedes vars() in columns.

Missing Values

This validation function supports special handling of NA values. The na_pass argument will determine whether an NA value appearing in a test unit should be counted as a pass or a fail. The default of na_pass = FALSE means that any NAs encountered will accumulate failing test units.

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).
Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be \(m \) columns multiplied by \(n \) segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when \(x \) is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stops at the same threshold level).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.col}`: The current column name
- `{.seg_col}`: The current segment’s column name
- `{.seg_val}`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `"{toupper(.step)}"`) as long as they return a length-1 string.
Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When col_vals_within_spec() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of col_vals_within_spec() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
col_vals_within_spec(
  columns = a,
  spec = "email",
  na_pass = TRUE,
  preconditions = ~ . %>% dplyr::filter(b < 10),
  segments = b ~ c("group_1", "group_2"),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The `col_vals_within_spec()` step."
)
```

YAML representation:

```yaml
steps:
  - col_vals_within_spec:
      columns: c(a)
      spec: email
      na_pass: true
      preconditions: ~ . %>% dplyr::filter(b < 10)
      segments: b ~ c("group_1", "group_2")
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `col_vals_within_spec()` step.
      active: false
```

In practice, both of these will often be shorter as only the `columns` and `spec` arguments require values. Arguments with default values won’t be written to YAML when using yaml_write() (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the yaml_agent_string() function.
Examples

The specifications dataset in the package has columns of character data that correspond to each of the specifications that can be tested. The following examples will validate that the `email_addresses` column has 5 correct values (this is true if we get a subset of the data: the first five rows).

```r
spec_slice <- specifications[1:5, ]

spec_slice
#> # A tibble: 5 x 12
#> isbn_numbers   vin_numbers  zip_codes  credit_card_numbers  iban_austria
#> <chr>           <chr>       <chr>      <chr>                 <chr>
#> 1 978 1 85715 201 2 4UZAANH85CV12329 99553 340000000000009 AT582774098(~
#> 2 978-1-84159-362-3 JM1BL559A1134659 36264 378734493671000 AT220332087(~
#> 3 978 1 84159 329 6 1GCEK14R3WZ274764 71660 670344444444444 AT328650112(~
#> 4 978 1 85715 202 9 2B7J321Y0X524370 85225 670300000000000003 AT193557281(~
#> 5 978 1 85715 198 5 4UZAANDH85CV12329 90309 4035501000000008 AT535755326(~
#> # i 7 more variables: swift_numbers <chr>, phone_numbers <chr>,
#> # email_addresses <chr>, urls <chr>, ipv4_addresses <chr>,
#> # ipv6_addresses <chr>, mac_addresses <chr>

A: Using an agent with validation functions and then `interrogate()`:
Validate that all values in the column `email_addresses` are correct. We’ll determine if this validation has any failing test units (there are 5 test units, one for each row).

```r
agent <-
create_agent(tbl = spec_slice) %>%
col_vals_within_spec(columns = email_addresses, spec = "email") %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
spec_slice %>%
col_vals_within_spec(columns = email_addresses, spec = "email") %>%
dplyr::select(email_addresses)
#> # A tibble: 5 x 1
#> email_addresses
col_vals_within_spec

```r
col_vals_within_spec
#> <chr>
#> 1 test@test.com
#> 2 mail+mail@example.com
#> 3 mail.email@e.test.com
#> 4 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ@letters-in-local.org
#> 5 01234567890@numbers-in-local.net

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_col_vals_within_spec(
 spec_slice,
 columns = email_addresses,
 spec = "email"
)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

```r
spec_slice %>%
 test_col_vals_within_spec(
 columns = email_addresses,
 spec = "email"
)
#> [1] TRUE
```

**Function ID**
2-18

**See Also**

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is POSIX()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lte()`, `col_vals_lower()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not-between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_null()`, `col_vals_regex()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`
Perform multiple rowwise validations for joint validity

Description

The `conjointly()` validation function, the `expect_conjointly()` expectation function, and the `test_conjointly()` test function all check whether test units at each index (typically each row) all pass multiple validations. We can use validation functions that validate row units (the `col_vals_*(·)` series), check for column existence (`col_exists()`), or validate column type (the `col_is_*(·)` series). Because of the imposed constraint on the allowed validation functions, the ensemble of test units are either comprised rows of the table (after any common preconditions have been applied) or are single test units (for those functions that validate columns).

Each of the functions used in a `conjointly()` validation step (composed using multiple validation function calls) ultimately perform a rowwise test of whether all sub-validations reported a pass for the same test units. In practice, an example of a joint validation is testing whether values for column a are greater than a specific value while adjacent values in column b lie within a specified range. The validation functions to be part of the conjoint validation are to be supplied as one-sided R formulas (using a leading ~, and having a. stand in as the data object). The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table.

Usage

\[
\text{conjointly}( \\
  x, \\
  \ldots, \\
  .\text{list} = \text{list2}(\ldots), \\
  \text{preconditions} = \text{NULL}, \\
  \text{segments} = \text{NULL}, \\
  \text{actions} = \text{NULL}, \\
  \text{step_id} = \text{NULL}, \\
  \text{label} = \text{NULL}, \\
  \text{brief} = \text{NULL}, \\
  \text{active} = \text{TRUE} \\
) \\
\]

\[
\text{expect_conjointly}( \\
  \text{object}, \\
  \ldots, \\
  .\text{list} = \text{list2}(\ldots), \\
  \text{preconditions} = \text{NULL}, \\
  \text{threshold} = 1 \\
) \\
\]

\[
\text{test_conjointly}( \\
  \text{object}, \\
\)
...,
  .list = list2(...),
  preconditions = NULL,
  threshold = 1
)

Arguments

x 
A pointblank agent or a data table

obj: <ptblank_agent> | obj: <tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or,
an agent object of class ptblank_agent that is commonly created with create_agent().

Validation expressions

<validation expressions> // required (or, use .list)

A collection one-sided formulas that consist of validation functions that validate
row units (the col_vals_*() series), column existence (col_exists()), or column
type (the col_is_*() series). An example of this is ~ col_vals_gte(., a, 5.5), ~ col_vals_not Null.

.preconditions 
Input table modification prior to validation

<table mutation expression> // default: NULL (optional)

An optional expression for mutating the input table before proceeding with
the validation. This can either be provided as a one-sided R formula using a
leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g.,
function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions
section for more information.

segments 
Expressions for segmenting the target table

<segmentation expressions> // default: NULL (optional)

An optional expression or set of expressions (held in a list) that serve to segment
the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the Segments
section for more details on this.

actions 
Thresholds and actions for different states

obj: <action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id 
Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated
from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**
*Optional label for the validation step*

`vector<character> // default: NULL (optional)`

Optional label for the validation step. This label appears in the `agent` report and, for the best appearance, it should be kept quite short. See the `Labels` section for more information.

**brief**
*Brief description for the validation step*

`scalar<character> // default: NULL (optional)`

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the `agent`, using the language provided in `create_agent()`'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**
*Is the validation step active?*

`scalar<logical> // default: TRUE`

A logical value indicating whether the validation step should be active. If the validation function is working with an `agent`, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no `agent` involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %% has_columns(c(d, e))).

**object**
*A data table for expectations or tests*

`obj:<tbl_*> // required`

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**
*The failure threshold*

`scalar<integer|numeric>(val>=0) // default: 1`

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding testthat test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMySQL::MySQL()`)
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigrquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

columns may be a single column (as symbol `a` or string "a") or a vector of columns (`c(a, b, c)` or `c("a", "b", "c")`). `{tidyselect}` helpers are also supported, such as `contains("date")` and `where(is.double)`. If passing an external vector of columns, it should be wrapped in `all_of()`.

When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps).

Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided `R` formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).
**Segments**

By using the `segments` argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, `vars(a_column)` will segment the target table in however many unique values are present in the column called `a_column`. This is great if every unique value in a particular column (like different locations, or different dates) requires its own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using `a_column ~ c("group_1", "group_2")` will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

If there are multiple columns specified then the potential number of validation steps will be $m$ columns multiplied by $n$ segments resolved.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in `segments` without having to generate a separate version of the target table.

**Actions**

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`s at the same threshold level).

**Labels**

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}": The validation step name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.
**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if \( x \) is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The *autobrief* protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

**YAML**

A *pointblank* agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `conjointly()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `conjointly()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 conjointly(
 ~ col_vals_lt(., columns = a, value = 8),
 ~ col_vals_gt(., columns = c, value = vars(a)),
 ~ col_vals_not_null(., columns = b),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `conjointly()` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - conjointly:
 fns:
 - ~col_vals_lt(., columns = a, value = 8)
 - ~col_vals_gt(., columns = c, value = vars(a))
 - ~col_vals_not_null(., columns = b)
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `conjointly()` step.
 active: false
```

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.
Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a very basic table but it’ll be more useful when explaining things later.

tbl <-
dplyr::tibble(
  a = c(5, 2, 6),
  b = c(3, 4, 6),
  c = c(9, 8, 7)
)
tbl
#> # A tibble: 3 x 3
#>   a   b   c
#> <dbl> <dbl> <dbl>
#> 1   5   3   9
#> 2   2   4   8
#> 3   6   6   7

A: Using an agent with validation functions and then `interrogate()`:
Validate a number of things on a row-by-row basis using validation functions of the `col_vals*` type (all have the same number of test units): (1) values in `a` are less than 8, (2) values in `c` are greater than the adjacent values in `a`, and (3) there aren’t any NA values in `b`. We’ll determine if this validation has any failing test units (there are 3 test units, one for each row).

agent <-
create_agent(tbl = tbl) %>%
conjointly(
  ~ col_vals_lt(., columns = a, value = 8),
  ~ col_vals_gt(., columns = c, value = vars(a)),
  ~ col_vals_not_null(., columns = b)
) %>%
interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

What’s going on? Think of there being three parallel validations, each producing a column of TRUE or FALSE values (pass or fail) and line them up side-by-side, any rows with any FALSE values results in a conjoint fail test unit.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

tbl %>%
conjointly(
  ~ col_vals_lt(., columns = a, value = 8),
)
```r
~ col_vals_gt(., columns = c, value = vars(a)),
~ col_vals_not_null(., columns = b)
)

#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 3 9
#> 2 2 4 8
#> 3 3 6 7

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```expect_conjointly(
  tbl,
  ~ col_vals_lt(., columns = a, value = 8),
  ~ col_vals_gt(., columns = c, value = vars(a)),
  ~ col_vals_not_null(., columns = b)
)

```D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```tbl %>%
test_conjointly(
  ~ col_vals_lt(., columns = a, value = 8),
  ~ col_vals_gt(., columns = c, value = vars(a)),
  ~ col_vals_not_null(., columns = b)
)
#> [1] TRUE

Function ID

2-34

See Also

**create_agent**  

Create a pointblank agent object

---

**Description**

The `create_agent()` function creates an *agent* object, which is used in a *data quality reporting* workflow. The overall aim of this workflow is to generate useful reporting information for assessing the level of data quality for the target table. We can supply as many validation functions as the user wishes to write, thereby increasing the level of validation coverage for that table. The *agent* assigned by the `create_agent()` call takes validation functions (e.g., `col_vals_between()`, `rows_distinct()`, etc.), which translate to discrete validation steps (each one is numbered and will later provide its own set of results). This process is known as developing a *validation plan*.

The validation functions, when called on an *agent*, are merely instructions up to the point the `interrogate()` function is called. That kicks off the process of the *agent* acting on the *validation plan* and getting results for each step. Once the interrogation process is complete, we can say that the *agent* has intel. Calling the *agent* itself will result in a reporting table. This reporting of the interrogation can also be accessed with the `get_agent_report()` function, where there are more reporting options.

---

**Usage**

```r
create_agent(
 tbl = NULL,
 tbl_name = NULL,
 label = NULL,
 actions = NULL,
 end_fns = NULL,
 embed_report = FALSE,
 lang = NULL,
 locale = NULL,
 read_fn = NULL
)
```

---

**Arguments**

- **tbl**  
  *Table or expression for reading in one*
  
  `obj:<tbl_*>|<tbl reading expression>` // **required**
  
  The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at interrogation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., `~ { <tbl reading code>}`), or (2) as a function (e.g., `function() { <tbl reading code>}`).

- **tbl_name**  
  *A table name*
  
  `scalar<character>` // default: NULL (optional)
A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available. This table name will be displayed in the header area of the agent report generated by printing the `agent` or calling `get_agent_report()`.

**label**

An optional label for the validation plan

```
scalar<character> // default: NULL (optional)
```

An optional label for the validation plan. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the agent report).

**actions**

Default thresholds and actions for different states

```
obj:<action_levels> // default: NULL (optional)
```

A option to include a list with threshold levels so that all validation steps can react accordingly when exceeding the set levels. This is to be created with the `action_levels()` helper function. Should an action levels list be used for a specific validation step, the default set specified here will be overridden.

**end_fns**

Functions to execute after interrogation

```
list // default: NULL (optional)
```

A list of expressions that should be invoked at the end of an interrogation. Each expression should be in the form of a one-sided R formula, so overall this construction should be used: `end_fns = list(~ <R statements>, ~ <R statements>, ...)`. An example of a function included in `pointblank` that can be sensibly used here is `email_blast()`, which sends an email of the validation report (based on a sending condition).

**embed_report**

Embed the validation report into agent object?

```
scalar<logical> // default: FALSE
```

An option to embed a `gt`-based validation report into the `ptblank_agent` object. If `FALSE` then the table object will be not generated and available with the `agent` upon returning from the interrogation.

**lang**

Reporting language

```
scalar<character> // default: NULL (optional)
```

The language to use for automatic creation of briefs (short descriptions for each validation step) and for the `agent report` (a summary table that provides the validation plan and the results from the interrogation). By default, `NULL` will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

**locale**

Locale for value formatting within reports

```
scalar<character> // default: NULL (optional)
```

An optional locale ID to use for formatting values in the `agent report` summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").
create_agent

**read_fn**  
*Deprecated Table reading function*

function // default: NULL (optional)

The `read_fn` argument is deprecated. Instead, supply a table-prep formula or function to `tbl`.

**Value**

A `ptblank_agent` object.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - PostgreSQL tables (using the `RPostgres::Postgres()` as driver)
  - MySQL tables (with `RMySQL::MySQL()`)
  - Microsoft SQL Server tables (via `odbc`)
  - BigQuery tables (using `bigquery::bigquery()`)
  - DuckDB tables (through `duckdb::duckdb()`)
  - SQLite (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**The Use of an Agent for Validation Is Just One Option of Several**

There are a few validation workflows and using an `agent` is the one that provides the most options. It is probably the best choice for assessing the state of data quality since it yields detailed reporting, has options for further exploration of root causes, and allows for granular definition of actions to be taken based on the severity of validation failures (e.g., emailing, logging, etc.).

Different situations, however, call for different validation workflows. You use validation functions (the same ones you would with an `agent`) directly on the data. This acts as a sort of data filter in that the input table will become output data (without modification), but there may be warnings, errors, or other side effects that you can define if validation fails. Basically, instead of this

```r
create_agent(tbl = small_table) %>% rows_distinct() %>% interrogate()
```

you would use this:

```r
small_table %>% rows_distinct()
```

This results in an error (with the default failure threshold settings), displaying the reason for the error in the console. Notably, the data is not passed through.

We can use variants of the validation functions, the `test` (`test_*()`) and `expectation` (`expect_*()`) versions, directly on the data for different workflows. The first returns to us a logical value. So this
small_table %>% test_rows_distinct()

returns FALSE instead of an error.

In a unit testing scenario, we can use expectation functions exactly as we would with testthat’s library of expect_*() functions:

small_table %>% expect_rows_distinct()

This test of small_table would be counted as a failure.

The Agent Report

While printing an agent (a ptblank_agent object) will display its reporting in the Viewer, we can alternatively use the get_agent_report() to take advantage of other options (e.g., overriding the language, modifying the arrangement of report rows, etc.), and to return the report as independent objects. For example, with the display_table = TRUE option (the default), get_agent_report() will return a ptblank_agent_report object. If display_table is set to FALSE, we’ll get a data frame back instead.

Exporting the report as standalone HTML file can be accomplished by using the export_report() function. This function can accept either the ptblank_agent object or the ptblank_agent_report as input. Each HTML document written to disk in this way is self-contained and easily viewable in a web browser.

Data Products Obtained from an Agent

A very detailed list object, known as an x-list, can be obtained by using the get_agent_x_list() function on the agent. This font of information can be taken as a whole, or, broken down by the step number (with the i argument).

Sometimes it is useful to see which rows were the failing ones. By using the get_data_extracts() function on the agent, we either get a list of tibbles (for those steps that have data extracts) or one tibble if the validation step is specified with the i argument.

The target data can be split into pieces that represent the ‘pass’ and ‘fail’ portions with the get_sundered_data() function. A primary requirement is an agent that has had interrogate() called on it. In addition, the validation steps considered for this data splitting need to be those that operate on values down a column (e.g., the col_vals_*() functions or conjointly()). With these in-consideration validation steps, rows with no failing test units across all validation steps comprise the ‘pass’ data piece, and rows with at least one failing test unit across the same series of validations constitute the ‘fail’ piece.

If we just need to know whether all validations completely passed (i.e., all steps had no failing test units), the all_passed() function could be used on the agent. However, in practice, it’s not often the case that all data validation steps are free from any failing units.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). Here is an example of how a complex call of create_agent() is expressed in R code and in the corresponding YAML representation.
R statement:

create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35,
    fns = list(notify = ~ email_blast(
      x,
      to = "joe_public@example.com",
      from = "pb_notif@example.com",
      msg_subject = "Table Validation",
      credentials = blastula::creds_key(
        id = "smtp2go"
      )
    )
  ),
  end_fns = list(
    ~ beepr::beep(2),
    ~ Sys.sleep(1)
  ),
  embed_report = TRUE,
  lang = "fr",
  locale = "fr_CA"
)

YAML representation:

type: agent
tbl: `~small_table`
tbl_name: small_table
label: An example.
lang: fr
locale: fr_CA
actions:
  warn_fraction: 0.1
  stop_fraction: 0.25
  notify_fraction: 0.35
  fns:
    notify: `~email_blast(x, to = "joe_public@example.com",
                          from = "pb_notif@example.com",
                          msg_subject = "Table Validation",
                          credentials = blastula::creds_key(id = "smtp2go")))
end_fns:
  ~beepr::beep(2)
- `~Sys.sleep(1)`
  
  embed_report: true
  
  steps: []

In practice, this YAML file will be shorter since arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). The only requirement for writing the YAML representation of an `agent` is having `tbl` specified as table-prep formula.

What typically follows this chunk of YAML is a `steps` part, and that corresponds to the addition of validation steps via validation functions. Help articles for each validation function have a YAML section that describes how a given validation function is translated to YAML.

Should you need to preview the transformation of an `agent` to YAML (without any committing anything to disk), use the `yaml_agent_string()` function. If you already have a `.yml` file that holds an `agent`, you can get a glimpse of the R expressions that are used to regenerate that agent with `yaml_agent_show_exprs()`.

**Writing an Agent to Disk**

An `agent` object can be written to disk with the `x_write_disk()` function. This can be useful for keeping a history of validations and generating views of data quality over time. Agents are stored in the serialized RDS format and can be easily retrieved with the `x_read_disk()` function.

It’s recommended that table-prep formulas are supplied to the `tbl` argument of `create_agent()`. In this way, when an `agent` is read from disk through `x_read_disk()`, it can be reused to access the target table (which may change, hence the need to use an expression for this).

**Combining Several Agents in a multiagent Object**

Multiple `agent` objects can be part of a `multiagent` object, and two functions can be used for this: `create_multiagent()` and `read_disk_multiagent()`. By gathering multiple agents that have performed interrogations in the past, we can get a `multiagent` report showing how data quality evolved over time. This use case is interesting for data quality monitoring and management, and, the reporting (which can be customized with `get_multiagent_report()`) is robust against changes in validation steps for a given target table.

**Examples**

**Creating an agent, adding a validation plan, and interrogating:**

Let’s walk through a data quality analysis of an extremely small table. It’s actually called `small_table` and we can find it as a dataset in this package.

```r
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
```
We ought to think about what’s tolerable in terms of data quality so let’s designate proportional failure thresholds to the warn, stop, and notify states using `action_levels()`.

```r
al <- action_levels(
 warn_at = 0.10,
 stop_at = 0.25,
 notify_at = 0.35
)
```

Now create a pointblank agent object and give it the `al` object (which serves as a default for all validation steps which can be overridden). The static thresholds provided by `al` will make the reporting a bit more useful. We also provide a target table and we’ll use `pointblank::small_table`.

```r
agent <- create_agent(
 tbl = pointblank::small_table,
 tbl_name = "small_table",
 label = "\texttt{create_agent()}\ example.",
 actions = al
)
```

Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want. then, we use `interrogate()` to actually perform the validations and gather intel.

```r
agent <-
 agent %>%
 col_exists(columns = date, date_time) %>%
 col_vals_regex(
 columns = b,
 regex = "\[0-9\]-[a-z]{3}-[0-9]{3}\"
) %>%
 rows_distinct() %>%
 col_vals_gt(columns = d, value = 100) %>%
 col_vals_lte(columns = c, value = 5) %>%
 col_vals_between(
 columns = c,
 left = vars(a), right = vars(d),
 na_pass = TRUE
) %>%
 interrogate()
```
The agent object can be printed to see the validation report in the Viewer.

agent

If we want to make use of more report display options, we can alternatively use the `get_agent_report()` function.

```r
report <-
 get_agent_report(
 agent = agent,
 arrange_by = "severity",
 title = "Validation of `small_table`"
)
report
```

**Post-interrogation operations:**

We can use the agent object with a variety of functions to get at more of the information collected during interrogation.

We can see from the validation report that Step 4 (which used the `rows_distinct()` validation function) had two test units, corresponding to duplicated rows, that failed. We can see those rows with `get_data_extracts()`.

```r
agent %>% get_data_extracts(i = 4)
A tibble: 2 x 8
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
##1 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high
##2 2016-01-20 04:30:00 2016-01-20 3 5-bce-6. . . 9 838. FALSE high
```

We can get an x-list for the entire validation process (7 steps), or, just for the 4th step with `get_agent_x_list()`.

```r
xl_step_4 <- agent %>% get_agent_x_list(i = 4)
```

And then we can peruse the different parts of the list. Let’s get the fraction of test units that failed.

```r
xl_step_4$f_failed
#> [1] 0.15385
```

An x-list not specific to any step will have way more information and a slightly different structure. See `help(get_agent_x_list)` for more info.

**Function ID**

1-2

**See Also**

Other Planning and Prep: `action_levels()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
create_informant

Create a **pointblank** informant object

**Description**

The `create_informant()` function creates an *informant* object, which is used in an *information management* workflow. The overall aim of this workflow is to record, collect, and generate useful information on data tables. We can supply any information that is useful for describing a particular data table. The *informant* object created by the `create_informant()` function takes information-focused functions: `info_columns()`, `info_tabular()`, `info_section()`, and `info_snippet()`.

The `info_*()` series of functions allows for a progressive build up of information about the target table. The `info_columns()` and `info_tabular()` functions facilitate the entry of *info text* that concerns the table columns and the table proper; the `info_section()` function allows for the creation of arbitrary sections that can have multiple subsections full of additional *info text*. The system allows for dynamic values culled from the target table by way of `info_snippet()`, for getting named text extracts from queries, and the use of `{<snippet_name>}` in the *info text*. To make the use of `info_snippet()` more convenient for common queries, a set of `snip_*()` functions are provided in the package (`snip_list()`, `snip_stats()`, `snip_lowest()`, and `snip_highest()`) though you are free to use your own expressions.

Because snippets need to query the target table to return fragments of *info text*, the `incorporate()` function needs to be used to initiate this action. This is also necessary for the *informant* to update other metadata elements such as row and column counts. Once the incorporation process is complete, snippets and other metadata will be updated. Calling the *informant* itself will result in a reporting table. This reporting can also be accessed with the `get_informant_report()` function, where there are more reporting options.

**Usage**

```r
create_informant(
 tbl = NULL,
 tbl_name = NULL,
 label = NULL,
 agent = NULL,
 lang = NULL,
 locale = NULL,
 read_fn = NULL
)
```

**Arguments**

- `tbl` _Table or expression for reading in one obj:<tbl_*>|<tbl reading expression> // required_

  The input table. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at incorporation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula,
which is a right-hand side (RHS) formula expression (e.g., `~ ( <tbl reading code>),
or (2) as a function (e.g., `function() { <tbl reading code>}).

### tbl_name

A table name

```r
scalar<character> // default: NULL (optional)
```

A optional name to assign to the input table object. If no value is provided, a name will be generated based on whatever information is available.

### label

An optional label for the information report

```r
scalar<character> // default: NULL (optional)
```

An optional label for the information report. If no value is provided, a label will be generated based on the current system time. Markdown can be used here to make the label more visually appealing (it will appear in the header area of the information report).

### agent

The pointblank agent object

```r
obj:<ptblank_agent> // default: NULL (optional)
```

A pointblank agent object. The table from this object can be extracted and used in the new informant instead of supplying a table in `tbl`.

### lang

Reporting language

```r
scalar<character> // default: NULL (optional)
```

The language to use for the information report (a summary table that provides all of the available information for the table. By default, `NULL` will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

### locale

Locale for value formatting within reports

```r
scalar<character> // default: NULL (optional)
```

An optional locale ID to use for formatting values in the information report according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

### read_fn

Deprecated Table reading function

```r
function // default: NULL (optional)
```

The read_fn argument is deprecated. Instead, supply a table-prep formula or function to `tbl`.

### Value

A ptblank_informant object.

### Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
• the following database tables (tbl_db):  
  – PostgreSQL tables (using the RPostgres::Postgres() as driver)  
  – MySQL tables (with RMySQL::MySQL())  
  – Microsoft SQL Server tables (via odbc)  
  – BigQuery tables (using bigquery::bigquery())  
  – DuckDB tables (through duckdb::duckdb())  
  – SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

YAML

A pointblank informant can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an informant (with yaml_read_informant()) or perform the 'incorporate' action using the target table (via yaml_informant_incorporate()). Here is an example of how a complex call of create_informant() is expressed in R code and in the corresponding YAML representation.

R statement:

```r
create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 lang = "fr",
 locale = "fr_CA"
)
```

YAML representation:

```yaml
type: informant
tbl: ~small_table
tbl_name: small_table
info_label: An example.
lang: fr
locale: fr_CA
table:
 name: small_table
 _columns: 8
 _rows: 13.0
 _type: tbl_df
columns:
 date_time:
 _type: POSIXct, POSIXt
date:
 _type: Date
```
The generated YAML includes some top-level keys where type and tbl are mandatory, and, two metadata sections: table and columns. Keys that begin with an underscore character are those that are updated whenever incorporate() is called on an informant. The table metadata section can have multiple subsections with info text. The columns metadata section can similarly have multiple subsections, so long as they are children to each of the column keys (in the above YAML example, date_time and date are column keys and they match the table’s column names). Additional sections can be added but they must have key names on the top level that don’t duplicate the default set (i.e., type, table, columns, etc. are treated as reserved keys).

Writing an Informant to Disk

An informant object can be written to disk with the x_write_disk() function. Informants are stored in the serialized RDS format and can be easily retrieved with the x_read_disk() function.

It’s recommended that table-prep formulas are supplied to the tbl argument of create_informant(). In this way, when an informant is read from disk through x_read_disk(), it can be reused to access the target table (which may changed, hence the need to use an expression for this).

Examples

Let’s walk through how we can generate some useful information for a really small table. It’s actually called small_table and we can find it as a dataset in this package.

```r
create_informant

_the_type: integer
b: _type: character
c: _type: numeric
d: _type: numeric
e: _type: logical
f: _type: character

small_table
define my_informant as create_informant(
 tbl = small_table,
 date_time = date_time,
 date = date,
 a = a,
 b = b,
 c = c,
 d = d,
 e = e,
 f = f
)
```
Create a pointblank informant object with `create_informant()` and the `small_table` dataset.

```r
informant <-
 create_informant(
 tbl = pointblank::small_table,
 tbl_name = "small_table",
 label = "\texttt{create_informant()} example."
)
```

This function creates some information without any extra help by profiling the supplied table object. It adds the COLUMNS section with stubs for each of the target table’s columns. We can use the `info_columns()` or `info_columns_from_tbl()` to provide descriptions for each of the columns. The informant object can be printed to see the information report in the Viewer.

`informant`

If we want to make use of more report display options, we can alternatively use the `get_informant_report()` function.

```r
report <-
 get_informant_report(
 informant,
 title = "Data Dictionary for \texttt{small_table}\"
)
```

`report`

Function ID

1-3

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
create_multiagent  
Create a pointblank multiagent object

Description

Multiple agents can be part of a single object called the multiagent. This can be useful when gathering multiple agents that have performed interrogations in the past (perhaps saved to disk with `x_write_disk()`). When be part of a multiagent, we can get a report that shows how data quality evolved over time. This can be of interest when it's important to monitor data quality and even the evolution of the validation plan itself. The reporting table, generated by printing a `ptblank_multiagent` object or by using the `get_multiagent_report()` function, is, by default, organized by the interrogation time and it automatically recognizes which validation steps are equivalent across interrogations.

Usage

```r
create_multiagent(..., lang = NULL, locale = NULL)
```

Arguments

- `...` 
  *Pointblank agents*
  <series of obj:<ptblank_agent>> // **required**
  One or more pointblank agent objects.

- `lang` 
  *Reporting language*
  scalar<character> // **default**: NULL (optional)
  The language to use for any reporting that will be generated from the multiagent. (e.g., individual agent reports, multiagent reports, etc.). By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

- `locale` 
  *Locale for value formatting within reports*
  scalar<character> // **default**: NULL (optional)
  An optional locale ID to use for formatting values in the reporting outputs according the locale's rules. Examples include "en.US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Value

A `ptblank_multiagent` object.
Examples

For the example below, we’ll use two different, yet simple tables.

First, tbl_1:

tbl_1 <-
dplyr::tibble(
  a = c(5, 5, 5, 5, 5, 5),
  b = c(1, 1, 1, 2, 2, 2),
  c = c(1, 1, 1, 2, 3, 4),
  d = LETTERS[a],
  e = LETTERS[b],
  f = LETTERS[c]
)
tbl_1
#> # A tibble: 6 x 6
#>    a b c  d  e  f
#>  <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1   5  1  1  E  A  A
#> 2   5  1  1  E  A  A
#> 3   5  1  1  E  A  A
#> 4   5  2  2  E  B  B
#> 5   5  2  3  E  B  C
#> 6   5  2  4  E  B  D

And next, tbl_2:

tbl_2 <-
dplyr::tibble(
  a = c(5, 7, 6, 5, 8, 7),
  b = LETTERS[1:6]
)
tbl_2
#> # A tibble: 6 x 2
#>    a b
#> <dbl> <chr>
#> 1   5  A
#> 2   7  B
#> 3   6  C
#> 4   5  D
#> 5   8  E
#> 6   7  F

Next, we’ll create two different agents, each interrogating a different table.

First up, is agent_1:
agent_1 <-
create_agent(
  tbl = tbl_1,
  tbl_name = "tbl_1",
  label = "Example table 1."
)
%>%
col_vals_gt(columns = a, value = 4) %>%
interrogate()

Then, agent_2:

agent_2 <-
create_agent(
  tbl = tbl_2,
  tbl_name = "tbl_2",
  label = "Example table 2."
)
%>%
col_is_character(columns = b) %>%
interrogate()

Now, we’ll combine the two agents into a multiagent with the create_multiagent() function. Printing the "ptblank_multiagent" object displays the multiagent report with its default options (i.e., a 'long' report view).

multiagent <- create_multiagent(agent_1, agent_2)
multiagent

To take advantage of more display options, we could use the get_multiagent_report() function. The added functionality there allows for a 'wide' view of the data (useful for monitoring validations of the same table over repeated interrogations), the ability to modify the title of the multiagent report, and a means to export the report to HTML (via export_report()).

Function ID
10-1

See Also
Other The multiagent: get_multiagent_report(), read_disk_multiagent()
Get a table from a database

Description

If your target table is in a database, the `db_tbl()` function is a handy way of accessing it. This function simplifies the process of getting a `tbl_dbi` object, which usually involves a combination of building a connection to a database and using the `dplyr::tbl()` function with the connection and the table name (or a reference to a table in a schema). You can use `db_tbl()` as the basis for obtaining a database table for the `tbl` parameter in `create_agent()` or `create_informant()`. Another great option is supplying a table-prep formula involving `db_tbl()` to `tbl_store()` so that you have access to database tables through single names via a table store.

The username and password are supplied through environment variable names. If desired, values for the username and password can be supplied directly by enclosing such values in `I()`.

Usage

```r
db_tbl(
 table, # The name of the table, or, a reference to a table in a schema (two-element vector with the names of schema and table). Alternatively, this can be supplied as a data table to copy into an in-memory database connection. This only works if: (1) the db is chosen as either "sqlite" or "duckdb", (2) the dbname was is set to ":memory:"
 dbtype, # Either an appropriate driver function (e.g., RPostgres::Postgres()) or a short-name for the database type. Valid names are: "postgresql", "postgres", or "pgsql" (PostgreSQL, using the RPostgres::Postgres() driver function); "mysql" (MySQL, using RMySQL::MySQL()); bigquery or bq (BigQuery, using bigquery::bigquery()); "duckdb" (DuckDB, using duckdb::duckdb()); and "sqlite" (SQLite, using RSQLite::SQLite()).
 dbname = NULL, # The database name.
 host = NULL, # The database host and optional port number.
 port = NULL,
 user = NULL,
 password = NULL,
 bq_project = NULL,
 bq_dataset = NULL,
 bq_billing = bq_project
)
```

Arguments

- **table**: The name of the table, or, a reference to a table in a schema (two-element vector with the names of schema and table). Alternatively, this can be supplied as a data table to copy into an in-memory database connection. This only works if: (1) the db is chosen as either "sqlite" or "duckdb", (2) the dbname was is set to ":memory:“, and (3) the object supplied to table is a data frame or a tibble object.
- **dbtype**: Either an appropriate driver function (e.g., RPostgres::Postgres()) or a short-name for the database type. Valid names are: "postgresql", "postgres", or "pgsql" (PostgreSQL, using the RPostgres::Postgres() driver function); "mysql" (MySQL, using RMySQL::MySQL()); bigquery or bq (BigQuery, using bigquery::bigquery()); "duckdb" (DuckDB, using duckdb::duckdb()); and "sqlite" (SQLite, using RSQLite::SQLite()).
- **dbname**: The database name.
- **host, port**: The database host and optional port number.
user, password  The environment variables used to access the username and password for the
database. Enclose in I() when using literal username or password values.

bq_project, bq_dataset, bq_billing
   If accessing a table from a BigQuery data source, there’s the requirement to
   provide the table’s associated project (bq_project) and dataset (bq_dataset)
   names. By default, the project to be billed will be the same as the one pro-
   vided for bq_project but the bqBilling argument can be changed to reflect
   a different BigQuery project.

Value
   A tbl_dbi object.

Examples
   Obtaining in-memory database tables:
   You can use an in-memory database table and by supplying it with an in-memory table. This works
   with the DuckDB database and the key thing is to use dbname = "::memory" in the db_tbl() call.

   small_table_duckdb <-
     db_tbl(
       table = small_table,
       dbtype = "duckdb",
       dbname = "::memory:",
     )

   small_table_duckdb

   ## # Source: table<small_table> [?? x 8]
   ## # Database: duckdb_connection
   ## date_time date a b c d e f
   ## <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
   ## 1 2016-01-04 11:00:00 2016-01-04 2 1-bc. . . 3 3423. TRUE high
   ## 2 2016-01-04 00:32:00 2016-01-04 3 5-eg. . . 8 10000. TRUE low
   ## 3 2016-01-05 13:32:00 2016-01-05 6 8-kd. . . 3 2343. TRUE high
   ## 4 2016-01-06 17:23:00 2016-01-06 2 5-jd. . . NA 3892. FALSE mid
   ## 5 2016-01-09 12:36:00 2016-01-09 8 3-ld. . . 7 284. TRUE low
   ## 6 2016-01-11 06:15:00 2016-01-11 4 2-dh. . . 4 3291. TRUE mid
   ## 7 2016-01-15 18:46:00 2016-01-15 7 1-kn. . . 3 843. TRUE high
   ## 8 2016-01-17 11:27:00 2016-01-17 4 5-bo. . . 2 1036. FALSE low
   ## 9 2016-01-20 04:30:00 2016-01-20 3 5-bc. . . 9 838. FALSE high
   ## 10 2016-01-20 04:30:00 2016-01-20 3 5-bc. . . 9 838. FALSE high
   ## # . . . with more rows

   The in-memory option also works using the SQLite database. The only change required is setting
   the dbtype to "sqlite":

   small_table_sqlite <-
     db_tbl(
       table = small_table,
$db_tbl$

```
dbtype = "sqlite",
dbname = ":memory:"
)
```

small_table_sqlite

```r
Source: table<small_table> [?? x 8]
Database: sqlite 3.37.0 [:memory:]
date_time date a b c d e f
<dbl> <dbl> <int> <chr> <dbl> <dbl> <int> <chr>
1 1451905200 16804 2 1-bcd-345 3 3423. 1 high
2 1451867520 16804 3 5-egh-163 8 10000. 1 low
3 1452000720 16805 6 8-kdg-938 3 2343. 1 high
4 1452100980 16806 2 5-jdo-903 NA 3892. 0 mid
5 1452342960 16809 8 3-ldm-038 7 284. 1 low
6 1452492900 16811 4 2-dhe-923 4 3291. 1 mid
7 1452883560 16815 7 1-knw-093 3 843. 1 high
8 1453030020 16817 4 5-boe-639 2 1036. 0 low
9 1453264200 16820 3 5-bce-642 9 838. 0 high
10 1453264200 16820 3 5-bce-642 9 838. 0 high
. . . with more rows
```

It's also possible to obtain a table from a remote file and shove it into an in-memory database. For this, we can use the all-powerful `file_tbl()` + `db_tbl()` combo.

```r
all_revenue_large_duckdb <-
 db_tbl(
 table = file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
),
 dbtype = "duckdb",
 dbname = ":memory:"
),
 dbtype = "duckdb",
 dbname = ":memory:"
)
```

all_revenue_large_duckdb

```r
Source: table<sj_all_revenue_large.rds> [?? x 11]
Database: duckdb_connection
player_id session_id session_start time
<chr> <chr> <dttm> <dttm>
1 IRZKSAOYJME796 IRZKSAOYUM... 2015-01-01 00:18:41 2015-01-01 00:18:53
2 CJVYRASDZTX0674 CJVYRASDZT... 2015-01-01 01:13:01 2015-01-01 01:13:07
3 CJVYRASDZTX0674 CJVYRASDZT... 2015-01-01 01:13:01 2015-01-01 01:13:07
4 CJVYRASDZTX0674 CJVYRASDZT... 2015-01-01 01:13:01 2015-01-01 01:13:07
5 CJVYRASDZTX0674 CJVYRASDZT... 2015-01-01 01:13:01 2015-01-01 01:13:07
6 CJVYRASDZTX0674 CJVYRASDZT... 2015-01-01 01:13:01 2015-01-01 01:13:07
```
## 7 CJYRASDZTXO674 CJYRASDZTX
## 8 ECPANOIXLZH986 ECPANOIXLZH
## 9 ECPANOIXLZH986 ECPANOIXLZH
## 10 ECPANOIXLZH986 ECPANOIXLZH
## # ... with more rows, and 7 more variables: item_type <chr>,
## # item_name <chr>, item_revenue <dbl>, session_duration <dbl>,
## # start_day <date>, acquisition <chr>, country <chr>

And that’s really it.

**Obtaining remote database tables:**

For remote databases, we have to specify quite a few things but it’s a one-step process nonetheless. Here’s an example that accesses the rna table (in the RNA Central public database) using db_tbl(). Here, for the user and password entries we are using the literal username and password values (publicly available when visiting the RNA Central website) by enclosing the values in I().

```r
rna_db_tbl <-
 db_tbl(
 table = "rna",
 dbtype = "postgres",
 dbname = "pfmegrnargs",
 host = "hh-pgsql-public.ebi.ac.uk",
 port = 5432,
 user = I("reader"),
 password = I("NWDMCE5xdipIjRrp")
)
```

You’d normally want to use the names of environment variables (envvars) to more securely access the appropriate username and password values when connecting to a DB. Here are all the necessary inputs:
example_db_tbl <-
  db_tbl(
    table = "<table_name>",
    dbtype = "<database_type_shortname>",
    dbname = "<database_name>",
    host = "<connection_url>",
    port = "<connection_port>",
    user = "<DB_USER_NAME>",
    password = "<DB_PASSWORD>"
  )

Environment variables can be created by editing the .Renviron file and the usethis::edit_r_environ() function makes this pretty easy to do.

**DB table access and prep via the table store:**

Using table-prep formulas in a centralized table store can make it easier to work with DB tables in pointblank. Here’s how to generate a table store with two named entries for table preparations involving the tbl_store() and db_tbl() functions.

store <-
  tbl_store(
    small_table_duck ~ db_tbl(
      table = pointblank::small_table,
      dbtype = "duckdb",
      dbname = "::memory:"
    ),
    small_high_duck ~ {{ small_table_duck }} %>%
      dplyr::filter(f == "high"
    )
  )

Now it’s easy to obtain either of these tables via tbl_get(). We can reference the table in the store by its name (given to the left of the ~).

tbl_get(tbl = "small_table_duck", store = store)

## # Source: table<pointblank::small_table> [?? x 8]
## # Database: duckdb_connection
## # date_time date a b c d e
## # <dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
## 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE
## 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE
## 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE
## 4 2016-01-06 17:32:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE
## 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE
## 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE
## 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE
## 8 2016-01-17 12:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE
## 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE
## # . . . with more rows, and 1 more variable: f <chr>
The second table in the table store is a mutated version of the first. It’s just as easily obtainable via `tbl_get()`:

```r
tbl_get(tbl = "small_high_duck", store = store)
```

```r
Source: lazy query [?? x 8]
Database: duckdb_connection
date_time date a b c d e
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE
... with more rows, and 1 more variable: f <chr>
```

The table-prep formulas in the store object could also be used in functions with a tbl argument (like `create_agent()` and `create_informant()`). This is accomplished most easily with the `tbl_source()` function.

```r
agent <- create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_duck",
 store = tbls
)
)

informant <- create_informant(
 tbl = ~ tbl_source(
 tbl = "small_high_duck",
 store = tbls
)
)
```

**Function ID**

1-6

**See Also**

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
deactivate_steps

Deactivate one or more of an agent’s validation steps

Description

Should the deactivation of one or more validation steps be necessary after creation of the validation plan for an agent, the deactivate_steps() function will be helpful for that. This has the same effect as using the active = FALSE option (active is an argument in all validation functions) for the selected validation steps. Please note that this directly edits the validation step, wiping out any function that may have been defined for whether the step should be active or not.

Usage

devate_steps(agent, i = NULL)

Arguments

agent

The pointblank agent object

obj:<ptblank_agent> // required

A pointblank agent object that is commonly created through the use of the create_agent() function.

i

A validation step number

scalar<integer> // default: NULL (optional)

The validation step number, which is assigned to each validation step in the order of definition. If NULL (the default) then step deactivation won’t occur by index.

Value

A ptblank_agent object.

Function ID

9-6

See Also

For the opposite behavior, use the activate_steps() function.

Other Object Ops: activate_steps(), export_report(), remove_steps(), set_tbl(), x_read_disk(), x_write_disk()
Examples

```
Create an agent that has the
'small_table' object as the
target table, add a few
validation steps, and then use
'interrogate()'
agent_1 <-
create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example."
) %>%
col_exists(columns = date) %>%
col_vals_regex(
 columns = b,
 regex = "[0-9]-[a-z]{3}-[0-9]"
) %>%
interrogate()
```

```
The second validation step is
now being reconsidered and may
be either phased out or improved
upon; in the interim period it
was decided that the step should
be deactivated for now
agent_2 <-
agent_1 %>%
deactivate_steps(i = 2) %>%
interrogate()
```

draft_validation

---

draft_validation

```
Draft a starter pointblank validation .R/.Rmd file with a data table
```

Description

Generate a draft validation plan in a new .R or .Rmd file using an input data table. Using this workflow, the data table will be scanned to learn about its column data and a set of starter validation steps (constituting a validation plan) will be written. It’s best to use a data extract that contains at least 1000 rows and is relatively free of spurious data.

Once in the file, it’s possible to tweak the validation steps to better fit the expectations to the particular domain. While column inference is used to generate reasonable validation plans, it is difficult to infer the acceptable values without domain expertise. However, using draft_validation() could get you started on floor 10 of tackling data quality issues and is in any case better than starting with an empty code editor view.
Usage

draft_validation(
  tbl,
  tbl_name = NULL,
  filename = tbl_name,
  path = NULL,
  lang = NULL,
  output_type = c("R", "Rmd"),
  add_comments = TRUE,
  overwrite = FALSE,
  quiet = FALSE
)

Arguments

tbl  

A data table

obj:<tbl_*> // required

The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark
object.

tbl_name  

A table name

scalar<character> // default: NULL (optional)

A optional name to assign to the input table object. If no value is provided,
a name will be generated based on whatever information is available. This ta-
ble name will be displayed in the header area of the agent report generated by
printing the agent or calling get_agent_report().

filename  

File name

scalar<character> // default: tbl_name

An optional name for the .R or .Rmd file. This should be a name without an
extension. By default, this is taken from the tbl_name but if nothing is supplied
for that, the name will contain the text "draft_validation_" followed by the
current date and time.

path  

File path

scalar<character> // default: NULL (optional)

A path can be specified here if there shouldn’t be an attempt to place the gener-
ated file in the working directory.

lang  

Commenting language

scalar<character> // default: NULL (optional)

The language to use when creating comments for the automatically- generated
validation steps. By default, NULL will create English ("en") text. Other options
include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Por-
tuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"),
Danish ("da"), Swedish ("sv"), and Dutch ("nl").

output_type  

The output file type

sing1~kw:[R|Rmd] // default: "R"

An option for choosing what type of output should be generated. By default, this
is an .R script ("R") but this could alternatively be an R Markdown document
("Rmd").
add_comments    Add comments to the generated validation plan
    scalar<logical> // default: TRUE
    Should there be comments that explain the features of the validation plan in the
    generated document?

overwrite     Overwrite a previous file of the same name
    scalar<logical> // default: FALSE
    Should a file of the same name be overwritten?

quiet     Inform (or not) upon file writing
    scalar<logical> // default: FALSE
    Should the function not inform when the file is written?

Value

Invisibly returns TRUE if the file has been written.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl_df)
- Spark DataFrames (tbl_spark)
- the following database tables (tbl_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be
mindful of this when using unsupported backends with pointblank).

Examples

Let’s draft a validation plan for the dplyr::storms dataset.

dplyr::storms
#> # A tibble: 19,537 x 13
#> name  year month day hour lat  long status category wind pressure
#> <chr> <dbl> <dbl> <int> <dbl> <dbl> <fct> <fct> <dbl> <int> <int>
#> 1 Amy  1975   6   27    0 27.5  -79 tropical d~ NA   25 1013
#> 2 Amy  1975   6   27    6 28.5  -79 tropical d~ NA   25 1013
#> 3 Amy  1975   6   27   12 29.5  -79 tropical d~ NA   25 1013
#> 4 Amy  1975   6   27   18 30.5  -79 tropical d~ NA   25 1013
#> 5 Amy  1975   6   28    0 31.5  -78.8 tropical d~ NA   25 1012
#> 6 Amy  1975   6   28    6 32.4 -78.7 tropical d~ NA   25 1012
#> 7 Amy  1975   6   28   12 33.3 -78 tropical d~ NA   25 1011
#> 8 Amy  1975   6   28   18 34.3 -78 tropical d~ NA   25 1011
#> 9 Amy  1975   6   28   24 35.3 -78 tropical d~ NA   25 1011
#> 10 Amy 1975   6   29    0 36.5  -78 tropical d~ NA   25 1011
The `draft_validation()` function creates an .R file by default. Using just the defaults with `dplyr::storms` will yield the "dplyr__storms.R" file in the working directory. Here are the contents of the file:

```r
library(pointblank)

agent <-
 create_agent(
 tbl = ~ dplyr::storms,
 actions = action_levels(
 warn_at = 0.05,
 stop_at = 0.10
),
 tbl_name = "dplyr::storms",
 label = "Validation plan generated by 'draft_validation()'")
 # Expect that column 'name' is of type: character
col_is_character(
 columns = name
) # Expect that column 'year' is of type: numeric
col_is_numeric(
 columns = year
) # Expect that values in 'year' should be between '1975' and '2020'
col_vals_between(
 columns = year,
 left = 1975,
 right = 2020
) # Expect that column 'month' is of type: numeric
col_is_numeric(
 columns = month
) # Expect that values in 'month' should be between '1' and '12'
col_vals_between(
 columns = month,
 left = 1,
 right = 12
) # Expect that column 'day' is of type: integer
col_is_integer(
```
columns = day
) %>%
# Expect that values in `day` should be between `1` and `31`
col_vals_between(
  columns = day,
  left = 1,
  right = 31
) %>%
# Expect that column `hour` is of type: numeric
col_is_numeric(
  columns = hour
) %>%
# Expect that values in `hour` should be between `0` and `23`
col_vals_between(
  columns = hour,
  left = 0,
  right = 23
) %>%
# Expect that column `lat` is of type: numeric
col_is_numeric(
  columns = lat
) %>%
# Expect that values in `lat` should be between `-90` and `90`
col_vals_between(
  columns = lat,
  left = -90,
  right = 90
) %>%
# Expect that column `long` is of type: numeric
col_is_numeric(
  columns = long
) %>%
# Expect that values in `long` should be between `-180` and `180`
col_vals_between(
  columns = long,
  left = -180,
  right = 180
) %>%
# Expect that column `status` is of type: character
col_is_character(
  columns = status
) %>%
# Expect that column `category` is of type: factor
col_is_factor(
  columns = category
) %>%
# Expect that column `wind` is of type: integer
col_is_integer(
```
columns = wind
) %>%
 # Expect that values in `wind` should be between '10' and '160'
col_vals_between(
 columns = wind,
 left = 10,
 right = 160
) %>%
 # Expect that column `pressure` is of type: integer
col_is_integer(
 columns = pressure
) %>%
 # Expect that values in `pressure` should be between '882' and '1022'
col_vals_between(
 columns = pressure,
 left = 882,
 right = 1022
) %>%
 # Expect that column `tropicalstorm_force_diameter` is of type: integer
col_is_integer(
 columns = tropicalstorm_force_diameter
) %>%
 # Expect that values in `tropicalstorm_force_diameter` should be between
 # '0' and '870'
col_vals_between(
 columns = tropicalstorm_force_diameter,
 left = 0,
 right = 870,
 na_pass = TRUE
) %>%
 # Expect that column `hurricane_force_diameter` is of type: integer
col_is_integer(
 columns = hurricane_force_diameter
) %>%
 # Expect that values in `hurricane_force_diameter` should be between
 # '0' and '300'
col_vals_between(
 columns = hurricane_force_diameter,
 left = 0,
 right = 300,
 na_pass = TRUE
) %>%
 # Expect entirely distinct rows across all columns
rows_distinct() %>%
 # Expect that column schemas match
col_schema_match(
 schema = col_schema(
 name = "character",
```
year = "numeric",
month = "numeric",
day = "integer",
hour = "numeric",
lat = "numeric",
long = "numeric",
status = "character",
category = c("ordered", "factor"),
wind = "integer",
pressure = "integer",
tropicalstorm_force_diameter = "integer",
hurricane_force_diameter = "integer"
)

agent

This is runnable as is, and the promise is that the interrogation should produce no failing test units. After execution, we get the following validation report:

All of the expressions in the resulting file constitute just a rough approximation of what a validation plan should be for a dataset. Certainly, the value ranges in the emitted `col_vals_between()` may not be realistic for the wind column and may require some modification (the provided left and right values are just the limits of the provided data). However, note that the lat and long (latitude and longitude) columns have acceptable ranges (providing the limits of valid lat/lon values). This is thanks to `pointblank`'s column inference routines, which is able to understand what certain columns contain.

For an evolving dataset that will experience changes (either in the form of revised data and addition/deletion of rows or columns), the emitted validation will serve as a good first step and changes can more easily be made since there is a foundation to build from.

**Function ID**

1-11

**See Also**

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`
Description

The `email_blast()` function is useful for sending an email message that explains the result of a pointblank validation. It is powered by the `blastula` and `glue` packages. This function should be invoked as part of the end_fns argument of `create_agent()`. It’s also possible to invoke `email_blast()` as part of the fns argument of the `action_levels()` function (i.e., to send multiple email messages at the granularity of different validation steps exceeding failure thresholds).

To better get a handle on emailing with `email_blast()`, the analogous `email_create()` function can be used with a pointblank agent object.

Usage

```r
email_blast(
 x,
 to,
 from,
 credentials = NULL,
 msg_subject = NULL,
 msg_header = NULL,
 msg_body = stock_msg_body(),
 msg_footer = stock_msg_footer(),
 send_condition = ~TRUE %in% x$notify
)
```

Arguments

- **x**: A reference to the x-list object prepared internally by the agent. This version of the x-list is the same as that generated via `get_agent_x_list(<agent>)` except this version is internally generated and hence only available in an internal evaluation context.
- **to, from**: The email addresses for the recipients and of the sender.
- **credentials**: A credentials list object that is produced by either of the `blastula::creds()`, `blastula::creds_anonymous()`, `blastula::creds_key()`, or `blastula::creds_file()` functions. Please refer to the `blastula` documentation for information on how to use these functions.
- **msg_subject**: The subject line of the email message.
- **msg_header, msg_body, msg_footer**: Content for the header, body, and footer components of the HTML email message.
- **send_condition**: An expression that should evaluate to a logical vector of length 1. If evaluated as TRUE then the email will be sent, if FALSE then that won’t happen. The expression can use x-list variables (e.g., x$notify, x$type, etc.) and all of those variables can be explored using the `get_agent_x_list()` function. The default expression is ~ TRUE %in% x$notify, which results in TRUE if there are any TRUE values in the x$notify logical vector (i.e., any validation step that results in a 'notify' state).
Value

Nothing is returned. The end result is the side-effect of email-sending if certain conditions are met.

YAML

A **pointblank** agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). Here is an example of how the use of `email_blast()` inside the `end_fns` argument of `create_agent()` is expressed in R code and in the corresponding YAML representation.

R statement:

```r
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al,
 end_fns = list(~ email_blast(
 x,
 to = "joe_public@example.com",
 from = "pb_notif@example.com",
 msg_subject = "Table Validation",
 credentials = blastula::creds_key(id = "smtp2go")
))
) %>%
 col_vals_gt(a, 1) %>%
 col_vals_lt(a, 7)
```

YAML representation:

```yaml

type: agent
tbl: ~small_table
tbl_name: small_table
label: An example.
lang: en
locale: en
actions:
 warn_count: 1.0
 notify_count: 2.0
end_fns: ~email_blast(x, to = "joe_public@example.com",
 from = "pb_notif@example.com", msg_subject = "Table Validation",
 credentials = blastula::creds_key(id = "smtp2go")
)
embed_report: true
```
**Steps:**
- `col_vals_gt`:
  - columns: `c(a)`
  - value: `1.0`
- `col_vals_lt`:
  - columns: `c(a)`
  - value: `7.0`

**Examples**

For the example provided here, we’ll use the included `small_table` dataset. We are also going to create an `action_levels()` list object since this is useful for demonstrating an emailing scenario. It will have absolute values for the `warn` and `notify` states (with thresholds of 1 and 2 'fail' units, respectively, for the two states).

```r
al <-
 action_levels(
 warn_at = 1,
 notify_at = 2
)
```

Validate that values in column `a` from `small_tbl` are always greater than 1 (with the `col_vals_gt()` validation function), and, that values in `a` or are always less than 7.

The `email_blast()` function call is used in a list given to the `end_fns` argument of `create_agent()`. The `email_blast()` call itself has a `send_condition` argument that determines whether or not an email will be sent. By default this is set to `~ TRUE %in% x$notify`. Let’s unpack this a bit. The variable `x` is a list (we call it an x-list) and it will be populated with elements pertaining to the agent. After interrogation, and only if action levels were set for the `notify` state, `x$notify` will be present as a logical vector where the length corresponds to the number of validation steps. Thus, if any of those steps entered the `notify` state (here, it would take two or more failing test units, per step, for that to happen), then the statement as a whole is TRUE and the email of the interrogation report will be sent. Here is the complete set of statements for the creation of an `agent`, the addition of validation steps, and the interrogation of data in `small_table`:

```r
agent <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al,
 end_fns = list(
 ~ email_blast(
 x,
 to = "a_person@example.com",
 from = "pb_notif@example.com",
 msg_subject = "Table Validation",
 credentials = blastula::creds_key(id = "smtp2go"),
 send_condition = ~ TRUE %in% x$notify
)
)
)
```
email_create

Create an email object from a pointblank agent

Description

The email_create() function produces an email message object that could be sent using the blastula package. By supplying a pointblank agent, a blastula email_message message object will be created and printing it will make the HTML email message appear in the Viewer.

Usage

email_create(
  x,
  msg_header = NULL,
  msg_body = stock_msg_body(),
  msg_footer = stock_msg_footer()
)

Arguments

  x
    The pointblank agent object
    obj:<ptblank_agent> // required
    A pointblank agent object that is commonly created through the use of the create_agent() function.

  msg_header, msg_body, msg_footer
    Content for the header, body, and footer components of the HTML email message.

See Also

Other Emailing: email_create(), stock_msg_body(), stock_msg_footer()
Value

A blastula email_message object.

Examples

For the example provided here, we’ll use the included small_table dataset. We are also going to create an action_levels() list object since this is useful for demonstrating an emailing scenario. It will have absolute values for the warn and notify states (with thresholds of 1 and 2 'fail' units, respectively, for the two states).

```r
al <- action_levels(
 warn_at = 1,
 notify_at = 2
)
```

In a workflow that involves an agent object, we can make use of the end_fns argument and programmatically email the report with the `email_blast()` function. However, an alternate workflow that is demonstrated here is to produce the email object directly. This provides the flexibility to send the email outside of the pointblank API. The `email_create()` function lets us do this with an agent object. We can then view the HTML email just by printing `email_object`. It should appear in the Viewer.

```r
e-mail_object <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = al
) %>%
 col_vals_gt(a, value = 1) %>%
 col_vals_lt(a, value = 7) %>%
 interrogate() %>%
 email_create()

 email_object
```

Function ID

4-2

See Also

Other Emailing: email_blast(), stock_msg_body(), stock_msg_footer()
export_report

Export an agent, informant, multiagent, or table scan to HTML

Description

The agent, informant, multiagent, and the table scan object can be easily written as HTML with export_report(). Furthermore, any report objects from the agent, informant, and multiagent (generated using get_agent_report(), get_informant_report(), and get_multiagent_report()) can be provided here for HTML export. Each HTML document written to disk is self-contained and easily viewable in a web browser.

Usage

export_report(x, filename, path = NULL, quiet = FALSE)

Arguments

x  
One of several types of objects
<object> // required
An agent object of class ptblank_agent, an informant of class ptblank_informant, a multiagent of class ptblank_multiagent, a table scan of class ptblank_tbl_scan, or, customized reporting objects (ptblank_agent_report, ptblank_informant_report, ptblank_multiagent_report.wide, ptblank_multiagent_report.long).

filename  
File name
scalar<character> // required
The filename to create on disk for the HTML export of the object provided. It’s recommended that the extension ".html" is included.

path  
File path
scalar<character> // default: NULL (optional)
An optional path to which the file should be saved (this is automatically combined with filename).

quiet  
Inform (or not) upon file writing
scalar<logical> // default: FALSE
Should the function not inform when the file is written?

Value

Invisibly returns TRUE if the file has been written.

Examples

A: Writing an agent report as HTML:

Let’s go through the process of (1) developing an agent with a validation plan (to be used for the data quality analysis of the small_table dataset), (2) interrogating the agent with the interrogate() function, and (3) writing the agent and all its intel to a file.
Creating an action_levels object is a common workflow step when creating a pointblank agent. We designate failure thresholds to the warn, stop, and notify states using action_levels().
al <- action_levels(
  warn_at = 0.10,
  stop_at = 0.25,
  notify_at = 0.35
)

Now create a pointblank agent object and give it the \texttt{al} object (which serves as a default for all validation steps which can be overridden). The data will be referenced in the \texttt{tbl} argument with a leading \texttt{~}.

\begin{verbatim}
agent <- create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "\`export_report()\",
  actions = al
)
\end{verbatim}

As with any agent object, we can add steps to the validation plan by using as many validation functions as we want. Then, we \texttt{interrogate()}.

\begin{verbatim}
agent <-
agent %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
  columns = b,
  regex = "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5) %>%
interrogate()
\end{verbatim}

The agent report can be written to an HTML file with \texttt{export_report()}.

\begin{verbatim}
export_report(
  agent,
  filename = "agent-small_table.html"
)
\end{verbatim}

If you’re consistently writing agent reports when periodically checking data, we could make use of \texttt{affix_date()} or \texttt{affix_datetime()} depending on the granularity you need. Here’s an example that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.html".

\begin{verbatim}
export_report(
  agent,
  filename = affix_datetime("agent-small_table.html"
)
\end{verbatim}
B: Writing an informant report as HTML:
Let's go through the process of (1) creating an informant object that minimally describes the `small_table` dataset, (2) ensuring that data is captured from the target table using the `incorporate()` function, and (3) writing the informant report to HTML.

Create a pointblank informant object with `create_informant()` and the `small_table` dataset. Use `incorporate()` so that info snippets are integrated into the text.

```r
informant <-
create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "\"export_report()\"
) %>%
info_snippet(
 snippet_name = "high_a",
 fn = snip_highest(column = "a")
) %>%
info_snippet(
 snippet_name = "low_a",
 fn = snip_lowest(column = "a")
) %>%
info_columns(
 columns = a,
 info = "From {low_a} to {high_a}."
) %>%
info_columns(
 columns = starts_with("date"),
 info = "Time-based values."
) %>%
info_columns(
 columns = date,
 info = "The date part of `date_time`."
) %>%
incorporate()
```

The informant report can be written to an HTML file with `export_report()`. Let's do this with `affix_date()` so the filename has a datestamp.

```r
export_report(
 informant,
 filename = affix_date(
 "informant-small_table.html"
)
)
```

C: Writing a table scan as HTML:
We can get a report that describes all of the data in the `storms` dataset.

```r
tbl_scan <- scan_data(tbl = dplyr::storms)
```
The table scan object can be written to an HTML file with `export_report()`.  

```r
export_report(
 tbl_scan,
 filename = "tbl_scan-storms.html"
)
```

**Function ID**

9-3

**See Also**

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `remove_steps()`, `set_tbl()`, `x_read_disk()`, `x_write_disk()`

---

**file_tbl**  
*Get a table from a local or remote file*

**Description**

If your target table is in a file, stored either locally or remotely, the `file_tbl()` function can make it possible to access it in a single function call. Compatible file types for this function are: CSV (.csv), TSV (.tsv), RDA (.rda), and RDS (.rds) files. This function generates an in-memory `tbl_df` object, which can be used as a target table for `create_agent()` and `create_informant()`. Another great option is supplying a table-prep formula involving `file_tbl()` to `tbl_store()` so that you have access to tables based on flat files through single names via a table store.

In the remote data use case, we can specify a URL starting with `http://`, `https://`, etc., and ending with the file containing the data table. If data files are available in a GitHub repository then we can use the `from_github()` function to specify the name and location of the table data in a repository.

**Usage**

```r
file_tbl(file, type = NULL, ..., keep = FALSE, verify = TRUE)
```

**Arguments**

- `file`  
  The complete file path leading to a compatible data table either in the user system or at a `http://`, `https://`, `ftp://`, or `ftps://` URL. For a file hosted in a GitHub repository, a call to the `from_github()` function can be used here.

- `type`  
  The file type. This is normally inferred by file extension and is by default `NULL` to indicate that the extension will dictate the type of file reading that is performed internally. However, if there is no extension (and valid extensions are `.csv`, `.tsv`, `.rda`, and `.rds`), we can provide the type as either of `csv`, `tsv`, `rda`, or `rds`. 
... Options passed to `readr`'s `read_csv()` or `read_tsv()` function. Both functions have the same arguments and one or the other will be used internally based on the file extension or an explicit value given to `type`.

**keep**

In the case of a downloaded file, should it be stored in the working directory (`keep = TRUE`) or should it be downloaded to a temporary directory? By default, this is `FALSE`.

**verify**

If `TRUE` (the default) then a verification of the data object having the `data.frame` class will be carried out.

**Value**

A `tbl_df` object.

**Examples**

### Producing tables from CSV files:

A local CSV file can be obtained as a tbl object by supplying a path to the file and some CSV reading options (the ones used by `readr::read_csv()`) to the `file_tbl()` function. For this example we could obtain a path to a CSV file in the `pointblank` package with `system.file()`.

```r
csv_path <-
 system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
)

Then use that path in `file_tbl()` with the option to specify the column types in that CSV.

tbl <-
 file_tbl(
 file = csv_path,
 col_types = "TDdcddlc"
)

tbl
```

```r
A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 7 284. TRUE low
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . NA 3892. FALSE mid
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE low
```
Now that we have a ‘tbl’ object that is a tibble it could be introduced to `create_agent()` for validation.

```r
agent <- create_agent(tbl = tbl)
```

A different strategy is to provide the data-reading function call directly to `create_agent()`:

```r
agent <-
 create_agent(
 tbl = ~ file_tbl(
 file = system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
),
 col_types = "TDdcddlc"
)
) %>%
 col_vals_gt(columns = a, value = 0)
```

All of the file-reading instructions are encapsulated in the tbl expression (with the leading ~) so the agent will always obtain the most recent version of the table (and the logic can be translated to YAML, for later use).

**Producing tables from files on GitHub:**

A CSV can be obtained from a public GitHub repo by using the `from_github()` helper function. Let’s create an agent a supply a table-prep formula that gets the same CSV file from the GitHub repository for the pointblank package.

```r
agent <-
 create_agent(
 tbl = ~ file_tbl(
 file = from_github(
 file = "inst/data_files/small_table.csv",
 repo = "rstudio/pointblank"
),
 col_types = "TDdcddlc"
),
 tbl_name = "small_table",
 label = "'file_tbl()' example.",
) %>%
 col_vals_gt(columns = a, value = 0) %>%
 interrogate()
```

This interrogated the data that was obtained from the remote source file, and, there’s nothing to clean up (by default, the downloaded file goes into a system temp directory).
File access, table creation, and prep via the table store:

Using table-prep formulas in a centralized table store can make it easier to work with tables from disparate sources. Here’s how to generate a table store with two named entries for table preparations involving the `tbl_store()` and `file_tbl()` functions.

```r
store <-
 tbl_store(
 small_table_file ~ file_tbl(
 file = system.file(
 "data_files", "small_table.csv",
 package = "pointblank"
),
 col_types = "TDdcddlc"
),
 small_high_file ~ {{ small_table_file }} %>%
 dplyr::filter(f == "high"
)
)
```

Now it’s easy to access either of these tables via `tbl_get()`. We can reference the table in the store by its name (given to the left of the `~`).

```r
tbl_get(tbl = "small_table_file", store = store)
A tibble: 13 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-. . . 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-. . . 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-. . . 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-. . . NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-. . . 7 284. TRUE high
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-. . . 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-. . . 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-. . . 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-. . . 9 838. FALSE high
11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-. . . 7 834. TRUE low
12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-. . . 8 108. FALSE low
13 2016-01-30 11:23:00 2016-01-30 1 3-dka-. . . NA 2230. TRUE high
```

The second table in the table store is a mutated version of the first. It’s just as easily obtainable via `tbl_get()`:

```r
tbl_get(tbl = "small_high_file", store = store)
A tibble: 6 × 8
date_time date a b c d e f
<dttm> <date> <dbl> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
3 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
6 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

The table-prep formulas in the store object could also be used in functions with a tbl argument (like `create_agent()` and `create_informant()`). This is accomplished most easily with the `tbl_source()` function.

```r
agent <-
create_agent(
  tbl = ~ tbl_source(
    tbl = "small_table_file",
    store = store
  )
)

informant <-
create_informant(
  tbl = ~ tbl_source(
    tbl = "small_high_file",
    store = store
  )
)
```

Function ID

1-7

See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`

from_github

Specify a file for download from GitHub

Description

The `from_github()` function is helpful for generating a valid URL that points to a data file in a public GitHub repository. This function can be used in the `file` argument of the `file_tbl()` function or anywhere else where GitHub URLs for raw user content are needed.

Usage

```r
from_github(file, repo, subdir = NULL, default_branch = "main")
```
from_github

Arguments

file
The name of the file to target in a GitHub repository. This can be a path leading
to and including the file. This is combined with any path given in subdir.

trepo
The GitHub repository address in the format username/repo[/subdir][@ref|#pull|#release].

subdir
A path string representing a subdirectory in the GitHub repository. This is com-
bined with any path components included in file.

default_branch
The name of the default branch for the repo. This is usually "main" (the default
used here).

Value

A character vector of length 1 that contains a URL.

Function ID

13-6

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), col_schema(), has_columns(),
stop_if_not()

Examples

A valid URL to a data file in GitHub can be
obtained from the HEAD of the default branch
from_github(
file = "inst/data_files/small_table.csv",
repo = "rstudio/pointblank"
)

The path to the file location can be supplied
fully or partially to `subdir`
from_github(
file = "small_table.csv",
repo = "rstudio/pointblank",
subdir = "inst/data_files"
)

We can use the first call in combination with
`file_tbl()` and `create_agent()`; this
supplies a table-prep formula that gets
a CSV file from the GitHub repository for the
pointblank package
agent <-
create_agent(
tbl = ~ file_tbl(
file = from_github(
file = "inst/data_files/small_table.csv",
repo = "rstudio/pointblank"
The `from_github()` helper function is pretty powerful and can get at lots of different files in a repository.

A data file from GitHub can be obtained from a commit at release time:

```r
from_github(
  file = "inst/extdata/small_table.csv",
  repo = "rstudio/pointblank@v0.2.1"
)
```

A file may also be obtained from a repo at the point in time of a specific commit (partial or full SHA-1 hash for the commit can be used):

```r
from_github(
  file = "data-raw/small_table.csv",
  repo = "rstudio/pointblank@e04a71"
)
```

A file may also be obtained from an *open* pull request:

```r
from_github(
  file = "data-raw/small_table.csv",
  repo = "rstudio/pointblank#248"
)
```

game_revenue

A table with game revenue data

Description

This table is a subset of the sj_all_revenue table from the `intendo` data package. It’s the first 2,000 rows from that table where revenue records range from 2015-01-01 to 2015-01-21.

Usage

`game_revenue`

Format

A tibble with 2,000 rows and 11 variables:
player_id A character column with unique identifiers for each user/player.
session_id A character column that contains unique identifiers for each player session.
session_start A date-time column that indicates when the session (containing the revenue event) started.
time A date-time column that indicates exactly when the player purchase (or revenue event) occurred.
item_type A character column that provides the class of the item purchased.
item_name A character column that provides the name of the item purchased.
item_revenue A numeric column with the revenue amounts per item purchased.
session_duration A numeric column that states the length of the session (in minutes) for which the purchase occurred.
start_day A Date column that provides the date of first login for the player making a purchase.
acquisition A character column that provides the method of acquisition for the player.
country A character column that provides the probable country of residence for the player.

Function ID

14-4

See Also

Other Datasets: game_revenue_info, small_table, small_table_sqlite(), specifications

Examples

Here is a glimpse at the data
available in 'game_revenue'
dplyr::glimpse(game_revenue)

dplyr::glimpse(game_revenue_info)

Description

This table contains metadata for the game_revenue table. The first column (named column) provides the column names from game_revenue. The second column (info) contains descriptions for each of the columns in that dataset. This table is in the correct format for use in the info_columns_from_tbl() function.

Usage

game_revenue_info
Format

A tibble with 11 rows and 2 variables:

- **column**: A character column with unique identifiers for each user/player.
- **info**: A character column that contains unique identifiers for each player session.

Function ID

14-5

See Also

Other Datasets: `game_revenue`, `small_table`, `small_table_sqlite()`, `specifications`

Examples

```r
# Here is a glimpse at the data
# available in 'game_revenue_info'
dplyr::glimpse(game_revenue_info)
```

get_agent_report
Get a summary report from an agent

Description

We can get an informative summary table from an agent by using the `get_agent_report()` function. The table can be provided in two substantially different forms: as a `gt` based display table (the default), or, as a tibble. The amount of fields with intel is different depending on whether or not the agent performed an interrogation (with the `interrogate()` function). Basically, before `interrogate()` is called, the agent will contain just the validation plan (however many rows it has depends on how many validation functions were supplied a part of that plan). Post-interrogation, information on the passing and failing test units is provided, along with indicators on whether certain failure states were entered (provided they were set through actions). The display table variant of the agent report, the default form, will have the following columns:

- **i** (unlabeled): the validation step number.
- **STEP**: the name of the validation function used for the validation step,
- **COLUMNS**: the names of the target columns used in the validation step (if applicable).
- **VALUES**: the values used in the validation step, where applicable; this could be as literal values, as column names, an expression, etc.
- **TBL**: indicates whether any there were any changes to the target table just prior to interrogation. A rightward arrow from a small circle indicates that there was no mutation of the table. An arrow from a circle to a purple square indicates that preconditions were used to modify the target table. An arrow from a circle to a half-filled circle indicates that the target table has been segmented.
- EVAL: a symbol that denotes the success of interrogation evaluation for each step. A checkmark indicates no issues with evaluation. A warning sign indicates that a warning occurred during evaluation. An explosion symbol indicates that evaluation failed due to an error. Hover over the symbol for details on each condition.
- UNITS: the total number of test units for the validation step
- PASS: on top is the absolute number of passing test units and below that is the fraction of passing test units over the total number of test units.
- FAIL: on top is the absolute number of failing test units and below that is the fraction of failing test units over the total number of test units.
- W, S, N: indicators that show whether the warn, stop, or notify states were entered; unset states appear as dashes, states that are set with thresholds appear as unfilled circles when not entered and filled when thresholds are exceeded (colors for W, S, and N are amber, red, and blue)
- EXT: a column that provides buttons to download data extracts as CSV files for row-based validation steps having failing test units. Buttons only appear when there is data to collect.

The small version of the display table (obtained using size = "small") omits the COLUMNS, TBL, and EXT columns. The width of the small table is 575px; the standard table is 875px wide.

The ptblank_agent_report can be exported to a standalone HTML document with the export_report() function.

If choosing to get a tibble (with display_table = FALSE), it will have the following columns:

- i: the validation step number.
- type: the name of the validation function used for the validation step.
- columns: the names of the target columns used in the validation step (if applicable).
- values: the values used in the validation step, where applicable; for a conjointly() validation step, this is a listing of all sub-validations.
- precon: indicates whether any there are any preconditions to apply before interrogation and, if so, the number of statements used.
- active: a logical value that indicates whether a validation step is set to "active" during an interrogation.
- eval: a character value that denotes the success of interrogation evaluation for each step. A value of "OK" indicates no issues with evaluation. The "WARNING" value indicates a warning occurred during evaluation. The "ERROR" VALUES indicates that evaluation failed due to an error. With "W+E" both warnings and an error occurred during evaluation.
- units: the total number of test units for the validation step.
- n_pass: the number of passing test units.
- f_pass: the fraction of passing test units.
- W, S, N: logical value stating whether the warn, stop, or notify states were entered. Will be NA for states that are unset.
- extract: an integer value that indicates the number of rows available in a data extract. Will be NA if no extract is available.
get_agent_report

Usage

get_agent_report(
 agent,
 arrange_by = c("i", "severity"),
 keep = c("all", "fail_states"),
 display_table = TRUE,
 size = "standard",
 title = ":default:",
 lang = NULL,
 locale = NULL
)

Arguments

agent The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the
create_agent() function.

arrange_by Method of arranging the report's table rows
singl-kw:[i|severity] // default: "i"
A choice to arrange the report table rows by the validation step number ("i", the
default), or, to arrange in descending order by severity of the failure state (with
"severity").

keep Which table rows should be kept?
singl-kw:[all|fail_states] // default: "all"
An option to keep "all" of the report’s table rows (the default), or, keep only
those rows that reflect one or more "fail_states".

display_table Return a display-table report via gt
scalar<logical> // default: TRUE
Should a display table be generated? If TRUE, and if the gt package is installed,
a display table for the report will be shown in the Viewer. If FALSE, or if gt is
not available, then a tibble will be returned.

size Size option for display-table report
scalar<character> // default: "standard"
The size of the display table, which can be either "standard" (the default) or
"small". This only applies to a display table (where display_table = TRUE).

title Title customization options
scalar<character> // default: ":default:"
Options for customizing the title of the report. The default is the keyword
":default:" which produces generic title text that refers to the pointblank
package in the language governed by the lang option. Another keyword option is
":tbl_name:“, and that presents the name of the table as the title for the re-
port. If no title is wanted, then the ":none:" keyword option can be used. Aside
from keyword options, text can be provided for the title and glue::glue() calls
can be used to construct the text string. If providing text, it will be interpreted
as Markdown text and transformed internally to HTML. To circumvent such a
transformation, use text in `I()` to explicitly state that the supplied text should not be transformed.

`lang`
Reporting language

`scalar<character> // default: NULL (optional)`

The language to use for automatic creation of briefs (short descriptions for each validation step) and for the *agent report* (a summary table that provides the validation plan and the results from the interrogation). By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl"). This `lang` option will override any previously set language setting (e.g., by the `create_agent()` call).

`locale`
Locale for value formatting

`scalar<character> // default: NULL (optional)`

An optional locale ID to use for formatting values in the *agent report* summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This `locale` option will override any previously set locale value (e.g., by the `create_agent()` call).

Value

A `ptblank_agent_report` object if `display_table = TRUE` or a tibble if `display_table = FALSE`.

Examples

For the example here, we’ll use a simple table with a single numerical column `a`.

```r
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl
```

```
# A tibble: 4 x 1
#  a
# <dbl>  
#  1 5
#  2 7
#  3 8
#  4 5
```

Let’s create an *agent* and validate that values in column `a` are always greater than 4.

```r
agent <-
create_agent(
  tbl = tbl,
  tbl_name = "small_table",
  label = "An example."
) %>%
```
We can get a tibble-based report from the agent by using `get_agent_report()` with `display_table = FALSE`.

```r
agent %>% get_agent_report(display_table = FALSE)
## # A tibble: 1 × 14
##   i  type columns values precon active eval units n_pass
##  <int> <chr> <chr> <chr> <chr> <lgl> <chr> <dbl> <dbl>
## 1 1 col_vals_gt(columns = a, value = 4) %>%
   interrogate()
```

The full-featured display-table-based report can be viewed by printing the agent object, but, we can get a "ptblank_agent_report" object returned to us when using `display_table = TRUE` (the default for `get_agent_report`).

```r
report <- get_agent_report(agent)
```

What can you do with the `report` object? Print it at will wherever, and, it can serve as an input to the `export_report()` function.

However, the better reason to use `get_agent_report()` over just printing the agent for display-table purposes is to make use of the different display options.

The agent report as a `gt` display table comes in two sizes: "standard" (the default, 875px wide) and "small" (575px wide). Let's take a look at the smaller-sized version of the report.

```r
small_report <-
  get_agent_report(
    agent = agent,
    size = "small"
  )

small_report
```

We can use our own title by supplying it to the `title` argument, or, use a special keyword like "\:tbl_name:" to get the table name (set in the `create_agent()` call) as the title.

```r
report_title <- get_agent_report(agent, title = "\:tbl_name:")
```

There are more options! You can change the language of the display table with the `lang` argument (this overrides the language set in `create_agent()`), validation steps can be rearranged using the `arrange_by` argument, and we can also apply some filtering with the `keep` argument in `get_agent_report()`.
Function ID

6-2

See Also

Other Interrogate and Report: `interrogate()`

get_agent_x_list

Get the agent’s x-list

Description

The agent’s **x-list** is a record of information that the agent possesses at any given time. The **x-list** will contain the most complete information after an interrogation has taken place (before then, the data largely reflects the validation plan). The **x-list** can be constrained to a particular validation step (by supplying the step number to the `i` argument), or, we can get the information for all validation steps by leaving `i` unspecified. The **x-list** is indeed an R list object that contains a veritable cornucopia of information.

For an **x-list** obtained with `i` specified for a validation step, the following components are available:

- `time_start`: the time at which the interrogation began (POSIXct [0 or 1])
- `time_end`: the time at which the interrogation ended (POSIXct [0 or 1])
- `label`: the optional label given to the agent (chr [1])
- `tbl_name`: the name of the table object, if available (chr [1])
- `tbl_src`: the type of table used in the validation (chr [1])
- `tbl_src_details`: if the table is a database table, this provides further details for the DB table (chr [1])
- `tbl`: the table object itself
- `col_names`: the table’s column names (chr [ncol(tbl)])
- `col_types`: the table’s column types (chr [ncol(tbl)])
- `i`: the validation step index (int [1])
- `type`: the type of validation, value is validation function name (chr [1])
- `columns`: the columns specified for the validation function (chr [variable length])
- `values`: the values specified for the validation function (mixed types [variable length])
- `briefs`: the brief for the validation step in the specified lang (chr [1])
- `eval_error`, `eval_warning`: indicates whether the evaluation of the step function, during interrogation, resulted in an error or a warning (lgl [1])
- `capture_stack`: a list of captured errors or warnings during step-function evaluation at interrogation time (list [1])
- `n`: the number of test units for the validation step (num [1])
- `n_passed`, `n_failed`: the number of passing and failing test units for the validation step (num [1])
get_agent_x_list

- f_passed: the fraction of passing test units for the validation step, n_passed / n (num [1])
- f_failed: the fraction of failing test units for the validation step, n_failed / n (num [1])
- warn, stop, notify: a logical value indicating whether the level of failing test units caused the corresponding conditions to be entered (lgl [1])
- lang: the two-letter language code that indicates which language should be used for all briefs, the agent report, and the reporting generated by the scan_data() function (chr [1])

If i is unspecified (i.e., not constrained to a specific validation step) then certain length-one components in the x-list will be expanded to the total number of validation steps (these are: i, type, columns, values, briefs, eval_error, eval_warning, capture_stack, n, n_passed, n_failed, f_passed, f_failed, warn, stop, and notify). The x-list will also have additional components when i is NULL, which are:

- report_object: a gt table object, which is also presented as the default print method for a ptblank_agent
- email_object: a blastula email_message object with a default set of components
- report_html: the HTML source for the report_object, provided as a length-one character vector
- report_html_small: the HTML source for a narrower, more condensed version of report_object, provided as a length-one character vector; The HTML has inlined styles, making it more suitable for email message bodies

Usage

get_agent_x_list(agent, i = NULL)

Arguments

agent: The pointblank agent object

obj: <ptblank_agent> // required

A pointblank agent object that is commonly created through the use of the create_agent() function.

i: A validation step number

scalar<integer> // default: NULL (optional)

The validation step number, which is assigned to each validation step in the order of invocation. If NULL (the default), the x-list will provide information for all validation steps. If a valid step number is provided then x-list will have information pertaining only to that step.

Value

An x_list object.

Examples

Create a simple data frame with a column of numerical values.
tbl <- dplyr::tibble(a = c(5, 7, 8, 5))

tbl
#> # A tibble: 4 x 1
#> a
#> <dbl>
#> 1 5
#> 2 7
#> 3 8
#> 4 5

Create an action_levels() list with fractional values for the warn, stop, and notify states.

al <-
 action_levels(
 warn_at = 0.2,
 stop_at = 0.8,
 notify_at = 0.345
)

Create an agent (giving it the tbl and the al objects), supply two validation step functions, then interrogate.

agent <-
 create_agent(
 tbl = tbl,
 actions = al
) %>%
 col_vals_gt(columns = a, value = 7) %>%
 col_is_numeric(columns = a) %>%
 interrogate()

Get the f_passed component of the agent x-list.

x <- get_agent_x_list(agent)

x$f_passed
#> [1] 0.25 1.00

Function ID

8-1

See Also

Other Post-interrogation: `all_passed()`, `get_data_extracts()`, `get_sundered_data()`, `write_testthat_file()`
get_data_extracts
Collect data extracts from a validation step

Description

In an agent-based workflow (i.e., initiating with `create_agent()`), after interrogation with `interrogate()`, we can extract the row data that didn’t pass row-based validation steps with the `get_data_extracts()` function. There is one discrete extract per row-based validation step and the amount of data available in a particular extract depends on both the fraction of test units that didn’t pass the validation step and the level of sampling or explicit collection from that set of units. These extracts can be collected programmatically through `get_data_extracts()` but they may also be downloaded as CSV files from the HTML report generated by the agent’s print method or through the use of `get_agent_report()`.

The availability of data extracts for each row-based validation step depends on whether `extract_failed` is set to `TRUE` within the `interrogate()` call (it is by default). The amount of `fail` rows extracted depends on the collection parameters in `interrogate()`, and the default behavior is to collect up to the first 5000 `fail` rows.

Row-based validation steps are based on those validation functions of the form `col_vals_*()` and also include `conjointly()` and `rows_distinct()`. Only functions from that combined set of validation functions can yield data extracts.

Usage

```r
get_data_extracts(agent, i = NULL)
```

Arguments

- **agent**
 The pointblank agent object

 A `pointblank` agent object that is commonly created through the use of the `create_agent()` function. It should have had `interrogate()` called on it, such that the validation steps were carried out and any sample rows from non-passing validations could potentially be available in the object.

- **i**
 A validation step number

 A scalar `integer`

 The validation step number, which is assigned to each validation step by `pointblank` in the order of definition. If `NULL` (the default), all data extract tables will be provided in a list object.

Value

A list of tables if `i` is not provided, or, a standalone table if `i` is given.
Examples

Create a series of two validation steps focused on testing row values for part of the small_table object. Use `interrogate()` right after that.

```r
agent <-
  create_agent(
    tbl = small_table %>%
      dplyr::select(a:f),
    label = "\"get_data_extracts()\"
  ) %>%
  col_vals_gt(d, value = 1000) %>%
  col_vals_between(
    columns = c,
    left = vars(a), right = vars(d),
    na_pass = TRUE
  ) %>%
  interrogate()
```

Using `get_data_extracts()` with its defaults returns of a list of tables, where each table is named after the validation step that has an extract available.

```r
agent %>% get_data_extracts()
## $1
## # A tibble: 6 × 6
## a b c d e f
## <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 8 3-ldm-038 7 284. TRUE low
## 2 7 1-knw-093 3 843. TRUE high
## 3 3 5-bce-642 9 838. FALSE high
## 4 3 5-bce-642 9 838. FALSE high
## 5 4 2-dmx-010 7 834. TRUE low
## 6 2 7-dmx-010 8 108. FALSE low
##
## # $2
## # A tibble: 4 × 6
## a b c d e f
## <int> <chr> <dbl> <dbl> <lgl> <chr>
## 1 6 8-kdg-938 3 2343. TRUE high
## 2 8 3-ldm-038 7 284. TRUE low
## 3 7 1-knw-093 3 843. TRUE high
## 4 4 5-boe-639 2 1036. FALSE low
```

We can get an extract for a specific step by specifying it in the `i` argument. Let's get the failing rows from the first validation step (the `col_vals_gt()` one).

```r
agent %>% get_data_extracts(i = 1)
```
A tibble: 6 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 8 3-ldm-038 7 284. TRUE low
2 7 1-knw-093 3 843. TRUE high
3 3 5-bce-642 9 838. FALSE high
4 3 5-bce-642 9 838. FALSE high
5 4 2-dmx-010 7 834. TRUE low
6 2 7-dmx-010 8 108. FALSE low

Function ID

8-2

See Also

Other Post-interrogation: `all_passed()`, `get_agent_x_list()`, `get_sundered_data()`, `write_testthat_file()`

get_informant_report

Get a table information report from an informant object

Description

We can get a table information report from an informant object that’s generated by the `create_informant()` function. The report is provided as a `gt` based display table. The amount of information shown depends on the extent of that added via the use of the `info_*()` functions or through direct editing of a `pointblank` YAML file (an informant can be written to `pointblank` YAML with `yaml_write(informant = <informant>)`.

Usage

```r
get_informant_report(
  informant,
  size = "standard",
  title = "":default:"",
  lang = NULL,
  locale = NULL
)
```

Arguments

- `informant` *The pointblank informant object*
 - obj:`<ptblank_informant>` // **required**
 - A `pointblank` informant object that is commonly created through the use of the `create_informant()` function.
get_informant_report

size
scalar<character> // default: "standard"

The size of the display table, which can be either "standard" (the default, with a width of 875px), "small" (width of 575px), or, a pixel- or percent-based width of your choosing (supply an integer value for the width in pixels, or values with "px" or "%" appended, like "75", "500px", etc.).

title
Title customization options
scalar<character> // default: ":default:"

Options for customizing the title of the report. The default is the keyword ":default:" which produces generic title text that refers to the pointblank package in the language governed by the lang option. Another keyword option is ":tbl_name:", and that presents the name of the table as the title for the report. If no title is wanted, then the ":none:" keyword option can be used. Aside from keyword options, text can be provided for the title and glue::glue() calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use text in I() to explicitly state that the supplied text should not be transformed.

lang
Reporting language
scalar<character> // default: NULL (optional)

The language to use for the information report. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl"). This lang option will override any previously set language setting (e.g., by the create_informant() call).

locale
Locale for value formatting
scalar<character> // default: NULL (optional)

An optional locale ID to use for formatting values in the information report summary table according the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This locale option will override any previously set locale value (e.g., by the create_informant() call).

Value

A gt table object.

Function ID

7-2

See Also

Other Incorporate and Report: incorporate()
Examples

Generate an informant object using
the 'small_table' dataset
informant <- create_informant(small_table)

This function creates some information
without any extra help by profiling
the supplied table object; it adds
the sections 'table' and columns' and
we can print the object to see the
table information report

Alternatively, we can get the same report
by using `get_informant_report()
report <- get_informant_report(informant)
class(report)

get_multiagent_report

Get a summary report using multiple agents

Description

We can get an informative summary table from a collective of agents by using the `get_multiagent_report()` function. Information from multiple agent can be provided in three very forms: (1) the Long Display (stacked reports), (2) the Wide Display (a comparison report), (3) as a tibble with packed columns.

Usage

get_multiagent_report(
 multiagent,
 display_table = TRUE,
 display_mode = c("long", "wide"),
 title = "::default::",
 lang = NULL,
 locale = NULL
)

Arguments

multiagent A multiagent object of class ptblank_multiagent.
display_table Should a display table be generated? If TRUE (the default) a display table for the report will be shown in the Viewer. If FALSE then a tibble will be returned.
display_mode If we are getting a display table, should the agent data be presented in a "long" or "wide" form? The default is "long" but when comparing multiple runs where the target table is the same it might be preferable to choose "wide".
title
Options for customizing the title of the report when `display_table = TRUE`. The default is the keyword ":default:" which produces generic title text. If no title is wanted, then the ":none:" keyword option can be used. Another keyword option is ":tbl_name:" and that presents the name of the table as the title for the report (this can only be used when `display_mode = "long"`). Aside from keyword options, text can be provided for the title and `glue::glue()` calls can be used to construct the text string. If providing text, it will be interpreted as Markdown text and transformed internally to HTML. To circumvent such a transformation, use `text in I()` to explicitly state that the supplied text should not be transformed.

lang
Reporting language

`scalar<character> // default: NULL (optional)`

The language to use for the long or wide report forms. By default, NULL will preserve any language set in the component reports. The following options will force the same language across all component reports: English ("en"), French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

locale
Locale for value formatting

`scalar<character> // default: NULL (optional)`

An optional locale ID to use for formatting values in the long or wide report forms (according to the locale’s rules). Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES"). This `locale` option will override any previously set locale values.

Value
A gt table object if `display_table = TRUE` or a tibble if `display_table = FALSE`.

The Long Display

When displayed as "long" the multiagent report will stack individual agent reports in a single document in the order of the agents in the multiagent object.

Each validation plan (possibly with interrogation info) will be provided and the output for each is equivalent to calling `get_agent_report()` on each of the agents within the multiagent object.

The Wide Display

When displayed as "wide" the multiagent report will show data from individual agents as columns, with rows standing as validation steps common across the agents.

Each validation step is represented with an icon (standing in for the name of the validation function) and the associated SHA1 hash. This is a highly trustworthy way for ascertaining which validation steps are effectively identical across interrogations. This way of organizing the report is beneficial because different agents may have used different steps and we want to track the validation results where the validation step doesn’t change but the target table does (i.e., new rows are added, existing rows are updated, etc.).
The single table from this display mode will have the following columns:

- **STEP**: the SHA1 hash for the validation step, possibly shared among several interrogations.
- **subsequent columns**: each column beyond STEP represents a separate interrogation from an *agent* object. The time stamp for the completion of each interrogation is shown as the column label.

Examples

Let’s walk through several theoretical data quality analyses of an extremely small table. That table is called `small_table` and we can find it as a dataset in this package.

```r
small_table
#> # A tibble: 13 x 8
#> date_time    date   a      b         c      d     e    f
#> <dttm>        <date> <int> <chr>      <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2   1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3   5-ehg-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6   8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2   5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8   3-lmn-038 7  284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4   2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knm-093 3  843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4  5-boe-639 2 1036. FALSE low
#> 9 2016-01-20 04:30:00 2016-01-20 3  5-bce-642 9  838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3  5-bce-642 9  838. FALSE high
#> 11 2016-01-26 02:07:00 2016-01-26 4  2-dmx-010 7  834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2  7-dmx-010 8  108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1  3-dka-303 NA 2230. TRUE high
```

To set failure limits and signal conditions, we designate proportional failure thresholds to the warn, stop, and notify states using `action_levels()`.

```r
al <- action_levels(
  warn_at = 0.05,
  stop_at = 0.10,
  notify_at = 0.20
)
```

We will create four different agents and have slightly different validation steps in each of them. In the first, `agent_1`, eight different validation steps are created and the agent will interrogate the `small_table`.

```r
agent_1 <- create_agent(
  tbl = small_table,
  label = "An example."
)
```
actions = al
) %>%
col_vals_gt(
 columns = date_time,
 value = vars(date),
 na_pass = TRUE
) %>%
col_vals_gt(
 columns = b,
 value = vars(g),
 na_pass = TRUE
) %>%
rows_distinct() %>%
col_vals_equal(
 columns = d,
 value = vars(d),
 na_pass = TRUE
) %>%
col_vals_between(
 columns = c,
 left = vars(a), right = vars(d)
) %>%
col_vals_not_between(
 columns = c,
 left = 10, right = 20,
 na_pass = TRUE
) %>%
rows_distinct(columns = d, e, f) %>%
col_is_integer(columns = a) %>%
interrogate()

The second agent, agent_2, retains all of the steps of agent_1 and adds two more (the last of which is inactive).

agent_2 <-
agent_1 %>%
col_exists(columns = date, date_time) %>%
col_vals_regex(
 columns = b,
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 active = FALSE
) %>%
interrogate()

The third agent, agent_3, adds a single validation step, removes the fifth one, and deactivates the first.

agent_3 <-
The fourth and final agent, agent_4, reactivates steps 1 and 10, and removes the sixth step.

```r
agent_4 <-
agent_3 %>%
  activate_steps(i = 1) %>%
  activate_steps(i = 10) %>%
  remove_steps(i = 6) %>%
  interrogate()
```

While all the agents are slightly different from each other, we can still get a combined report of them by creating a 'multiagent'.

```r
multiagent <-
create_multiagent(
  agent_1, agent_2, agent_3, agent_4
)
```

Calling multiagent in the console prints the multiagent report. But we can generate a "ptblank_multiagent_report" object with the `get_multiagent_report()` function and specify options for layout and presentation.

By default, `get_multiagent_report()` gives you a long report with agent reports being stacked. Think of this "long" option as the serial mode of agent reports. However if we want to view interrogation results of the same table over time, the wide view may be preferable. In this way we can see whether the results of common validation steps improved or worsened over consecutive interrogations of the data.

```r
report_wide <-
get_multiagent_report(
  multiagent,
  display_mode = "wide"
)
```

Function ID

10-3

See Also

Other The multiagent: `create_multiagent()`, `read_disk_multiagent()`
get_sundered_data
Sunder the data, splitting it into 'pass' and 'fail' pieces

Description
Validation of the data is one thing but, sometimes, you want to use the best part of the input dataset for something else. The get_sundered_data() function works with an agent object that has intel (i.e., post interrogate()) and gets either the 'pass' data piece (rows with no failing test units across all row-based validation functions), or, the 'fail' data piece (rows with at least one failing test unit across the same series of validations). As a final option, we can have emit all the data with a new column (called .pb_combined) which labels each row as passing or failing across validation steps. These labels are "pass" and "fail" by default but their values can be easily customized.

Usage
get_sundered_data(
 agent,
 type = c("pass", "fail", "combined"),
 pass_fail = c("pass", "fail"),
 id_cols = NULL
)

Arguments
agent
The pointblank agent object
obj:<ptblank_agent> // required
A pointblank agent object that is commonly created through the use of the create_agent() function. It should have had interrogate() called on it, such that the validation steps were actually carried out.

type
The desired piece of data resulting from the splitting. Options for returning a single table are "pass" (the default) and "fail". Each of these options return a single table with, in the "pass" case, only the rows that passed across all validation steps (i.e., had no failing test units in any part of a row for any validation step), or, the complementary set of rows in the "fail" case. Providing NULL returns both of the split data tables in a list (with the names of "pass" and "fail"). The option "combined" applies a categorical (pass/fail) label (settable in the pass_fail argument) in a new .pb_combined flag column. For this case the ordering of rows is fully retained from the input table.

pass_fail
A vector for encoding the flag column with 'pass' and 'fail' values when type = "combined". The default is c("pass", "fail") but other options could be c(TRUE, FALSE), c(1, 0), or c(1L, 0L).

id_cols
An optional specification of one or more identifying columns. When taken together, we can count on this single column or grouping of columns to distinguish rows. If the table undergoing validation is not a data frame or tibble, then columns need to be specified for id_cols.
Details

There are some caveats to sundering. The validation steps considered for this splitting has to be of the row-based variety (e.g., the `col_vals_*()` functions or `conjointly()`, but not `rows_distinct()`). Furthermore, validation steps that experienced evaluation issues during interrogation are not considered, and, validation steps where `active = FALSE` will be disregarded. The collection of validation steps that fulfill the above requirements for sundering are termed in-consideration validation steps.

If using any preconditions for validation steps, we must ensure that all in-consideration validation steps use the same specified preconditions function. Put another way, we cannot split the target table using a collection of in-consideration validation steps that use different forms of the input table.

Value

A list of table objects if type is NULL, or, a single table if a type is given.

Examples

Create a series of two validation steps focused on testing row values for part of the `small_table` object. Then, use `interrogate()` to put the validation plan into action.

```r
agent <-
create_agent(
  tbl = small_table %>%
  dplyr::select(a:f),
  label = "get_sundered_data()"
) %>%
col_vals_gt(columns = d, value = 1000) %>%
col_vals_between(
  columns = c,
  left = vars(a), right = vars(d),
  na_pass = TRUE
) %>%
interrogate()

Get the sundered data piece that contains only rows that passed both validation steps (the default piece). This yields 5 of 13 total rows.

```r
agent %>% get_sundered_data()
```

```r
A tibble: 5 × 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 2 1-bcd-345 3 3423. TRUE high
2 3 5-egh-163 8 10000. TRUE low
3 2 5-jdo-903 NA 3892. FALSE mid
4 4 2-dhe-923 4 3291. TRUE mid
5 1 3-dka-303 NA 2230. TRUE high
```
Get the complementary data piece: all of those rows that failed either of the two validation steps. This yields 8 of 13 total rows.

```r
agent %>% get_sundered_data(type = "fail")
```

```
A tibble: 8 x 6
a b c d e f
<int> <chr> <dbl> <dbl> <lgl> <chr>
1 6 8-kdg-938 3 2343. TRUE high
2 8 3-ldm-038 7 284. TRUE low
3 7 1-knw-093 3 843. TRUE high
4 4 5-boe-639 2 1036. FALSE low
5 3 5-bce-642 9 838. FALSE high
6 3 5-bce-642 9 838. FALSE high
7 4 2-dmx-010 7 834. TRUE low
8 2 7-dmx-010 8 108. FALSE low
```

We can get all of the input data returned with a flag column (called .pb_combined). This is done by using type = "combined" and that rightmost column will contain "pass" and "fail" values.

```r
agent %>% get_sundered_data(type = "combined")
```

```
A tibble: 13 x 7
a b c d e f .pb_combined
<int> <chr> <dbl> <dbl> <lgl> <chr> <chr>
1 2 1-bcd-345 3 3423. TRUE high pass
2 3 5-egh-163 8 10000. TRUE low pass
3 6 8-kdg-938 3 2343. TRUE high fail
4 2 5-jdo-903 NA 3892. FALSE mid pass
5 8 3-ldm-038 7 284. TRUE low fail
6 4 2-dhe-923 4 3291. TRUE mid pass
7 7 1-knw-093 3 843. TRUE high fail
8 4 5-boe-639 2 1036. FALSE low fail
9 3 5-bce-642 9 838. FALSE high fail
10 3 5-bce-642 9 838. FALSE high fail
11 4 2-dmx-010 7 834. TRUE low fail
12 2 7-dmx-010 8 108. FALSE low fail
13 1 3-dka-303 NA 2230. TRUE high pass
```

We can change the "pass" or "fail" text values to another type of coding with the pass_fail argument. One possibility is TRUE/FALSE.

```r
agent %>%
 get_sundered_data(
 type = "combined",
 pass_fail = c(TRUE, FALSE)
)
```
```r
A tibble: 13 × 7
a b c d e f .pb_combined
<int> <chr> <dbl> <dbl> <lgl> <chr> <lgl>
1 2 1-bcd-345 3 3423. TRUE high TRUE
2 3 5-ehg-163 8 10000. TRUE low TRUE
3 6 8-kdg-938 3 2343. TRUE high FALSE
4 2 5-jdo-903 NA 3892. FALSE mid TRUE
5 8 3-ldm-038 7 284. TRUE low FALSE
6 4 2-dhe-923 4 3291. TRUE mid TRUE
7 7 1-knw-093 3 843. TRUE high FALSE
8 4 5-boe-639 2 1036. FALSE low FALSE
9 3 5-bce-642 9 838. FALSE high FALSE
10 3 5-bce-642 9 838. FALSE high FALSE
11 4 2-dmx-010 7 834. TRUE low FALSE
12 2 7-dmx-010 8 108. FALSE low FALSE
13 1 3-dka-303 NA 2230. TRUE high TRUE
```

...and using 0 and 1 might be worthwhile in some situations.

```r
agent %>%
 get_sundered_data(
 type = "combined",
 pass_fail = 0:1
)
```

Function ID

8-3

See Also

Other Post-interrogation: `all_passed()`, `get_agent_x_list()`, `get_data_extracts()`, `write_testthat_file()`
get_tt_param

Get a parameter value from a summary table

Description

The `get_tt_param()` function can help you to obtain a single parameter value from a summary table generated by the `tt_*()` functions `tt_summary_stats()` , `tt_string_info()` , `tt_tbl_dims()` , or `tt_tbl_colnames()` . The following parameters are to be used depending on the input `tbl` :

- from `tt_summary_stats()` : "min", "p05", "q_1", "med", "q_3", "p95", "max", "iqr", "range"
- from `tt_string_info()` : "length_mean", "length_min", "length_max"
- from `tt_tbl_dims()` : "rows", "columns"
- from `tt_tbl_colnames()` : any integer present in the `.param` column

The `tt_summary_stats()` and `tt_string_info()` functions will generate summary tables with columns that mirror the numeric and character columns in their input tables, respectively. For that reason, a column name must be supplied to the `column` argument in `get_tt_param()`.

Usage

`get_tt_param(tbl, param, column = NULL)`

Arguments

tbl  Summary table generated by specific transformer functions
     `obj:<tbl_*>` // `required`
     A summary table generated by either of the `tt_summary_stats()` , `tt_string_info()` , `tt_tbl_dims()` , or `tt_tbl_colnames()` functions.

param  Parameter name
       `scalar<character>` // `required`
       The parameter name associated to the value that is to be gotten. These parameter names are always available in the first column (.param.) of a summary table obtained by `tt_summary_stats()` , `tt_string_info()` , `tt_tbl_dims()` , or `tt_tbl_colnames()`.

column  The target column
        `scalar<character>` // `required` (in select cases)
        The column in the summary table for which the data value should be obtained. This must be supplied for summary tables generated by `tt_summary_stats()` and `tt_string_info()` (the `tt_tbl_dims()` and `tt_tbl_colnames()` functions will always generate a two-column summary table).

Value

A scalar value.
Examples

Get summary statistics for the first quarter of the game_revenue dataset that’s included in the point-blank package.

```r
stats_tbl <-
game_revenue %>%
 tt_time_slice(slice_point = 0.25) %>%
 tt_summary_stats()

stats_tbl
#> # A tibble: 9 x 3
#> .param .item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0.02 5.1
#> 2 p05 0.03 11
#> 3 q_1 0.08 17.2
#> 4 med 0.28 28.3
#> 5 q_3 1.37 32
#> 6 p95 40.0 37.1
#> 7 max 143. 41
#> 8 iqr 1.28 14.8
#> 9 range 143. 35.9
```

Sometimes you need a single value from the table generated by the `tt_summary_stats()` function. For that, we can use the `get_tt_param()` function. So if we wanted to test whether the maximum session duration during the rest of the time period (the remaining 0.75) is never higher than that of the first quarter of the year, we can supply a value from `stats_tbl` to `test_col_vals_lte()`:

```r
game_revenue %>%
 tt_time_slice(
 slice_point = 0.25,
 keep = "right"
) %>%
 test_col_vals_lte(
 columns = session_duration,
 value = get_tt_param(
 tbl = stats_tbl,
 param = "max",
 column = "session_duration"
)
)
#> [1] TRUE
```

Function ID

12-7
has_columns

Determine if one or more columns exist in a table

Description

This utility function can help you easily determine whether a column of a specified name is present in a table object. This function works well enough on a table object but it can also be used as part of a formula in any validation function’s active argument. Using `active = ~ . %>% has_columns(column_1)` means that the validation step will be inactive if the target table doesn’t contain a column named `column_1`. We can also use multiple columns in `c()`, so having `active = ~ . %>% has_columns(c(column_1, column_2))` in a validation step will make it inactive at `interrogate()` time unless the columns `column_1` and `column_2` are both present.

Usage

`has_columns(x, columns)`

Arguments

- `x` A data table
  - `obj:<tbl_*>` // required
    - The input table. This can be a data frame, tibble, a `tbl_dbi` object, or a `tbl_spark` object.

- `columns` The target columns
  - `<tidy-select>` // required
    - One or more columns or column-selecting expressions. Each element is checked for a match in the table `x`.

Value

A length-1 logical vector.

Examples

The `small_table` dataset in the package has the columns `date_time`, `date`, and the `a` through `f` columns.

`small_table`

```r
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
```
With `has_columns()` we can check for column existence by using it directly on the table.

```r
small_table %>% has_columns(columns = date)
[1] TRUE
```

Multiple column names can be supplied. The following is `TRUE` because both columns are present in `small_table`.

```r
small_table %>% has_columns(columns = c(a, b))
[1] TRUE
```

It's possible to use a tidyselect helper as well:

```r
small_table %>% has_columns(columns = c(a, starts_with("b")))
[1] TRUE
```

Because column `h` isn't present, this returns `FALSE` (all specified columns need to be present to obtain `TRUE`).

```r
small_table %>% has_columns(columns = c(a, h))
[1] FALSE
```

The same holds in the case of tidyselect helpers. Because no columns start with "h", including `starts_with("h")` returns `FALSE` for the entire check.

```r
small_table %>% has_columns(columns = starts_with("h"))
small_table %>% has_columns(columns = c(a, starts_with("h")))
[1] FALSE
[1] FALSE
```
The `has_columns()` function can be useful in expressions that involve the target table, especially if it is uncertain that the table will contain a column that’s involved in a validation.

In the following agent-based validation, the first two steps will be ‘active’ because all columns checked for in the expressions are present. The third step becomes inactive because column `j` isn’t there (without the active statement there we would get an evaluation failure in the agent report).

```r
agent <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table"
) %>%
 col_vals_gt(
 columns = c, value = vars(a),
 active = ~ . %>% has_columns(c(a, c))
) %>%
 col_vals_lt(
 columns = h, value = vars(d),
 preconditions = ~ . %>% dplyr::mutate(h = d - a),
 active = ~ . %>% has_columns(c(a, d))
) %>%
 col_is_character(
 columns = j,
 active = ~ . %>% has_columns(j)
) %>%
 interrogate()
```

Through the agent’s x-list, we can verify that no evaluation error (any evaluation at all, really) had occurred. The third value, representative of the third validation step, is actually NA instead of FALSE because the step became inactive.

```r
x_list <- get_agent_x_list(agent = agent)

x_list$eval_warning
```

```r
[1] FALSE FALSE NA
```

**Function ID**

13-2

**See Also**

Other Utility and Helper Functions: `affix_date()`, `affix_datetime()`, `col_schema()`, `from_github()`, `stop_if_not()`
Given an informant object, update and incorporate table snippets

Description

When the informant object has a number of snippets available (by using info_snippet()) and the strings to use them (by using the info_*() functions and {<snippet_name>} in the text elements), the process of incorporating aspects of the table into the info text can occur by using the incorporate() function. After that, the information will be fully updated (getting the current state of table dimensions, re-rendering the info text, etc.) and we can print the informant object or use the get_informant_report() function to see the information report.

Usage

incorporate(informant)

Arguments

informant  

The pointblank informant object

obj:<ptblank_informant>  // required

A pointblank informant object that is commonly created through the use of the create_informant() function.

Value

A ptblank_informant object.

Examples

Take the small_table and assign it to changing_table (we'll modify it later):

changing_table <- small_table

changing_table

#> # A tibble: 13 x 8
#> # Groups: date_time, date [13]
#>    date_time date a b c d e f
#>    <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#>  1 2016-01-04 11:00:00 2016-01-04  2 1-bcd-345   3 3423. TRUE high
#>  2 2016-01-04 00:32:00 2016-01-04  3 5-egh-163   8 10000. TRUE low
#>  3 2016-01-05 13:32:00 2016-01-05  6 8-kdg-938   3 2343. TRUE low
#>  4 2016-01-06 17:23:00 2016-01-06  2 5-jdo-903  NA 3892. FALSE mid
#>  5 2016-01-09 12:36:00 2016-01-09  8 3-ldm-038   7 284. TRUE high
#>  6 2016-01-11 06:15:00 2016-01-11  4 2-dhe-923   4 3291. TRUE mid
#>  7 2016-01-15 18:46:00 2016-01-15  7 1-knw-093   3 843. TRUE high
#>  8 2016-01-17 11:27:00 2016-01-17  4 5-boe-639   2 1036. FALSE low
#>  9 2016-01-20 04:30:00 2016-01-20  3 5-bce-642   9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20  3 5-bce-642   9 838. FALSE high
Use `create_informant()` to generate an informant object with `changing_table` given to the `tbl` argument with a leading ~ (ensures that the table will be fetched each time it is needed, instead of being statically stored in the object). We’ll add two snippets with `info_snippet()`, add information with the `info_columns()` and `info_section()` functions and then use `incorporate()` to work the snippets into the info text.

```r
informant <-
 create_informant(
 tbl = ~ changing_table,
 tbl_name = "changing_table",
 label = "informant() example"
) %>%
 info_snippet(
 snippet_name = "row_count",
 fn = ~ . %>% nrow()
) %>%
 info_snippet(
 snippet_name = "col_count",
 fn = ~ . %>% ncol()
) %>%
 info_columns(
 columns = a,
 info = "In the range of 1 to 10. ((SIMPLE))"
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., \`Sys.time\')(\`)."
) %>%
 info_columns(
 columns = date,
 info = "The date part of `date_time`. ((CALC))"
) %>%
 info_section(
 section_name = "rows",
 row_count = "There are {row_count} rows available."
) %>%
 incorporate()
```

We can print the resulting object to see the information report.

```r
informant
```

Let’s modify `test_table` to give it more rows and an extra column.
changing_table <-
  dplyr::bind_rows(changing_table, changing_table) %>%
  dplyr::mutate(h = a + c)

Using incorporate() will cause the snippets to be reprocessed and accordingly the content of the report will be updated to keep up with the current state of the changing_table.

informant <- informant %>% incorporate()

When printed again, we’ll also see that the row and column counts in the header have been updated to reflect the new dimensions of the target table. Furthermore, the info text in the ROWS section has updated text ("There are 26 rows available.").

Function ID
7-1

See Also
Other Incorporate and Report: get_informant_report()

info_columns
Add information that focuses on aspects of a data table’s columns

Description
Upon creation of an informant object (with the create_informant() function), there are two sections containing properties: (1) ‘table’ and (2) ‘columns’. The ‘columns’ section is initialized with the table’s column names and their types (as .type). Beyond that, it is useful to provide details about the nature of each column and we can do that with the info_columns() function. A single column (or multiple columns) is targeted, and then a series of named arguments (in the form entry_name = "The *info text*." ) serves as additional information for the column or columns.

Usage
info_columns(x, columns, ..., .add = TRUE)

Arguments
x
The pointblank informant object
obj:<ptblank_informant> // required
A pointblank informant object that is commonly created through the use of the create_informant() function.
The target columns
vector<character>|vars(<columns>) // required
The column or set of columns to focus on. Can be defined as a column name
in quotes (e.g., "<column_name>"), one or more column names in vars() (e.g.,
vars(<column_name>)), or with a select helper (e.g., starts_with("date")).

Information entries
<info-text expressions> // required
Information entries as a series of named arguments. The names refer to subsection
titles within COLUMN -> <COLUMN_NAME> and the RHS contains the info text
(informational text that can be written as Markdown and further styled with Text Tricks).

.add
Add to existing info text
scalar<logical> // default: TRUE
Should new text be added to existing text? This is TRUE by default; setting to FALSE replaces any existing text for a property.

Value
A ptblank_informant object.

Info Text
The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spic up the presentation. Markdown links
written as < link url > or [ link text ]( link url ) will get nicely-styled links. Any dates
expressed in the ISO-8601 standard with parentheses, "(2004-12-01)", will be styled with a font
variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text
by using: (1) double parentheses around text for a rectangular border as in ( (label text)), or (2)
triple parentheses around text for a rounded-rectangular border like ( ((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[ info text ]]<< CSS style rules >>
As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:
"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

• color: <a color value>;(text color)
• background-color: <a color value> (the text’s background color)
• text-decoration: (overline | line-through | underline);
• text-transform: (uppercase | lowercase | capitalize);
• letter-spacing: <a +/- length value>;
• word-spacing: <a +/- length value>;
• font-style: (normal | italic | oblique);
• font-weight: (normal | bold | 100-900);
• font-variant: (normal | bold | 100-900);
• border: <a color value> <a length value> (solid | dashed | dotted);

In the above examples, 'length value' refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

YAML

A **pointblank** informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). The way that information on table columns is represented in YAML works like this: *info text* goes into subsections of YAML keys named for the columns, which are themselves part of the top-level columns key. Here is an example of how several calls of `info_columns()` are expressed in R code and how the result corresponds to the YAML representation.

```r
R statement
informant %>%
 info_columns(
 columns = date_time,
 info = "*info text* 1."
) %>%
info_columns(
 columns = date,
 info = "*info text* 2."
) %>%
info_columns(
 columns = item_count,
 info = "*info text* 3. Statistics: {snippet_1}.
) %>%
info_columns(
 columns = c(date, date_time),
 info = "UTC time."
)

YAML representation
columns:
 date_time:
 _type: POSIXct, POSIXt
 info: '*info text* 1. UTC time.'
 date:
 _type: Date
 info: '*info text* 2. UTC time.'
 item_count:
 _type: integer
 info: '*info text* 3. Statistics: {snippet_1}.'
```

Subsections represented as column names are automatically generated when creating an informant. Within these, there can be multiple subsections used for holding *info text* on each column. The
subsections used across the different columns needn’t be the same either, the only commonality that
should be enforced is the presence of the _type key (automatically updated at every incorporate() invocation).

It’s safest to use single quotation marks around any info text if directly editing it in a YAML file. Note that Markdown formatting and info snippet placeholders (shown here as {snippet_1}, see info_snippet() for more information) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking get_informant_report() on an informant) and the processing of snippets (generation and insertion) is done when using the incorporate() function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the ~ followed by a statement that gets the small_table dataset.

```r
informant <-
create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)
```

We can add info text to describe the table with various info_*() functions. In this example, we’ll use info_columns() multiple times to describe some of the columns in the small_table dataset. Note here that info text calls are additive to the existing content inside of the various subsections (i.e., the text will be appended and won’t overwrite existing if it lands in the same area).

```r
informant <-
informant %>%
 info_columns(
 columns = a,
 info = "In the range of 1 to 10. ((SIMPLE))"
) %>%
 info_columns(
 columns = starts_with("date"),
 info = "Time-based values (e.g., `Sys.time()`)".
) %>%
 info_columns(
 columns = date,
 info = "The date part of `date_time`. ((CALC))"
)
```

Upon printing the informant object, we see the additions made to the ‘Columns’ section.

```r
informant
```
Function ID

3-2

See Also

Other Information Functions: info_columns_from_tbl(), info_section(), info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()

info_columns_from_tbl  Add column information from another data table

Description

The `info_columns_from_tbl()` function is a wrapper around the `info_columns()` function and is useful if you wish to apply `info text` to columns where that information already exists in a data frame (or in some form that can readily be coaxed into a data frame). The form of the input `tbl` (the one that contains column metadata) has a few basic requirements:

- the data frame must have two columns
- both columns must be of class character
- the first column should contain column names and the second should contain the `info text`

Each column that matches across tables (i.e., the `tbl` and the target table of the informant) will have a new entry for the "`info" property. Empty or missing `info text` will be pruned from `tbl`.

Usage

```r
info_columns_from_tbl(x, tbl, .add = TRUE)
```

Arguments

- `x`  
  The pointblank informant object  
  obj: `<ptblank_informant>` // required  
  A pointblank informant object that is commonly created through the use of the `create_informant()` function.

- `tbl`  
  Metadata table with column information  
  obj: `<tbl_*>` // required  
  The two-column data frame which contains metadata about the target table in the informant object.

- `.add`  
  Add to existing `info text`  
  scalar<logical> // default: TRUE  
  Should new text be added to existing text? This is TRUE by default; setting to FALSE replaces any existing text for the "`info" property.

Value

A `ptblank_informant` object.
Examples

Create a pointblank informant object with `create_informant()`. We can specify a tbl with the `~` followed by a statement that gets the `game_revenue` dataset.

```r
informant <-
create_informant(
 tbl = ~ game_revenue,
 tbl_name = "game_revenue",
 label = "An example."
)
```

We can add `info text` to describe the data in the various columns of the table by using `info_columns()` or information in another table (with `info_columns_from_tbl()`). Here, we’ll do the latter. The `game_revenue_info` dataset is included in `pointblank` and it contains metadata for `game_revenue`.

```r
game_revenue_info
#> # A tibble: 11 x 2
#> column info
#> <chr> <chr>
#> 1 player_id A `character` column with unique identifiers for each user/~
#> 2 session_id A `character` column that contains unique identifiers for e~
#> 3 session_start A date-time column that indicates when the session (contain~
#> 4 time A date-time column that indicates exactly when the player p~
#> 5 item_type A `character` column that provides the class of the item pu~
#> 6 item_name A `character` column that provides the name of the item pur~
#> 7 item_revenue A `numeric` column with the revenue amounts per item purcha~
#> 8 session_duration A `numeric` column that states the length of the session (i~
#> 9 start_day A `Date` column that provides the date of first login for t~
#> 10 acquisition A `character` column that provides the method of acquisitio~
#> 11 country A `character` column that provides the probable country of ~
```

The `info_columns_from_tbl()` function takes a table object where the first column has the column names and the second contains the `info text`.

```r
informant <-
informant %>%
info_columns_from_tbl(tbl = game_revenue_info)
```

Upon printing the `informant` object, we see the additions made to the 'Columns' section by the `info_columns_from_tbl(tbl = game_revenue_info)` call.

```r
informant
```

We can continue to add more `info text` to describe the columns since the process is additive. The `info_columns_from_tbl()` function populates the `info` subsection and any calls of `info_columns()` that also target a `info` subsection will append text. Here, we’ll add content for the `item_revenue` and `acquisition` columns and view the updated report.
Function ID

3-3

See Also

The `info_columns()` function, which allows for manual entry of *info text*.

Other Information Functions: `info_columns()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

---

### info_section

*Add information that focuses on some key aspect of the data table*

#### Description

While the `info_tabular()` and `info_columns()` functions allow us to add/modify info text for specific sections, the `info_section()` makes it possible to add sections of our own choosing and the information that make sense for those sections. Define a `section_name` and provide a series of named arguments (in the form `entry_name = "The *info text*."`) to build the informational content for that section.

#### Usage

```r
info_section(x, section_name, ...)
```
Arguments

The pointblank informant object

obj:<ptblank_informant> // required

A pointblank informant object that is commonly created through the use of the
create_informant() function.

section_name

The section name

scalar<character> // required

The name of the section for which this information pertains.

Information entries

<info-text expressions> // required

Information entries as a series of named arguments. The names refer to subsection
titles within the section defined as section_name and the RHS is the info


text (informational text that can be written as Markdown and further styled with

Text Tricks).

Value

A ptblank_informant object.

Info Text

The info text that’s used for any of the info_*() functions readily accepts Markdown formatting,
and, there are a few Text Tricks that can be used to spice up the presentation. Markdown links
written as <link url> or [link text](link url) will get nicely-styled links. Any dates
expressed in the ISO-8601 standard with parentheses, "(2004-12-01)" , will be styled with a font
variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text
by using: (1) double parentheses around text for a rectangular border as in (((label text)), or (2)
triple parentheses around text for a rounded-rectangular border like (((label text))).

CSS style rules can be applied to spans of info text with the following form:
[[ info text ]]<< CSS style rules >>

As an example of this in practice suppose you’d like to change the color of some text to red and
make the font appear somewhat thinner. A variation on the following might be used:
"This is a [[factor]]<<color: red; font-weight: 300;>> value."

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- color: <a color value>; (text color)
- background-color: <a color value>; (the text’s background color)
- text-decoration: (overline | line-through | underline);
- text-transform: (uppercase | lowercase | capitalize);
- letter-spacing: <a +/- length value>;
- word-spacing: <a +/- length value>;
- font-style: (normal | italic | oblique);
- font-weight: (normal | bold | 100-900);
- font-variant: (normal | bold | 100-900);
In the above examples, 'length value' refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for letter-spacing). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

**YAML**

A pointblank informant can be written to YAML with `yml_write()` and the resulting YAML can be used to regenerate an informant (with `yml_read_informant()`) or perform the 'incorporate' action using the target table (via `yml_informant_incorporate()`). Extra sections (i.e., neither the table nor the columns sections) can be generated and filled with `info text` by using one or more calls of `info_section()`. This is how it is expressed in both R code and in the YAML representation.

```r
R statement
informant %>%
 info_section(
 section_name = "History",
 Changes = "
 - Change 1
 - Change 2
 - Change 3",
 "Last Update" = "(2020-10-23) at 3:28 PM."
) %>%
 info_section(
 section_name = "Additional Notes",
 "Notes 1" = "Notes with a {snippet}.",
 "Notes 2" = "**Bold notes**."
)
```

```yaml
YAML representation
History:
 Changes: |2-
 - Change 1
 - Change 2
 - Change 3
 Last Update: (2020-10-23) at 3:28 PM.

Additional Notes:
 Notes 1: Notes with a {snippet}.
 Notes 2: '**Bold notes**.'
```

Subsections represented as column names are automatically generated when creating an informant. Within each of the top-level sections (i.e., History and Additional Notes) there can be multiple subsections used for holding `info text`. It's safest to use single quotation marks around any `info text` if directly editing it in a YAML file. Note that Markdown formatting and `info snippet` placeholders (shown here as `{snippet}`,
see info_snippet() for more information) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking get_informant_report() on an informant) and the processing of snippets (generation and insertion) is done when using the incorporate() function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

Examples

Create a pointblank informant object with create_informant(). We can specify a tbl with the ~ followed by a statement that gets the small_table dataset.

```
informant <- create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)
```

An informant typically has the ‘Table’ and ‘Columns’ sections. We can also create entirely different sections (that follow these) with their own properties using the info_section() function. Let’s create a subsection in the report called “Notes” and add text to two parts of that: “creation” and “usage”.

```
informant <- informant %>%
 info_section(
 section_name = "Notes",
 creation = "Dataset generated on (2020-01-15). ",
 usage = "\small_table %>% dplyr::glimpse()"
) %>%
 incorporate()
```

Upon printing the informant object, we see the addition of the ‘Notes’ section and its own information.

```
informant
```

Function ID

3-4

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_snippet(), info_tabular(), snip_highest(), snip_list(), snip_lowest(), snip_stats()
info_snippet

Generate a useful text 'snippet' from the target table

Description

Getting little snippets of information from a table goes hand-in-hand with mixing those bits of info with your table info. Call info_snippet() to define a snippet and how you’ll get that from the target table. The snippet definition is supplied either with a formula, or, with a pointblank-supplied snip_*() function. So long as you know how to interact with a table and extract information, you can easily define snippets for a informant object. And once those snippets are defined, you can insert them into the info text as defined through the other info_*() functions (info_tabular(), info_columns(), and info_section()). Use curly braces with just the snippet_name inside (e.g., "This column has {n_cat} categories.").

Usage

info_snippet(x, snippet_name, fn)

Arguments

x  
The pointblank informant object
   obj:<ptblank_informant>  // required
   A pointblank informant object that is commonly created through the use of the create_informant() function.

snippet_name  
The snippet name
   scalar<character>  // required
   The name for snippet, which is used for interpolating the result of the snippet formula into info text defined by an info_*() function.

fn  
Function for snippet text generation
   <function>  // required
   A formula that obtains a snippet of data from the target table. It’s best to use a leading dot (.) that stands for the table itself and use pipes to construct a series of operations to be performed on the table (e.g., ~ . %>% dplyr::pull(column_2) %>% max(na.rm = TRUE)). So long as the result is a length-1 vector, it’ll likely be valid for insertion into some info text. Alternatively, a snip_*() function can be used here (these functions always return a formula that’s suitable for all types of data sources).

Value

A ptblank_informant object.

Snip functions provided in pointblank

For convenience, there are several snip_*() functions provided in the package that work on column data from the informant’s target table. These are:
• `snip_list()`: get a list of column categories
• `snip_stats()`: get an inline statistical summary
• `snip_lowest()`: get the lowest value from a column
• `snip_highest()`: get the highest value from a column

As it's understood what the target table is, only the column in each of these functions is necessary for obtaining the resultant text.

YAML

A `pointblank` informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the 'incorporate' action using the target table (via `yaml_informant_incorporate()`). Snippets are stored in the YAML representation and here is how they are expressed in both R code and in the YAML output (showing both the `meta_snippets` and `columns` keys to demonstrate their relationship here).

```r
R statement
informant %>%
 info_columns(
 columns = date_time,
 'Latest Date' = "The latest date is {latest_date}")
%>%
inform_snippet(
 snippet_name = "latest_date",
 fn = ~ . %>% dplyr::pull(date) %>% max(na.rm = TRUE)
)%>%
incorporate()

YAML representation
meta_snippets:
 latest_date: ~. %>% dplyr::pull(date) %>% max(na.rm = TRUE)
 ...
columns:
 date_time:
 _type: POSIXct, POSIXt
 Latest Date: The latest date is {latest_date}.
 date:
 _type: Date
 item_count:
 _type: integer
```

Examples

Take the `small_table` dataset included in `pointblank` and assign it to `test_table`. We'll modify it later.

```
> test_table <- small_table
```
Generate an informant object, add two snippets with `info_snippet()`, add information with some other `info_*()` functions and then `incorporate()` the snippets into the info text. The first snippet will be made with the expression `~ . %>% nrow()` (giving us the number of rows in the dataset) and the second uses the `snip_highest()` function with column `a` (giving us the highest value in that column).

```r
informant <-
 create_informant(
 tbl = ~ test_table, tbl_name = "test_table", label = "An example."
) %>%
 info_snippet(
 snippet_name = "row_count", fn = ~ . %>% nrow()
) %>%
 info_snippet(
 snippet_name = "max_a", fn = snip_highest(column = "a")
) %>%
 info_columns(
 columns = a, info = "In the range of 1 to {max_a}. ((SIMPLE))"
) %>%
 info_columns(
 columns = starts_with("date"), info = "Time-based values (e.g., `Sys.time`)".
) %>%
 info_columns(
 columns = date, info = "The date part of `date_time`. ((CALC))"
) %>%
 info_section(
 section_name = "rows", row_count = "There are {row_count} rows available."
) %>%
 incorporate()
```

We can print the informant object to see the information report.

```
informant
```

Let’s modify `test_table` with some `dplyr` to give it more rows and an extra column.

```r
test_table <-
 dplyr::bind_rows(test_table, test_table) %>%
 dplyr::mutate(h = a + c)
```
Using `incorporate()` on the informant object will cause the snippets to be reprocessed, and, the info text to be updated.

```
informant <- informant %>% incorporate()
```

**Function ID**

3-5

**See Also**

Other Information Functions: `info_columns()`, `info_columns_from_tbl()`, `info_section()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

---

**info_tabular**  
Add information that focuses on aspects of the data table as a whole

**Description**

When an `informant` object is created with the `create_informant()` function, it has two starter sections: (1) 'table' and (2) 'columns'. The 'table' section should contain a few properties upon creation, such as the supplied table name (name) and table dimensions (as `_columns` and `_rows`). We can add more table-based properties with the `info_tabular()` function. By providing a series of named arguments (in the form `entry_name = "The *info text*. "`), we can add more information that makes sense for describing the table as a whole.

**Usage**

```
info_tabular(x, ...)
```

**Arguments**

- `x`  
The pointblank informant object
  
  `obj:<ptblank_informant>` // **required**
  
  A pointblank `informant` object that is commonly created through the use of the `create_informant()` function.

- `...`  
  Information entries
  
  `<info-text expressions>` // **required**
  
  Information entries as a series of named arguments. The names refer to subsection titles within the TABLE section and the values are the *info text* (informational text that can be written as Markdown and further styled with Text Tricks).

**Value**

A `ptblank_informant` object.
**Info Text**

The *info text* that’s used for any of the `info_*()` functions readily accepts Markdown formatting, and, there are a few *Text Tricks* that can be used to spice up the presentation. Markdown links written as `<link url>` or `[link text](link url)` will get nicely-styled links. Any dates expressed in the ISO-8601 standard with parentheses, “(2004-12-01)”, will be styled with a font variation (monospaced) and underlined in purple. Spans of text can be converted to label-style text by using: (1) double parentheses around text for a rectangular border as in `((label text))`, or (2) triple parentheses around text for a rounded-rectangular border like `(((label text)))

CSS style rules can be applied to spans of *info text* with the following form: `[[ info text ]]<< CSS style rules >>`

As an example of this in practice suppose you’d like to change the color of some text to red and make the font appear somewhat thinner. A variation on the following might be used:

“This is a `[[factor]]<<color: red; font-weight: 300;;>> value.”``

The are quite a few CSS style rules that can be used to great effect. Here are a few you might like:

- `color: <a color value>;` *(text color)*
- `background-color: <a color value>;` *(the text's background color)*
- `text-decoration: (overline | line-through | underline);`
- `text-transform: (uppercase | lowercase | capitalize);`
- `letter-spacing: <a +/- length value>;`
- `word-spacing: <a +/- length value>;`
- `font-style: (normal | italic | oblique);`
- `font-weight: (normal | bold | 100-900);`
- `font-variant: (normal | bold | 100-900);`
- `border: <a color value> <a length value> (solid | dashed | dotted);`

In the above examples, ‘length value’ refers to a CSS length which can be expressed in different units of measure (e.g., 12px, 1em, etc.). Some lengths can be expressed as positive or negative values (e.g., for `letter-spacing`). Color values can be expressed in a few ways, the most common being in the form of hexadecimal color values or as CSS color names.

**YAML**

A *pointblank* informant can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an informant (with `yaml_read_informant()`) or perform the ‘incorporate’ action using the target table (via `yaml_informant_incorporate()`). When `info_tabular()` is represented in YAML, *info text* goes into subsections of the top-level table key. Here is an example of how a call of `info_tabular()` is expressed in R code and in the corresponding YAML representation.

R statement:

```r
informant %>%
 info_tabular(
 section_1 = "*info text* 1."
)
```

YAML representation:

```yaml
- section_1: "*info text* 1.
```
YAML representation:

```yaml
table:
 _columns: 23
 _rows: 205.0
 _type: tbl_df
 section_1: '*info text* 1.'
 section_2: '*info text* 2 and {snippet_1}'
```

Subsection titles as defined in `info_tabular()` can be set in backticks if they are not syntactically correct as an argument name without them (e.g., when using spaces, hyphens, etc.).

It’s safest to use single quotation marks around any `info text` if directly editing it in a YAML file. Note that Markdown formatting and `info snippet` placeholders (shown here as `snippet_1`), see `info_snippet()` for more information) are preserved in the YAML. The Markdown to HTML conversion is done when printing an informant (or invoking `get_informant_report()` on an informant) and the processing of snippets (generation and insertion) is done when using the `incorporate()` function. Thus, the source text is always maintained in the YAML representation and is never written in processed form.

**Examples**

Create a pointblank informant object with `create_informant()`. We can specify a tbl with the `~` followed by a statement that gets the `small_table` dataset.

```r
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)
```

We can add `info text` to describe the table with the various `info_*()` functions. In this example, we’ll use `info_tabular()` to generally describe the `small_table` dataset.

```r
informant <-
 informant %>%
 info_tabular(
 'Row Definition' = "A row has randomized values.",
 Source = c(
 "- From the **pointblank** package.",
 "- [https://rstudio.github.io/pointblank/]()"
)
)
```

Upon printing the informant object, we see the additions made to the 'Table' section of the report.

```r
informant
```
interrogate

Function ID
3-1

See Also
Other Information Functions: `info_columns()`, `info_columns_from_tbl()`, `info_section()`, `info_snippet()`, `snip_highest()`, `snip_list()`, `snip_lowest()`, `snip_stats()`

interrogate

Given an agent that has a validation plan, perform an interrogation

Description
When the agent has all the information on what to do (i.e., a validation plan which is a series of validation steps), the interrogation process can occur according its plan. After that, the agent will have gathered intel, and we can use functions like `get_agent_report()` and `all_passed()` to understand how the interrogation went down.

Usage
```r
interrogate(
 agent,
 extract_failed = TRUE,
 get_first_n = NULL,
 sample_n = NULL,
 sample_frac = NULL,
 sample_limit = 5000,
 show_step_label = FALSE,
 progress = interactive()
)
```

Arguments
- **agent**
  *The pointblank agent object*
  
  `obj:<ptblank_agent>` // required
  
  A pointblank agent object that is commonly created through the use of the `create_agent()` function.

- **extract_failed**
  *Collect failed rows as data extracts*
  
  `scalar<logical>` // default: TRUE
  
  An option to collect rows that didn’t pass a particular validation step. The default is TRUE and further options allow for fine control of how these rows are collected.

- **get_first_n**
  *Get the first n values*
  
  `scalar<integer>` // default: NULL (optional)
  
  If the option to collect non-passing rows is chosen, there is the option here to collect the first n rows here. Supply the number of rows to extract from the top of the non-passing rows table (the ordering of data from the original table is retained).
sample_n  
*Sample n values*

scalar<integer> // default: NULL (optional)

If the option to collect non-passing rows is chosen, this option allows for the sampling of n rows. Supply the number of rows to sample from the non-passing rows table. If n is greater than the number of non-passing rows, then all the rows will be returned.

sample_frac  
*Sample a fraction of values*

scalar<numeric> // default: NULL (optional)

If the option to collect non-passing rows is chosen, this option allows for the sampling of a fraction of those rows. Provide a number in the range of 0 and 1. The number of rows to return may be extremely large (and this is especially when querying remote databases), however, the sample_limit option will apply a hard limit to the returned rows.

sample_limit  
*Row limit for sampling*

scalar<integer> // default: 5000

A value that limits the possible number of rows returned when sampling non-passing rows using the sample_frac option.

show_step_label  
*Show step labels in progress*

scalar<logical> // default: FALSE

Whether to show the label value of each validation step in the console.

progress  
*Show interrogation progress*

scalar<logical> // default: interactive()

Whether to show the progress of an agent's interrogation in the console. Defaults to TRUE in interactive sessions.

Value

A ptblank_agent object.

Examples

Create a simple table with two columns of numerical values.

```r
tbl <-
dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 0, 3)
)

tbl
```

#> # A tibble: 6 x 2
#>   a  b
#> <dbl> <dbl>
#> 1  5  7
#> 2  7  1
#> 3  6  0
Validate that values in column a from tbl are always less than 5. Using `interrogate()` carries out the validation plan and completes the whole process.

agent <- create_agent(
  tbl = tbl,
  label = "'interrogate()' example"
) %>%
  col_vals_gt(columns = a, value = 5) %>%
  interrogate()

We can print the resulting object to see the validation report.

agent

**Function ID**

6-1

**See Also**

Other Interrogate and Report: `get_agent_report()`

---

**log4r_step**

*Enable logging of failure conditions at the validation step level*

**Description**

The `log4r_step()` function can be used as an action in the `action_levels()` function (as a list component for the fns list). Place a call to this function in every failure condition that should produce a log (i.e., warn, stop, notify). Only the failure condition with the highest severity for a given validation step will produce a log entry (skipping failure conditions with lower severity) so long as the call to `log4r_step()` is present.

**Usage**

```
log4r_step(x, message = NULL, append_to = "pb_log_file")
```
Arguments

- **x**: A reference to the x-list object prepared by the agent. This version of the x-list is the same as that generated via `get_agent_x_list(<agent>, i = <step>)` except this version is internally generated and hence only available in an internal evaluation context.

- **message**: The message to use for the log entry. When not provided, a default glue string is used for the messaging. This is dynamic since the internal `glue::glue()` call occurs in the same environment as `x`, the x-list that’s constrained to the validation step. The default message, used when `message = NULL` is the glue string "Step \{x\$i\} exceeded the \{level\} failure threshold \{x\$f\_failed\} \[(x\$type)\arching{\'}\]. As can be seen, a custom message can be crafted that uses other elements of the x-list with the \{x\$<component>\} construction.

- **append_to**: The file to which log entries at the warn level are appended. This can alternatively be one or more `log4r` appenders.

Value

Nothing is returned however log files may be written in very specific conditions.

YAML

A **pointblank** agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). Here is an example of how `log4r_step()` can be expressed in R code (within `action_levels()`, itself inside `create_agent()`) and in the corresponding YAML representation.

R statement:

```r
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example.",
 actions = action_levels(
 warn_at = 1,
 fns = list(
 warn = ~ log4r_step(
 x, append_to = "example_log"
)
)
)
)
```

YAML representation:

```yaml
type: agent
tbl: ~small_table
tbl_name: small_table
```
log4r_step

label: An example.
lang: en
locale: en
actions:
  warn_count: 1.0
  fns:
    warn: \sim log4r_step(x, append_to = "example_log")
steps: []

Should you need to preview the transformation of an agent to YAML (without any committing anything to disk), use the `yaml_agent_string()` function. If you already have a .yml file that holds an agent, you can get a glimpse of the R expressions that are used to regenerate that agent with `yaml_agent_show_exprs()`.

Examples

For the example provided here, we’ll use the included `small_table` dataset. We are also going to create an `action_levels()` list object since this is useful for demonstrating a logging scenario. It will have a threshold for the `warn` state, and, an associated function that should be invoked whenever the `warn` state is entered. Here, the function call with `log4r_step()` will be invoked whenever there is one failing test unit.

```r
al <- action_levels(
 warn_at = 1,
 fns = list(
 warn = \sim log4r_step(
 x, append_to = "example_log"
)
)
)
```

Within the `action_levels()`-produced object, it’s important to match things up: notice that `warn_at` is given a threshold and the list of functions given to `fns` has a `warn` component.

Printing `al` will show us the settings for the `action_levels` object:

```r
al
#> -- The ‘action_levels’ settings
#> WARN failure threshold of 1 test units.
#> \fns\ \sim log4r_step(x, append_to = "example_log")
#> ----

Let’s create an agent with `small_table` as the target table. We’ll apply the `action_levels` object created above as `al`, add two validation steps, and then `interrogate()` the data.

```r
agent <-
  create_agent(
    tbl = ~ small_table,
    }
From the agent report, we can see that both steps have yielded warnings upon interrogation (i.e., filled yellow circles in the \( \text{W} \) column).

What's not immediately apparent is that when entering the \text{warn} state in each validation step during interrogation, the \text{log4r\_step()} function call was twice invoked! This generated an “example\_log” file in the working directory (since it was not present before the interrogation) and log entries were appended to the file. Here are the contents of the file:

```
WARN [2022-06-28 10:06:01] Step 1 exceeded the WARN failure threshold (f_failed = 0.15385) ['col_vals_gt']
WARN [2022-06-28 10:06:01] Step 2 exceeded the WARN failure threshold (f_failed = 0.15385) ['col_vals_in_set']
```

### Function ID

5-1

---

**read\_disk\_multiagent**  
*Read pointblank agents stored on disk as a multiagent*

---

**Description**

An agent or informant can be written to disk with the \text{x\_write\_disk()} function. While useful for later retrieving the stored agent with \text{x\_read\_disk()} it’s also possible to read a series of on-disk agents with the \text{read\_disk\_multiagent()} function, which creates a \text{ptblank\_multiagent} object. A multiagent object can also be generated via the \text{create\_multiagent()} function but is less convenient to use if one is just using agents that have been previously written to disk.

**Usage**

\text{read\_disk\_multiagent(filenames = NULL, pattern = NULL, path = NULL)}

**Arguments**

- **filenames**  
  \text{File names}  
  vector\<character\> // default: NULL (optional)  
  The names of files (holding agent objects) that were previously written by \text{x\_write\_disk()}.  

```r
read_disk_multiagent = "small_table",
label = "An example.",
actions = a1
)
%>%
col_vals_gt(columns = d, 300) %>%
col_vals_in_set(columns = f, c("low", "high")) %>%
interrogate()
```
remove_steps

| pattern   | Regex pattern  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar&lt;character&gt; // default: NULL (optional)</td>
<td></td>
</tr>
<tr>
<td>A regex pattern for accessing saved-to-disk agent files located in a directory (specified in the path argument).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>path</th>
<th>File path</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar&lt;character&gt; // default: NULL (optional)</td>
<td></td>
</tr>
<tr>
<td>A path to a collection of files. This is either optional in the case that files are specified in filenames (the path combined with all filenames), or, required when providing a pattern for file names.</td>
<td></td>
</tr>
</tbody>
</table>

Value

A ptblank_multiagent object.

Function ID

10-2

See Also

Other The multiagent: create_multiagent(), get_multiagent_report()

remove_steps Remove one or more of an agent’s validation steps

Description

Validation steps can be removed from an agent object through use of the remove_steps() function. This is useful, for instance, when getting an agent from disk (via the x_read_disk() function) and omitting one or more steps from the agent’s validation plan. Please note that when removing validation steps all stored data extracts will be removed from the agent.

Usage

remove_steps(agent, i = NULL)

Arguments

<table>
<thead>
<tr>
<th>agent</th>
<th>The pointblank agent object</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj:&lt;ptblank_agent&gt; // required</td>
<td></td>
</tr>
<tr>
<td>A pointblank agent object that is commonly created through the use of the create_agent() function.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>A validation step number</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar&lt;integer&gt; // default: NULL (optional)</td>
<td></td>
</tr>
<tr>
<td>The validation step number, which is assigned to each validation step in the order of definition. If NULL (the default) then step removal won’t occur by index.</td>
<td></td>
</tr>
</tbody>
</table>
Value

A ptblank_agent object.
A ptblank_agent object.

Function ID

9-7

See Also

Instead of removal, the deactivate_steps() function will simply change the active status of one or more validation steps to FALSE (and activate_steps() will do the opposite).

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), set_tbl(), x_read_disk(), x_write_disk()

Examples

```r
Create an agent that has the
`small_table` object as the
target table, add a few
validation steps, and then use
`interrogate()`
agent_1 <-
 create_agent(
 tbl = small_table,
 tbl_name = "small_table",
 label = "An example."
)

The second validation step has
been determined to be unneeded and
is to be removed; this can be done
by using `remove_steps()` with the
agent object
agent_2 <-
 agent_1 %>%
 remove_steps(i = 2) %>%
 interrogate()
```
rows_complete

Are row data complete?

Description

The `rows_complete()` validation function, the `expect_rows_complete()` expectation function, and the `test_rows_complete()` test function all check whether rows contain any NA/NULL values (optionally constrained to a selection of specified columns). The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. As a validation step or as an expectation, this will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).

Usage

```r
rows_complete(
 x,
 columns = tidyselect::everything(),
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_rows_complete(
 object,
 columns = tidyselect::everything(),
 preconditions = NULL,
 threshold = 1
)
```

```r
test_rows_complete(
 object,
 columns = tidyselect::everything(),
 preconditions = NULL,
 threshold = 1
)
```

Arguments

- `x`  
  A pointblank agent or a data table
  
  `obj:<ptblank_agent>|obj:<tbl_*>` // required
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.
columns

The target columns

A column-selecting expression, as one would use inside dplyr::select(). Specifies the set of column(s) for which the completeness of rows is checked.

preconditions

Input table modification prior to validation

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

segments

Expressions for segmenting the target table

A optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions

Thresholds and actions for different states

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

*Is the validation step active?*

`scalar<logical> // default: TRUE`

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, `FALSE` will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with `active = FALSE` will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `.` (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

**object**

*A data table for expectations or tests*

`obj: <tbl_~> // required`

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

*The failure threshold*

`scalar<integer|numeric>(val>=0) // default: 1`

A simple failure threshold value for use with the expectation (expect_`) and the test (test_`) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

**Value**

For the validation function, the return value is either a *pointblank_agent* object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
  - *PostgreSQL* tables (using the *RPostgres::Postgres()* as driver)
  - *MySQL* tables (with *RMySQL::MySQL()*)
  - *Microsoft SQL Server* tables (via *odbc*)
BigQuery tables (using bigquery::bigquery())
- DuckDB tables (through duckdb::duckdb())
- SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed (e.g., ~ . %>% dplyr::mutate(col_b = col_a + 10)). Alternatively, a function could instead be supplied (e.g., function(x) dplyr::mutate(x, col_b = col_a + 10)).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold
rows_complete

level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. This is especially true when x is a table object because, otherwise, nothing happens. Using action_levels(warn_at = 0.25) or action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

• "{.step}”: The validation step name
• "{.col}”: The current column name
• "{.seg_col}”: The current segment’s column name
• "{.seg_val}”: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with yaml_write() and the resulting YAML can be used to regenerate an agent (with yaml_read_agent()) or interrogate the target table (via yaml_agent_interrogate()). When rows_complete() is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of rows_complete() as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

agent %>%
  rows_complete(
    columns = c(a, b),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    segments = b ~ c("group_1", "group_2"),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `rows_complete()` step.",
    active = FALSE
  )

YAML representation:
steps:
- rows_complete:
  columns: c(a, b)
  preconditions: ~. %>% dplyr::filter(a < 10)
  segments: b ~ c("group_1", "group_2")
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
    label: The `rows_complete()` step.
  active: false

In practice, both of these will often be shorter. A value for columns is only necessary if checking for unique values across a subset of columns. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns of numerical values.

```r
tbl <-
 dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 8, 3),
 c = c(1, 1, 1, 3, 3, 3)
)

tbl
#> # A tibble: 6 x 3
#> a b c
#> <dbl><dbl><dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3
#> 5 8 8 3
#> 6 7 3 3
```

A: Using an agent with validation functions and then `interrogate()`:
Validate that when considering only data in columns a and b, there are only complete rows (i.e., all rows have no NA values).

```r
agent <-
 create_agent(tbl = tbl) %>%
 rows_complete(columns = c(a, b)) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.
B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>%
 rows_complete(columns = c(a, b)) %>%
dplyr::pull(a)
#> [1] 5 7 6 5 8 7
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_rows_complete(tbl, columns = c(a, b))
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
test_rows_complete(tbl, columns = c(a, b))
#> [1] TRUE
```

Function ID

2-21

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_distinct()`, `serially()`, `specially()`, `tbl_match()`

---

**Description**

The `rows_distinct()` validation function, the `expect_rows_distinct()` expectation function, and the `test_rows_distinct()` test function all check whether row values (optionally constrained to a selection of specified columns) are, when taken as a complete unit, distinct from all other units in the table. The validation function can be used directly on a data table or with an `agent` object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. As a validation step or as an expectation, this will operate over the number of test units that is equal to the number of rows in the table (after any preconditions have been applied).
Usage

```r
rows_distinct(
 x,
 columns = tidyselect::everything(),
 preconditions = NULL,
 segments = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_rows_distinct(
 object,
 columns = tidyselect::everything(),
 preconditions = NULL,
 threshold = 1
)
```

```r
test_rows_distinct(
 object,
 columns = tidyselect::everything(),
 preconditions = NULL,
 threshold = 1
)
```

Arguments

- **x**
  - A pointblank agent or a data table
  - `obj:<ptblank_agent>|obj:<tbl_*>` // **required**
  - A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl.spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.

- **columns**
  - The target columns
  - `<tidy-select>` // **default**: everything()
  - A column-selecting expression, as one would use inside `dplyr::select()`.
  - Specifies the set of column(s) for which the distinctness of rows is checked.

- **preconditions**
  - Input table modification prior to validation
  - `<table mutation expression>` // **default**: NULL (optional)
  - An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the **Preconditions** section for more information.

- **segments**
  - Expressions for segmenting the target table
  - `<segmentation expressions>` // **default**: NULL (optional)
An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

**actions**

*Thresholds and actions for different states*

`obj::<action_levels>` // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.

**step_id**

*Manual setting of the step ID value*

`scalar<character>` // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

**label**

*Optional label for the validation step*

`vector<character>` // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

**brief**

*Brief description for the validation step*

`scalar<character>` // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in `create_agent()`’s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

**active**

*Is the validation step active?*

`scalar<logical>` // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading `~` can be used with `. (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function `has_columns()` can be used to determine whether to make a validation step...
active on the basis of one or more columns existing in the table (e.g., `~ . %>% has_columns(c(d, e)))`.

**object**

*object*  
A data table for expectations or tests.  

```
obj < tbl_* > // required
```

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

**threshold**

*threshold*  
The failure threshold.  

```
scalar<integer|numeric>(val>=0) // default: 1
```

A simple failure threshold value for use with the expectation (expect\_\_) and the test (test\_\_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test\_that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

---

**Value**

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

**Supported Input Tables**

The types of data tables that are officially supported are:

- data frames (data.frame) and tibbles (tbl\_df)
- Spark DataFrames (tbl\_spark)
- the following database tables (tbl\_dbi):
  - PostgreSQL tables (using the RPostgres::Postgres() as driver)
  - MySQL tables (with RMySQL::MySQL())
  - Microsoft SQL Server tables (via odbc)
  - BigQuery tables (using bigquery::bigquery())
  - DuckDB tables (through duckdb::duckdb())
  - SQLite (with RSQLite::SQLite())

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

**Preconditions**

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.
The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using \texttt{dplyr} code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided \texttt{R} formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% \texttt{dplyr}\texttt{\#mutate(col_b = col_a + 10)}`). Alternatively, a function could instead be supplied (e.g., `function(x) \texttt{dplyr}\texttt{\#mutate(x, col_b = col_a + 10)}`).

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, \texttt{vars(a\_column)} will segment the target table in however many unique values are present in the column called \texttt{a\_column}. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using \texttt{a\_column ~ c("group\_1", "group\_2")} will attempt to obtain two segments where one is a slice of data where the value "group\_1" exists in the column named "a\_column", and, the other is a slice where "group\_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the \texttt{action\_levels}() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn\_at argument. This is especially true when \texttt{x} is a table object because, otherwise, nothing happens. Using \texttt{action\_levels(warn\_at = 0.25)} or \texttt{action\_levels(stop\_at = 0.25)} are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other \texttt{stop()}s at the same threshold level).

Labels

\texttt{label} may be a single string or a character vector that matches the number of expanded steps. \texttt{label} also supports \{glue\} syntax and exposes the following dynamic variables contextualized to the current step:

- "\{.step\}": The validation step name
- "\{.col\}": The current column name
• ".seg_col" -- The current segment's column name
• ".seg_val" -- The current segment's value/group

The glue context also supports ordinary expressions for further flexibility (e.g., ".toupper(.step)") as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an agent. If that's the case, brief the agent with some text that fits. Don't worry if you don't want to do it. The autobrief protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()` or interrogate the target table (via `yaml_agent_interrogate()`). When `rows_distinct()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `rows_distinct()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
 rows_distinct(
 columns = c(a, b),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The `rows_distinct()` step.",
 active = FALSE
)
```

YAML representation:

```yaml
steps:
 - rows_distinct:
 columns: c(a, b)
 preconditions: ~ . %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `rows_distinct()` step.
 active: false
```

In practice, both of these will often be shorter. A value for columns is only necessary if checking for unique values across a subset of columns. Arguments with default values won't be written to
**rows_distinct**

YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

**Examples**

Create a simple table with three columns of numerical values.

```r
tbl <-
dplyr::tibble(
 a = c(5, 7, 6, 5, 8, 7),
 b = c(7, 1, 0, 0, 8, 3),
 c = c(1, 1, 1, 3, 3, 3)
)

tbl
#> # A tibble: 6 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3
#> 5 8 8 3
#> 6 7 3 3

A: Using an agent with validation functions and then `interrogate()`:

Validate that when considering only data in columns `a` and `b`, there are no duplicate rows (i.e., all rows are distinct).

```r
agent <-
create_agent(tbl = tbl) %>%
  rows_distinct(columns = c(a, b)) %>%
  interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>%
 rows_distinct(columns = c(a, b)) %>%
 dplyr::pull(a)
#> [1] 5 7 6 5 8 7
C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_rows_distinct(tbl, columns = c(a, b))
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
test_rows_distinct(tbl, columns = c(a, b))
#> [1] TRUE
```

Function ID

2-20

See Also

Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(), col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(), col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(), col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(), col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(), col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(), col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(), serially(), specially(), tbl_match()
```r
step_id = NULL,
label = NULL,
b Brief = NULL,
active = TRUE,
tbl_compare = NULL
)

expect_row_count_match(
  object,
  count,
  preconditions = NULL,
  threshold = 1,
  tbl_compare = NULL
)

test_row_count_match(
  object,
  count,
  preconditions = NULL,
  threshold = 1,
  tbl_compare = NULL
)

Arguments

x  A pointblank agent or a data table
  obj:<ptblank_agent>|obj:<tbl_*> // required
  A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

count  The count comparison
  scalar<numeric|integer>|obj:<tbl_*> // required
  Either a literal value for the number of rows, or, a table to compare against the target table in terms of row count values. If supplying a comparison table, it can either be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <tbl reading code>) or a function (function() <tbl reading code>) can be used to lazily read in the comparison table at interrogation time.

preconditions  Input table modification prior to validation
  <table mutation expression> // default: NULL (optional)
  An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments  Expressions for segmenting the target table
  <segmentation expressions> // default: NULL (optional)
  An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two
ways: (1) as column names, or (2) as a two-sided formula where the LHS holds
a column name and the RHS contains the column values to segment on. See the
Segments section for more details on this.

actions

Thresholds and actions for different states

obj: <action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly
when exceeding the set levels for different states. This is to be created with the
action_levels() helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps gen-
erated from calling a validation function. The use of step IDs serves to distin-
guish validation steps from each other and provide an opportunity for supplying
a more meaningful label compared to the step index. By default this is NULL,
and pointblank will automatically generate the step ID value (based on the step
index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation
function call will produce (influenced by the number of columns provided), (2)
be an ID string not used in any previous validation step, and (3) be a vector with
unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the agent report and,
for the best appearance, it should be kept quite short. See the Labels section for
more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is
provided here then an autobrief is generated by the agent, using the language
provided in create_agent()'s lang argument (which defaults to "en" or En-
glish). The autobrief incorporates details of the validation step so it’s often the
preferred option in most cases (where a label might be better suited to suc-
cinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the
validation function is working with an agent, FALSE will make the validation
step inactive (still reporting its presence and keeping indexes for the steps un-
changed). If the validation function will be operating directly on data (no agent
involvement), then any step with active = FALSE will simply pass the data
through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table)
to evaluate to a single logical value. With this approach, the pointblank func-
tion has_columns() can be used to determine whether to make a validation step
active on the basis of one or more columns existing in the table (e.g., ~ . ~ >
has_columns(c(d, e))).
tbl_compare  Deprecated Comparison table
  obj:<tbl_*> // default: NULL (optional)
The tbl_compare argument is deprecated. Instead, use count.

object  A data table for expectations or tests
  obj:<tbl_*> // required
  A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold  The failure threshold
  scalar<integer|numeric>(val>=0) // default: 1
  A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value
  For the validation function, the return value is either a ptblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables
  The types of data tables that are officially supported are:

  • data frames (data.frame) and tibbles (tbl_df)
  • Spark DataFrames (tbl_spark)
  • the following database tables (tbl_dbi):
    - PostgreSQL tables (using the RPostgres::Postgres() as driver)
    - MySQL tables (with RMySQL::MySQL())
    - Microsoft SQL Server tables (via odbc)
    - BigQuery tables (using bigquery::bigquery())
    - DuckDB tables (through duckdb::duckdb())
    - SQLite (with RSQLite::SQLite())

  Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with pointblank).

Preconditions
  Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the row count comparison takes place. Using preconditions
can be useful at times since since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the action_levels() function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the warn_at argument. Using action_levels(warn_at = 1) or action_levels(stop_at = 1) are good choices depending on the situation (the first produces a warning, the other stop()s).

Labels

label may be a single string or a character vector that matches the number of expanded steps. label also supports {glue} syntax and exposes the following dynamic variables contextualized to the current step:

- "{.step}”: The validation step name
- "{.seg_col}": The current segment’s column name
- "{.seg_val}": The current segment’s value/group
The glue context also supports ordinary expressions for further flexibility (e.g., "{toupper(.step)}") as long as they return a length-1 string.

**Briefs**

Want to describe this validation step in some detail? Keep in mind that this is only useful if x is an *agent*. If that’s the case, brief the agent with some text that fits. Don’t worry if you don’t want to do it. The *autobrief* protocol is kicked in when brief = NULL and a simple brief will then be automatically generated.

**YAML**

A *pointblank* agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `row_count_match()` is represented in YAML (under the top-level *steps* key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `row_count_match()` as a validation step is expressed in R code and in the corresponding YAML representation.

**R statement:**

```r
agent %>%
 row_count_match(
 count = ~ file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
),
),
 preconditions = ~ . %>% dplyr::filter(a < 10),
 segments = b ~ c("group_1", "group_2"),
 actions = action_levels(warn_at = 0.1, stop_at = 0.2),
 label = "The \`row_count_match()\` step."
)
 active = FALSE
)
```

**YAML representation:**

```yaml
steps:
 - row_count_match:
 count: ~ file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
),
),
 preconditions: ~ . %>% dplyr::filter(a < 10)
```
segments: b ~ c("group_1", "group_2")
actions:
  warn_fraction: 0.1
  stop_fraction: 0.2
  label: The `row_count_match()` step.
  active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns and four rows of values.

tbl <-
dplyr::tibble(
a = c(5, 7, 6, 5),
b = c(7, 1, 0, 0),
c = c(1, 1, 1, 3)
)

tbl
#> # A tibble: 4 x 3
#>   a b c
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

Create a second table which is quite different but has the same number of rows as tbl.

tbl_2 <-
dplyr::tibble(
e = c("a", NA, "a", "c"),
f = c(2.6, 1.2, 0, NA)
)

tbl_2
#> # A tibble: 4 x 2
#>   e f
#> 1 a 2.6
#> 2 <NA> 1.2
#> 3 a 0
#> 4 c NA
A: Using an agent with validation functions and then `interrogate()`:
Validate that the count of rows in the target table (`tbl`) matches that of the comparison table (`tbl_2`).

```r
agent <-
 create_agent(tbl = tbl) %>%
 row_count_match(count = tbl_2) %>%
 interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% row_count_match(count = tbl_2)
```

#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3

C: Using the expectation function:
With the `expect_*()` form, we would typically perform one validation at a time. This is primarily used in `testthat` tests.

```r
expect_row_count_match(tbl, count = tbl_2)
```

D: Using the test function:
With the `test_*()` form, we should get a single logical value returned to us.

```r
tbl %>% test_row_count_match(count = 4)
```

#> [1] TRUE

Function ID
2-31

See Also
Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`
scan_data

Thoroughly scan a table to better understand it

Description

Generate an HTML report that scours the input table data. Before calling up an agent to validate the data, it’s a good idea to understand the data with some level of precision. Make this the initial step of a well-balanced data quality reporting workflow. The reporting output contains several sections to make everything more digestible, and these are:

- **Overview** Table dimensions, duplicate row counts, column types, and reproducibility information
- **Variables** A summary for each table variable and further statistics and summaries depending on the variable type
- **Interactions** A matrix plot that shows interactions between variables
- **Correlations** A set of correlation matrix plots for numerical variables
- **Missing Values** A summary figure that shows the degree of missingness across variables
- **Sample** A table that provides the head and tail rows of the dataset

The resulting object can be printed to make it viewable in the RStudio Viewer. It’s also a "shiny.tag.list" object and so can be integrated in R Markdown HTML output or in Shiny applications. If you need the output HTML, it’s to export that to a file with the `export_report()` function.

Usage

```r
scan_data(
 tbl,
 sections = "OVICMS",
 navbar = TRUE,
 width = NULL,
 lang = NULL,
 locale = NULL
)
```

Arguments

- **tbl**  
  A data table
  obj:<tbl_*> // required
  The input table. This can be a data frame, tibble, a tbl_dbi object, or a tbl_spark object.
sections

The sections to include in the finalized Table Scan report. A string with key characters representing section names is required here. The default string is "OVICMS" wherein each letter stands for the following sections in their default order: "O": "overview"; "V": "variables"; "I": "interactions"; "C": "correlations"; "M": "missing"; and "S": "sample". This string can be comprised of less characters and the order can be changed to suit the desired layout of the report. For tbl_dbi and tbl_spark objects supplied to tbl, the "interactions" and "correlations" sections are currently excluded.

navbar

Should there be a navigation bar anchored to the top of the report page?

width

An optional fixed width (in pixels) for the HTML report. By default, no fixed width is applied.

lang

The language to use for label text in the report. By default, NULL will create English ("en") text. Other options include French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

locale

An optional locale ID to use for formatting values in the report according to the locale’s rules. Examples include "en_US" for English (United States) and "fr_FR" for French (France); more simply, this can be a language identifier without a country designation, like "es" for Spanish (Spain, same as "es_ES").

Value

A ptblank_tbl_scan object.

Examples

Get an HTML document that describes all of the data in the dplyr::storms dataset.

```r
tbl_scan <- scan(data(tbl = dplyr::storms)
```

Function ID

1-1
See Also

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `tbl_get()`, `tbl_source()`, `tbl_store()`, `validate_rmd()`

---

**Description**

The `serially()` validation function allows for a series of tests to run in sequence before either culminating in a final validation step or simply exiting the series. This construction allows for pre-testing that may make sense before a validation step. For example, there may be situations where it’s vital to check a column type before performing a validation on the same column (since having the wrong type can result in an evaluation error for the subsequent validation). Another serial workflow might entail having a bundle of checks in a prescribed order and, if all pass, then the goal of this testing has been achieved (e.g., checking if a table matches another through a series of increasingly specific tests).

A series as specified inside `serially()` is composed with a listing of calls, and we would draw upon test functions (T) to describe tests and optionally provide a finalizing call with a validation function (V). The following constraints apply:

- there must be at least one test function in the series (T - V is good, V is not)
- there can only be one validation function call, V; it’s optional but, if included, it must be placed at the end (T - T - V is good, these sequences are bad: (1) T - V - T, (2) T - T - V - V)
- a validation function call (V), if included, mustn’t itself yield multiple validation steps (this may happen when providing multiple columns or any segments)

Here’s an example of how to arrange expressions:

```r
~ test_col_exists(., columns = count),
~ test_col_is_numeric(., columns = count),
~ col_vals_gt(., columns = count, value = 2)
```

This series concentrates on the column called `count` and first checks whether the column exists, then checks if that column is numeric, and then finally validates whether all values in the column are greater than 2.

Note that in the above listing of calls, the . stands in for the target table and is always necessary here. Also important is that all `test_*()` functions have a `threshold` argument that is set to 1 by default. Should you need to bump up the threshold value it can be changed to a different integer value (as an absolute threshold of failing test units) or a decimal value between 0 and 1 (serving as a fractional threshold of failing test units).
Usage

```r
serially(
 x,
 ...,
 .list = list2(...),
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)
```

```r
expect_serially(
 object,
 ...,
 .list = list2(...),
 preconditions = NULL,
 threshold = 1
)
```

```r
test_serially(
 object,
 ...,
 .list = list2(...),
 preconditions = NULL,
 threshold = 1
)
```

Arguments

**x**

A pointblank agent or a data table

```
obj:<ptblank_agent>|obj:<tbl_*> // required
```

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with `create_agent()`.

**...**

Test/validation expressions

```
<test/validation expressions> // required (or, use .list)
```

A collection one-sided formulas that consist of `test_*( )` function calls (e.g., `test_col_vals_between()`, etc.) arranged in sequence of intended interrogation order. Typically, validations up until the final one would have some threshold value set (default is 1) for short circuiting within the series. A finishing validation function call (e.g., `col_vals_increasing()`, etc.) can optionally be inserted at the end of the series, serving as a validation step that only undergoes interrogation if the prior tests adequately pass. An example of this is `~ test_column_exists(., a), ~ col_vals_not_null(., a))`.

**.list**

Alternative to...

```
<list of multiple expressions> // required (or, use ...)
```


Allows for the use of a list as an input alternative to . . .

**preconditions**

*Input table modification prior to validation*

```r
<pre><table mutation expression> // default: NULL (optional)
An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading `~` (e.g., `~ . %>% dplyr::mutate(col = col + 10)`) or as a function (e.g., `function(x) dplyr::mutate(x, col = col + 10)`). See the Preconditions section for more information.
```

**actions**

*Thresholds and actions for different states*

```r
<obj><action_levels> // default: NULL (optional)
A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the `action_levels()` helper function.
```

**step_id**

*Manual setting of the step ID value*

```r
<scalar<character> // default: NULL (optional)
One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and `pointblank` will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.
```

**label**

*Optional label for the validation step*

```r
<vector<character> // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.
```

**brief**

*Brief description for the validation step*

```r
<scalar<character> // default: NULL (optional)
A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in `create_agent()`’s lang argument (which defaults to ”en” or English). The autobrief incorporates details of the validation step so it’s often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).
```

**active**

*Is the validation step active?*

```r
<scalar<logical> // default: TRUE
A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided
R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the `pointblank` function `has_columns()` can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

`obj:<tbl_~>` // **required**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

`scalar<integer|numeric>(val>=0)` // **default**: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding `testthat` test or evaluate to `TRUE`. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - *PostgreSQL* tables (using the `RPostgres::Postgres()` as driver)
 - *MySQL* tables (with `RMySQL::MySQL()`)
 - *Microsoft SQL Server* tables (via `odbc`)
 - *BigQuery* tables (using `bigquery::bigquery()`)
 - *DuckDB* tables (through `duckdb::duckdb()`)
 - *SQLite* (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Column Names

Columns may be a single column (as symbol `a` or string "a") or a vector of columns (c(a, b, c) or c("a", "b", "c")). `{tidyselect}` helpers are also supported, such as contains("date") and `where(is.double)`. If passing an `external vector` of columns, it should be wrapped in `all_of()`.
When multiple columns are selected by `columns`, the result will be an expansion of validation steps to that number of columns (e.g., `c(col_a, col_b)` will result in the entry of two validation steps). Previously, columns could be specified in `vars()`. This continues to work, but `c()` offers the same capability and supersedes `vars()` in `columns`.

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an `agent`-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided `R` formula (using a leading `~`). In the formula representation, the `.` serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or `action_levels(stop_at = 0.25)` are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other `stop()`)s at the same threshold level).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `"{.step}"`: The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`).

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an `agent`. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.
YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `serially()` is represented in YAML (under the top-level steps key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `serially()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  serially(
    ~ test_col_vals_lt(., columns = a, value = 8),
    ~ test_col_vals_gt(., columns = c, value = vars(a)),
    ~ col_vals_not_null(., columns = b),
    preconditions = ~ . %>% dplyr::filter(a < 10),
    actions = action_levels(warn_at = 0.1, stop_at = 0.2),
    label = "The `serially()` step."
  ,
  active = FALSE
)
```

YAML representation:

```
steps:
  - serially:
      fns:
        - ~test_col_vals_lt(., columns = a, value = 8)
        - ~test_col_vals_gt(., columns = c, value = vars(a))
        - ~col_vals_not_null(., columns = b)
      preconditions: ~. %>% dplyr::filter(a < 10)
      actions:
        warn_fraction: 0.1
        stop_fraction: 0.2
      label: The `serially()` step.
      active: false
```

In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a very basic table but it’ll be more useful when explaining things later.

```r
tbl <-
```
dplyr::tibble(
 a = c(5, 2, 6),
 b = c(6, 4, 9),
 c = c(1, 2, 3)
)

tbl
#> # A tibble: 3 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 6 1
#> 2 2 4 2
#> 3 6 9 3

A: Using an agent with validation functions and then `interrogate()`:
The `serially()` function can be set up to perform a series of tests and then perform a validation
(only if all tests pass). Here, we are going to (1) test whether columns a and b are numeric,
(2) check that both don’t have any NA values, and (3) perform a finalizing validation that checks
whether values in b are greater than values in a. We’ll determine if this validation has any failing
test units (there are 4 tests and a final validation).

```r
agent_1 <-
  create_agent(tbl = tbl) %%
serially(
  ~ test_col_is_numeric(., columns = c(a, b)),
  ~ test_col_vals_not_null(., columns = c(a, b)),
  ~ col_vals_gt(., columns = b, value = vars(a))
) %>
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt
of validation report, showing the single entry that corresponds to the validation step demonstrated
here.
What’s going on? All four of the tests passed and so the final validation occurred. There were no
failing test units in that either!
The final validation is optional and so here is a variation where only the serial tests are performed.

```r
agent_2 <-
  create_agent(tbl = tbl) %%
serially(
  ~ test_col_is_numeric(., columns = c(a, b)),
  ~ test_col_vals_not_null(., columns = c(a, b))
) %>
interrogate()
```

Everything is good here too:

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should
`stop()` if there is a single test unit failing. The behavior of side effects can be customized with
the actions option.
```r
tbl %>%
  serially(  
    ~ test_col_is_numeric(., columns = c(a, b)),
    ~ test_col_vals_not_null(., columns = c(a, b)),
    ~ col_vals_gt(., columns = b, value = vars(a))
  )
## # A tibble: 3 x 3
##   a   b   c
##  <dbl> <dbl> <dbl>
## 1    5    6    1
## 2    2    4    2
## 3    6    9    3

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

expect_serially(
  tbl,  
  ~ test_col_is_numeric(., columns = c(a, b)),
  ~ test_col_vals_not_null(., columns = c(a, b)),
  ~ col_vals_gt(., columns = b, value = vars(a))
)

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

tbl %>%
  test_serially(  
    ~ test_col_is_numeric(., columns = c(a, b)),
    ~ test_col_vals_not_null(., columns = c(a, b)),
    ~ col_vals_gt(., columns = b, value = vars(a))
  )
## [1] TRUE

Function ID
2-35

See Also
Other validation functions: col_count_match(), col_exists(), col_is_character(), col_is_date(),
col_is_factor(), col_is_integer(), col_is_logical(), col_is_numeric(), col_is_posix(),
col_schema_match(), col_vals_between(), col_vals_decreasing(), col_vals_equal(), col_vals_expr(),
col_vals_gt(), col_vals_gte(), col_vals_in_set(), col_vals_increasing(), col_vals_lt(),
col_vals_lte(), col_vals_make_set(), col_vals_make_subset(), col_vals_not_between(),
col_vals_not_equal(), col_vals_not_in_set(), col_vals_not_null(), col_vals_null(),
col_vals_regex(), col_vals_within_spec(), conjointly(), row_count_match(), rows_complete(),
rows_distinct(), specially(), tbl_match()
```
set_tbl

Set a data table to an agent or an informant

Description

Setting a data table to an agent or an informant with set_tbl() replaces any associated table (a data frame, a tibble, objects of class tbl_dbi or tbl_spark).

Usage

```
set_tbl(x, tbl, tbl_name = NULL, label = NULL)
```

Arguments

- **x**

 A pointblank agent or informant object

 `obj: <ptblank_agent | ptblank_informant> // required`

 An agent object of class ptblank_agent, or, an informant of class ptblank_informant.

- **tbl**

 Table or expression for reading in one

 `obj: <tbl_*> | <tbl reading expression> // required`

 The input table for the agent or the informant. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, an expression can be supplied to serve as instructions on how to retrieve the target table at interrogation- or incorporation-time. There are two ways to specify an association to a target table: (1) as a table-prep formula, which is a right-hand side (RHS) formula expression (e.g., `~ { <tbl reading code>}`), or (2) as a function (e.g., `function() { <tbl reading code>}`).

- **tbl_name**

 A table name

 `scalar <character> // default: NULL (optional)`

 A optional name to assign to the new input table object. If no value is provided, a name will be generated based on whatever information is available.

- **label**

 An optional label for reporting

 `scalar <character> // default: NULL (optional)`

 An optional label for the validation plan or information report. If no value is provided then any existing label will be retained.

Examples

Set proportional failure thresholds to the warn, stop, and notify states using `action_levels()`.

```
al <- action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35
)
```
Create an agent that has `small_table` set as the target table via `tbl`. Apply the actions, add some validation steps and then interrogate the data.

```r
agent_1 <-
create_agent(
  tbl = small_table,
  tbl_name = "small_table",
  label = "An example.",
  actions = al
) %>%
  col_exists(columns = c(date, date_time)) %>%
  col_vals_regex(
    columns = b,
    regex = "[0-9]-[a-z][3]-[0-9][3]"
  ) %>%
  rows_distinct() %>%
  interrogate()
```

Replace the agent’s association to `small_table` with a mutated version of it (one that removes duplicate rows). Then, interrogate the new target table.

```r
agent_2 <-
agent_1 %>%
  set_tbl(
    tbl = small_table %>% dplyr::distinct()
  ) %>%
  interrogate()
```

Function ID

9-4

See Also

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `export_report()`, `remove_steps()`, `x_read_disk()`, `x_write_disk()`

small_table

A small table that is useful for testing

Description

This is a small table with a few different types of columns. It’s probably just useful when testing the functions from `pointblank`. Rows 9 and 10 are exact duplicates. The `c` column contains two `NA` values.
Usage

small_table

Format

A tibble with 13 rows and 8 variables:

- **date_time**: A date-time column (of the POSIXct class) with dates that correspond exactly to those in the date column. Time values are somewhat randomized but all 'seconds' values are 00.
- **date**: A Date column with dates from 2016-01-04 to 2016-01-30.
- **a**: An integer column with values ranging from 1 to 8.
- **b**: A character column with values that adhere to a common pattern.
- **c**: An integer column with values ranging from 2 to 9. Contains two NA values.
- **d**: A numeric column with values ranging from 108 to 10000.
- **e**: A logical column.
- **f**: A character column with "low", "mid", and "high" values.

Function ID

14-1

See Also

Other Datasets: game_revenue, game_revenue_info, small_table_sqlite(), specifications

Examples

```r
# Here is a glimpse at the data
# available in `small_table`
dplyr::glimpse(small_table)
```

small_table_sqlite An SQLite version of the small_table dataset

Description

The `small_table_sqlite()` function creates an SQLite, tbl_dbi version of the small_table dataset. A requirement is the availability of the DBI and RSQLite packages. These packages can be installed by using install.packages("DBI") and install.packages("RSQLite").

Usage

```r
small_table_sqlite()
```
Function ID

14-2

See Also

Other Datasets: game_revenue, game_revenue_info, small_table, specifications

Examples

```r
# Use `small_table_sqlite()` to
# create an SQLite version of the
# `small_table` table
#
# small_table_sqlite <- small_table_sqlite()
```

snip_highest

_A fn for info_snippet(): get the highest value from a column_

Description

The `snip_highest()` function can be used as an info_snippet() function (i.e., provided to fn) to get the highest numerical, time value, or alphabetical value from a column in the target table.

Usage

```r
snip_highest(column)
```

Arguments

- **column**
 - _The target column_
 - scalar<character> // required
 - The name of the column that contains the target values.

Value

A formula needed for info_snippet()’s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_highest() (giving us a method to get the highest value in column a); define a location for the snippet result in { }; and then incorporate() the snippet into the info text. Note here that the order of the info_columns() and info_snippet() calls doesn’t matter.
informant <-
 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)

info_columns(
 columns = a,
 'Highest Value' = "Highest value is \{highest_a\}."
)

info_snippet(
 snippet_name = "highest_a",
 fn = snip_highest(column = "a")
)

incorporate()

We can print the informant object to see the information report.

informant

Function ID

3-9

See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(), info_snippet(), info_tabular(), snip_list(), snip_lowest(), snip_stats()

snip_list

_A fn for info_snippet(): get a list of column categories_

Description

The snip_list() function can be used as an info_snippet() function (i.e., provided to fn) to get a catalog list from a table column. You can limit the number of items in that list with the limit value.

Usage

snip_list(
 column,
 limit = 5,
 sorting = c("inorder", "infreq", "inseq"),
 reverse = FALSE,
 sep = ",",
 and_or = NULL,
 oxford = TRUE,
Arguments

column
The target column
scalar<character> // **required**
The name of the column that contains the target values.

limit
Limit for list length
scalar<integer> // default: 5
A limit of items put into the generated list. The returned text will state the remaining number of items beyond the limit.

sorting
Type of sorting within list
sing1-kw:[inorder|infreq|inseq] // default: "inorder"
A keyword used to designate the type of sorting to use for the list. The three options are "inorder" (the default), "infreq", and "inseq". With "inorder", distinct items are listed in the order in which they first appear. Using "infreq" orders the items by the decreasing frequency of each item. The "inseq" option applies an alphanumeric sorting to the distinct list items.

reverse
Reversal of list order
scalar<logical> // default: FALSE
An option to reverse the ordering of list items. By default, this is FALSE but using TRUE will reverse the items before applying the limit.

sep
Separator text for list
scalar<character> // default: ","
The separator to use between list items. By default, this is a comma.

and_or
Use of 'and' or 'or' within list
scalar<character> // default: NULL (optional)
The type of conjunction to use between the final and penultimate list items (should the item length be below the limit value). If NULL (the default) is used, then the ‘and’ conjunction will be used. Alternatively, the following keywords can be used: "and", "or", or an empty string (for no conjunction at all).

oxford
Usage of oxford comma
scalar<logical> // default: TRUE
Whether to use an Oxford comma under certain conditions.

as_code
Treat items as code
scalar<logical> // default: TRUE
Should each list item appear in a 'code font' (i.e., as monospaced text)? By default this is TRUE. Using FALSE keeps all list items in the same font as the rest of the information report.

quot_str
Set items in double quotes
scalar<logical> // default: NULL (optional)
An option for whether list items should be set in double quotes. If NULL (the default), the quotation marks are mainly associated with list items derived from character or factor values; numbers, dates, and logical values won’t have quotation marks. We can explicitly use quotations (or not) with either TRUE or FALSE here.

\[\text{lang} \]

Reporting language

`scalar<character> // default: NULL (optional)`

The language to use for any joining words (from the `and_or` option) or additional words in the generated list string. By default, NULL will use whichever `lang` setting is available in the parent `informant` object (this is settable in the `create_informant()` `lang` argument). If specified here as an override, the language options are English ("en"), French ("fr"), German ("de"), Italian ("it"), Spanish ("es"), Portuguese ("pt"), Turkish ("tr"), Chinese ("zh"), Russian ("ru"), Polish ("pl"), Danish ("da"), Swedish ("sv"), and Dutch ("nl").

Value

A formula needed for `info_snippet()`’s `fn` argument.

Examples

Generate an informant object, add a snippet with `info_snippet()` and `snip_list()` (giving us a method to get a distinct list of column values for column `f`). Define a location for the snippet result in `{ }` and then `incorporate()` the snippet into the info text. Note here that the order of the `info_columns()` and `info_snippet()` calls doesn’t matter.

```r
informant <- create_informant(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example."
) %>%
info_columns(
  columns = f,
  'Items' = "This column contains {values_f}."
) %>%
info_snippet(
  snippet_name = "values_f",
  fn = snip_list(column = "f")
) %>%
incorporate()
```

We can print the `informant` object to see the information report.

`informant`

Function ID

3-6
See Also

Other Information Functions: info_columns(), info_columns_from_tbl(), info_section(), info_snippet(), info_tabular(), snip_highest(), snip_lowest(), snip_stats()

snip_lowest A fn for info_snippet(): get the lowest value from a column

Description

The snip_lowest() function can be used as an info_snippet() function (i.e., provided to fn) to get the lowest numerical, time value, or alphabetical value from a column in the target table.

Usage

snip_lowest(column)

Arguments

column The target column

 scalar<character> // required

 The name of the column that contains the target values.

Value

A formula needed for info_snippet()’s fn argument.

Examples

Generate an informant object, add a snippet with info_snippet() and snip_lowest() (giving us a method to get the lowest value in column a). Define a location for the snippet result in {} and then incorporate() the snippet into the info text. Note here that the order of the info_columns() and info_snippet() calls doesn’t matter.

informant <-

 create_informant(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "An example."
)

 info_columns(
 columns = a,
 "Lowest Value" = "Lowest value is {lowest_a}."
)

 info_snippet(
 snippet_name = "lowest_a",
 fn = snip_lowest(column = "a")
)

 incorporate()
We can print the `informant` object to see the information report.

```
informant
```

Function ID

3-8

See Also

Other Information Functions: `info_columns()`, `info_columns_from_tbl()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_stats()`

snip_stats

A fn for info_snippet(): get an inline statistical summary

Description

The `snip_stats()` function can be used as an `info_snippet()` function (i.e., provided to `fn`) to produce a five- or seven-number statistical summary. This inline summary works well within a paragraph of text and can help in describing the distribution of numerical values in a column.

For a given column, three different types of inline statistical summaries can be provided:

1. a five-number summary ("5num"): minimum, Q1, median, Q3, maximum
2. a seven-number summary ("7num"): P2, P9, Q1, median, Q3, P91, P98
3. Bowley’s seven-figure summary ("bowley"): minimum, P10, Q1, median, Q3, P90, maximum

Usage

```
snip_stats(column, type = c("5num", "7num", "bowley"))
```

Arguments

- `column`
 - *The target column*
 - `scalar<character>` // **required**
 - The name of the column that contains the target values.

- `type`
 - *Type of statistical summary*
 - `sing1-kw:[5num|7num|bowley]` // **default**: "5num"
 - The type of summary. By default, the "5num" keyword is used to generate a five-number summary. Two other options provide seven-number summaries: "7num" and "bowley".

Value

A formula needed for `info_snippet()`’s `fn` argument.
Examples

Generate an informant object, add a snippet with `info_snippet()` and `snip_stats()` (giving us a method to get some summary stats for column d). Define a location for the snippet result in `{ }` and then `incorporate()` the snippet into the info text. Note here that the order of the `info_columns()` and `info_snippet()` calls doesn’t matter.

```r
informant <-
create_informant(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "An example."
)

info_columns(
  columns = d,
  `Stats` = "Stats (fivenum): {stats_d}")

info_snippet(
  snippet_name = "stats_d",
  fn = snip_stats(column = "d")
)

incorporate()
```

We can print the informant object to see the information report.

```r
informant
```

Function ID

3-7

See Also

Other Information Functions: `info_columns()`, `info_columns_from_tbl()`, `info_section()`, `info_snippet()`, `info_tabular()`, `snip_highest()`, `snip_list()`, `snip_lowest()`

Description

The `specially()` validation function allows for custom validation with a function that you provide. The major proviso for the provided function is that it must either return a logical vector or a table where the final column is logical. The function will operate on the table object, or, because you can do whatever you like, it could also operate on other types of objects. To do this, you can transform the input table in preconditions or inject an entirely different object there. During interrogation, there won’t be any checks to ensure that the data is a table object.

Perform a specialized validation with a user-defined function
Usage

specially(
 x,
 fn,
 preconditions = NULL,
 actions = NULL,
 step_id = NULL,
 label = NULL,
 brief = NULL,
 active = TRUE
)

expect_specially(object, fn, preconditions = NULL, threshold = 1)

test_specially(object, fn, preconditions = NULL, threshold = 1)

Arguments

x

A pointblank agent or a data table

obj:<ptblank_agent>|obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

fn

Specialized validation function

<function> // required

A function that performs the specialized validation on the data. It must either return a logical vector or a table where the last column is a logical column.

preconditions

Input table modification prior to validation

<table mutation expression> // default: NULL (optional)

An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10). See the Preconditions section for more information.

actions

Thresholds and actions for different states

obj:<action_levels> // default: NULL (optional)

A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id

Manual setting of the step ID value

scalar<character> // default: NULL (optional)

One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number
of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label

Optional label for the validation step

vector<character> // default: NULL (optional)

Optional label for the validation step. This label appears in the *agent* report and, for the best appearance, it should be kept quite short. See the *Labels* section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A *brief* is a short, text-based description for the validation step. If nothing is provided here then an *autobrief* is generated by the *agent*, using the language provided in *create_agent()*’s *lang* argument (which defaults to "en" or English). The *autobrief* incorporates details of the validation step so it’s often the preferred option in most cases (where a *label* might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an *agent*, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no *agent* involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the *pointblank* function *has_columns()* can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

obj:<tbl_*> // **required**

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_) and the test (test_) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding *testthat* test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.
Value

For the validation function, the return value is either a `ptblank_agent` object or a table object (depending on whether an agent object or a table was passed to `x`). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:

- data frames (`data.frame`) and tibbles (`tbl_df`)
- Spark DataFrames (`tbl_spark`)
- the following database tables (`tbl_dbi`):
 - *PostgreSQL* tables (using the `RPostgres::Postgres()` as driver)
 - *MySQL* tables (with `RMySQL::MySQL()`)
 - *Microsoft SQL Server* tables (via `odbc`)
 - *BigQuery* tables (using `bigquery::bigquery()`)
 - *DuckDB* tables (through `duckdb::duckdb()`)
 - *SQLite* (with `RSQLite::SQLite()`)

Other database tables may work to varying degrees but they haven’t been formally tested (so be mindful of this when using unsupported backends with `pointblank`).

Preconditions

Providing expressions as preconditions means `pointblank` will preprocess the target table during interrogation as a preparatory step. It might happen that a particular validation requires a calculated column, some filtering of rows, or the addition of columns via a join, etc. Especially for an agent-based report this can be advantageous since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way. Within `specially()`, because this function is special, there won’t be internal checking as to whether the preconditions-based output is a table.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using `dplyr` code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading `~`). In the formula representation, the `. serves as the input data table to be transformed (e.g., `~ . %>% dplyr::mutate(col_b = col_a + 10)`). Alternatively, a function could instead be supplied (e.g., `function(x) dplyr::mutate(x, col_b = col_a + 10)`).

Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. This is especially true when `x` is a table object because, otherwise, nothing happens. For the `col_vals_*()`-type functions, using `action_levels(warn_at = 0.25)` or
action_levels(stop_at = 0.25) are good choices depending on the situation (the first produces a warning when a quarter of the total test units fails, the other stop()s at the same threshold level).

Labels

label may be a single string or a character vector that matches the number of expanded steps. *label* also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `"{.step}"`: The validation step name

The glue context also supports ordinary expressions for further flexibility (e.g., `"{toupper(.step)}"`) as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if *x* is an agent. If that’s the case, *brief* the agent with some text that fits. Don’t worry if you don’t want to do it. The *autobrief* protocol is kicked in when *brief* = `NULL` and a simple brief will then be automatically generated.

YAML

A *pointblank* agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`)) or interrogate the target table (via `yaml_agent_interrogate()`). When `specially()` is represented in YAML (under the top-level *steps* key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `specially()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
specially(
  fn = function(x) { ... },
  preconditions = ~ . %>% dplyr::filter(a < 10),
  actions = action_levels(warn_at = 0.1, stop_at = 0.2),
  label = "The \`specially()\` step.",
  active = FALSE
)
```

YAML representation:

```yaml
steps:
- specially:
  fn: function(x) { ... }
  preconditions: ~. %>% dplyr::filter(a < 10)
  actions:
    warn_fraction: 0.1
    stop_fraction: 0.2
  label: The `specially()` step.
  active: false
```
In practice, both of these will often be shorter as only the expressions for validation steps are necessary. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

For all examples here, we’ll use a simple table with three numeric columns (a, b, and c). This is a very basic table but it’ll be more useful when explaining things later.

```r
tbl <-
dplyr::tibble(
a = c(5, 2, 6),
b = c(3, 4, 6),
c = c(9, 8, 7)
)
tbl
#> # A tibble: 3 x 3
#>    a    b    c
#>  <dbl> <dbl> <dbl>
#> 1    5    3    9
#> 2    2    4    8
#> 3    6    6    7
```

A: Using an agent with validation functions and then `interrogate()`:

Validate that the target table has exactly three rows. This single validation with `specially()` has 1 test unit since the function executed on `x` (the target table) results in a logical vector with a length of 1. We’ll determine if this validation has any failing test units (there is 1 test unit).

```r
agent <-
create_agent(tbl = tbl) %>%
specially(fn = function(x) nrow(x) == 3) %>%
interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):

This way of using validation functions acts as a data filter. Data is passed through but should `stop()` if there is a single test unit failing. The behavior of side effects can be customized with the `actions` option.

```r
tbl %>% specially(fn = function(x) nrow(x) == 3)
#> # A tibble: 3 x 3
#>    a    b    c
#>  <dbl> <dbl> <dbl>
#> 1    5    3    9
```
specially

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_specially(tbl, fn = function(x) nrow(x) == 3)
```

D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_specially(fn = function(x) nrow(x) == 3)
#> [1] TRUE
```

Variations:
We can do more complex things with specially() and its variants.
Check the class of the target table.

```r
tbl %>%
test_specially(
  fn = function(x) {
    inherits(x, "data.frame")
  }
)
#> [1] TRUE
```

Check that the number of rows in the target table is less than small_table.

```r
tbl %>%
test_specially(
  fn = function(x) {
    nrow(x) < nrow(small_table)
  }
)
#> [1] TRUE
```

Check that all numbers across all numeric column are less than 10.

```r
tbl %>%
test_specially(
  fn = function(x) {
    (x %>%
      dplyr::select(where(is.numeric)) %>%
      unlist()
    ) < 10
  }
)
#> [1] TRUE
```
Check that all values in column c are greater than b and greater than a (in each row) and always less than 10. This creates a table with the new column d which is a logical column (that is used as the evaluation of test units).

```r
tbl %>%
  test_specially(
    fn = function(x) {
      x %>%
        dplyr::mutate(
          d = c > b & c > a & c < 10
        )
    }
  )
#> [1] TRUE
```

Check that the game_revenue table (which is not the target table) has exactly 2000 rows.

```r
tbl %>%
  test_specially(
    fn = function(x) {
      nrow(game_revenue) == 2000
    }
  )
#> [1] TRUE
```

Function ID

2-36

See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`, `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_not_null()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `tbl_match()`

specifications

A table containing data pertaining to various specifications

Description

The specifications dataset is useful for testing the `col_vals_within_spec()`, `test_col_vals_within_spec()`, and `expect_col_vals_within_spec()` functions. For each column, holding character values for different specifications, rows 1-5 contain valid values, the 6th row is an NA value, and the final two values (rows 7 and 8) are invalid. Different specification (spec) keywords apply to each of columns when validating with any of the aforementioned functions.
Usage

specifications

Format

A tibble with 8 rows and 12 variables:

isbn_numbers ISBN-13 numbers; can be validated with the "isbn" specification.

vin_numbers VIN numbers (identifiers for motor vehicles); can be validated with the "vin" specification.

zip_codes Postal codes for the U.S.; can be validated with the "postal[USA]" specification or its "zip" alias.

credit_card_numbers Credit card numbers; can be validated with the "credit_card" specification or the "cc" alias.

iban_austria IBAN numbers for Austrian accounts; can be validated with the "iban[AUT]" specification.

swift_numbers Swift-BIC numbers; can be validated with the "swift" specification.

phone_numbers Phone numbers; can be validated with the "phone" specification.

email_addresses Email addresses; can be validated with the "email" specification.

urls URLs; can be validated with the "url" specification.

ipv4_addresses IPv4 addresses; can be validated with the "ipv4" specification.

ipv6_addresses IPv6 addresses; can be validated with the "ipv6" specification.

mac_addresses MAC addresses; can be validated with the "mac" specification.

Function ID

14-3

See Also

Other Datasets: game_revenue, game_revenue_info, small_table, small_table_sqlite()

Examples

```r
# Here is a glimpse at the data
# available in 'specifications'
dplyr::glimpse(specifications)
```


stock_msg_body

Description

The `stock_msg_body()` function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

Usage

```
stock_msg_body()
```

Value

Text suitable for the `msg_body` argument of `email_blast()` and `email_create()`.

Function ID

4-3

See Also

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_footer()`

stock_msg_footer

Description

The `stock_msg_footer()` function simply provides some stock text for an email message sent via `email_blast()` or obtained as a standalone object through `email_create()`.

Usage

```
stock_msg_footer()
```

Value

Text suitable for the `msg_footer` argument of `email_blast()` and `email_create()`.

Function ID

4-4

See Also

Other Emailing: `email_blast()`, `email_create()`, `stock_msg_body()`
stop_if_not

Description

This variation of stopifnot() works well as a standalone replacement for stopifnot() but is also customized for use in validation checks in R Markdown documents where pointblank is loaded and validate_rmd() is invoked. Using stop_if_not() in a code chunk where the validate = TRUE option is set will yield the correct reporting of successes and failures whereas stopifnot() does not.

Usage

stop_if_not(...)

Arguments

... R expressions that should each evaluate to (a logical vector of all) TRUE.

Value

NULL if all statements in ... are TRUE.

Function ID

13-5

See Also

Other Utility and Helper Functions: affix_date(), affix_datetime(), col_schema(), from_github(), has_columns()

Examples

This checks whether the number of
rows in `small_table` is greater
than `10`
stop_if_not(nrow(small_table) > 10)

This will stop for sure: there
isn't a `time` column in `small_table`
(but there are the `date_time` and
`date` columns)
stop_if_not("time" %in% colnames(small_table))

You're not bound to using tabular
data here, any statements that
evaluate to logical vectors will work
The `tbl_get()` function gives us the means to materialize a table that has an entry in a table store (i.e., has a table-prep formula with a unique name). The table store that is used for this can be in the form of a `tbl_store` object (created with the `tbl_store()` function) or an on-disk YAML representation of a table store (created by using `yaml_write()` with a `tbl_store` object). Should you want a table-prep formula from a table store to use as a value for `tbl` in `create_agent()`, `create_informant()`, or `set_tbl()`, then have a look at the `tbl_source()` function.

Usage

```r
tbl_get(tbl, store = NULL)
```

Arguments

- `tbl` The table to retrieve from a table store. This table could be identified by its name (e.g., `tbl = "large_table"`) or by supplying a reference using a subset (with `$`) of the `tbl_store` object (e.g., `tbl = store$large_table`). If using the latter method then nothing needs to be supplied to `store`.
- `store` Either a table store object created by the `tbl_store()` function or a path to a table store YAML file created by `yaml_write()`.

Value

A table object.

Examples

Define a `tbl_store` object by adding several table-prep formulas in `tbl_store()`.

```r
store <-
tbl_store(
  small_table_duck ~ db_tbl(
    table = small_table,
    dbname = "::memory:",
    dbtype = "duckdb"
  ),
  ~ db_tbl(
    table = "rna",
    dbname = "pfmegnargs",
    dbtype = "postgres",
  )
)
```
Once this object is available, we can access the tables named: "small_table_duck", "rna", and "sml_table". Let's check that the "rna" table is accessible through `tbl_get()`:

```r
tbl_get(
  tbl = "rna",
  store = store
)
```

Source: table<rna> [?? x 9]
Database: postgres [reader@hh-pgsql-public.ebi.ac.uk:5432/pfmegrnargs]
id upi timestamp userstamp crc64 len seq_short
<int64> <chr> <dttm> <chr> <chr> <int> <chr>
2 24583873 URS000177. . . 2019-12-02 13:26:08 rnacen BC42. . . 390 ATGGGCGA. . .
3 24583874 URS000177. . . 2019-12-02 13:26:08 rnacen 19A5. . . 422 CTACGGGA. . .
5 24583876 URS000177. . . 2019-12-02 13:26:08 rnacen CC8F. . . 252 TACGTAGG. . .
6 24583877 URS000177. . . 2019-12-02 13:26:08 rnacen 19E4. . . 413 ATGGCGGA. . .
9 24583880 URS000177. . . 2019-12-02 13:26:08 rnacen 1AA7. . . 460 CCTACCGG. . .
. . . with more rows, and 2 more variables: seq_long <chr>, md5 <chr>

An alternative method for getting the same table materialized is by using `$` to get the formula of choice from `tbls` and passing that to `tbl_get()`. The benefit of this is that we can use autocompletion to show us what’s available in the table store (i.e., appears after typing the `$`).

```r
store$small_table_duck %>% tbl_get()
```

Source: table<small_table> [?? x 8]
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
tbl_match

Description

The `tbl_match()` validation function, the `expect_tbl_match()` expectation function, and the `test_tbl_match()` test function all check whether the target table’s composition matches that of a comparison table. The validation function can be used directly on a data table or with an agent object (technically, a `ptblank_agent` object) whereas the expectation and test functions can only be used with a data table. The types of data tables that can be used include data frames, tibbles, database tables (tbl_dbi), and Spark DataFrames (tbl.spark). As a validation step or as an expectation, there is a single test unit that hinges on whether the two tables are the same (after any preconditions have been applied).

Usage

```r
tbl_match(
  x,
  tbl_compare,
  preconditions = NULL,
  segments = NULL,
  actions = NULL,
  step_id = NULL,
  label = NULL,
  brief = NULL,
  active = TRUE
)

expect_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)

test_tbl_match(object, tbl_compare, preconditions = NULL, threshold = 1)
```
Arguments

- **x**
 A pointblank agent or a data table

 obj:<ptblank_agent>|obj:<tbl_*> // **required**

 A data frame, tibble (tbl_df or tbl_dbi), Spark DataFrame (tbl_spark), or, an agent object of class ptblank_agent that is commonly created with create_agent().

- **tbl_compare**
 A data table for comparison

 obj:<tbl_*> // **required**

 A table to compare against the target table. This can either be a table object, a table-prep formula. This can be a table object such as a data frame, a tibble, a tbl_dbi object, or a tbl_spark object. Alternatively, a table-prep formula (~ <tbl reading code>) or a function (function() <tbl reading code>) can be used to lazily read in the table at interrogation time.

preconditions
Input table modification prior to validation

- **<table mutation expression>** // default: NULL (optional)

 An optional expression for mutating the input table before proceeding with the validation. This can either be provided as a one-sided R formula using a leading ~ (e.g., ~ . %>% dplyr::mutate(col = col + 10)) or as a function (e.g., function(x) dplyr::mutate(x, col = col + 10)). See the Preconditions section for more information.

segments
Expressions for segmenting the target table

- **<segmentation expressions>** // default: NULL (optional)

 An optional expression or set of expressions (held in a list) that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on. See the Segments section for more details on this.

actions
Thresholds and actions for different states

- **obj:<action_levels>** // default: NULL (optional)

 A list containing threshold levels so that the validation step can react accordingly when exceeding the set levels for different states. This is to be created with the action_levels() helper function.

step_id
Manual setting of the step ID value

- **scalar<character>** // default: NULL (optional)

 One or more optional identifiers for the single or multiple validation steps generated from calling a validation function. The use of step IDs serves to distinguish validation steps from each other and provide an opportunity for supplying a more meaningful label compared to the step index. By default this is NULL, and pointblank will automatically generate the step ID value (based on the step index) in this case. One or more values can be provided, and the exact number of ID values should (1) match the number of validation steps that the validation function call will produce (influenced by the number of columns provided), (2) be an ID string not used in any previous validation step, and (3) be a vector with unique values.

label
Optional label for the validation step

- **vector<character>** // default: NULL (optional)
Optional label for the validation step. This label appears in the agent report and, for the best appearance, it should be kept quite short. See the Labels section for more information.

brief

Brief description for the validation step

scalar<character> // default: NULL (optional)

A brief is a short, text-based description for the validation step. If nothing is provided here then an autobrief is generated by the agent, using the language provided in create_agent()'s lang argument (which defaults to "en" or English). The autobrief incorporates details of the validation step so it's often the preferred option in most cases (where a label might be better suited to succinctly describe the validation).

active

Is the validation step active?

scalar<logical> // default: TRUE

A logical value indicating whether the validation step should be active. If the validation function is working with an agent, FALSE will make the validation step inactive (still reporting its presence and keeping indexes for the steps unchanged). If the validation function will be operating directly on data (no agent involvement), then any step with active = FALSE will simply pass the data through with no validation whatsoever. Aside from a logical vector, a one-sided R formula using a leading ~ can be used with . (serving as the input data table) to evaluate to a single logical value. With this approach, the pointblank function has_columns() can be used to determine whether to make a validation step active on the basis of one or more columns existing in the table (e.g., ~ . %>% has_columns(c(d, e))).

object

A data table for expectations or tests

obj:<tbl_*> // required

A data frame, tibble (tbl_df or tbl_dbi), or Spark DataFrame (tbl_spark) that serves as the target table for the expectation function or the test function.

threshold

The failure threshold

scalar<integer|numeric>(val>=0) // default: 1

A simple failure threshold value for use with the expectation (expect_*) and the test (test_*) function variants. By default, this is set to 1 meaning that any single unit of failure in data validation results in an overall test failure. Whole numbers beyond 1 indicate that any failing units up to that absolute threshold value will result in a succeeding test that test or evaluate to TRUE. Likewise, fractional values (between 0 and 1) act as a proportional failure threshold, where 0.15 means that 15 percent of failing test units results in an overall test failure.

Value

For the validation function, the return value is either a pointblank_agent object or a table object (depending on whether an agent object or a table was passed to x). The expectation function invisibly returns its input but, in the context of testing data, the function is called primarily for its potential side-effects (e.g., signaling failure). The test function returns a logical value.

Supported Input Tables

The types of data tables that are officially supported are:
• data frames (data.frame) and tibbles (tbl_df)
• Spark DataFrames (tbl.spark)
• the following database tables (tbl.dbi):
 – *PostgreSQL* tables (using the RPostgres::Postgres() as driver)
 – *MySQL* tables (with RMySQL::MySQL())
 – *Microsoft SQL Server* tables (via odbc)
 – *BigQuery* tables (using bigquery::bigquery())
 – *DuckDB* tables (through duckdb::duckdb())
 – *SQLite* (with RSQLite::SQLite())

Preconditions

Providing expressions as preconditions means pointblank will preprocess the target table during interrogation as a preparatory step. It might happen that this particular validation requires some operation on the target table before the comparison takes place. Using preconditions can be useful at times since we can develop a large validation plan with a single target table and make minor adjustments to it, as needed, along the way.

The table mutation is totally isolated in scope to the validation step(s) where preconditions is used. Using dplyr code is suggested here since the statements can be translated to SQL if necessary (i.e., if the target table resides in a database). The code is most easily supplied as a one-sided R formula (using a leading ~). In the formula representation, the . serves as the input data table to be transformed. Alternatively, a function could instead be supplied.

Segments

By using the segments argument, it’s possible to define a particular validation with segments (or row slices) of the target table. An optional expression or set of expressions that serve to segment the target table by column values. Each expression can be given in one of two ways: (1) as column names, or (2) as a two-sided formula where the LHS holds a column name and the RHS contains the column values to segment on.

As an example of the first type of expression that can be used, vars(a_column) will segment the target table in however many unique values are present in the column called a_column. This is great if every unique value in a particular column (like different locations, or different dates) requires it’s own repeating validation.

With a formula, we can be more selective with which column values should be used for segmentation. Using a_column ~ c("group_1", "group_2") will attempt to obtain two segments where one is a slice of data where the value "group_1" exists in the column named "a_column", and, the other is a slice where "group_2" exists in the same column. Each group of rows resolved from the formula will result in a separate validation step.

Segmentation will always occur after preconditions (i.e., statements that mutate the target table), if any, are applied. With this type of one-two combo, it’s possible to generate labels for segmentation using an expression for preconditions and refer to those labels in segments without having to generate a separate version of the target table.
Actions

Often, we will want to specify actions for the validation. This argument, present in every validation function, takes a specially-crafted list object that is best produced by the `action_levels()` function. Read that function’s documentation for the lowdown on how to create reactions to above-threshold failure levels in validation. The basic gist is that you’ll want at least a single threshold level (specified as either the fraction of test units failed, or, an absolute value), often using the `warn_at` argument. Using `action_levels(warn_at = 1)` or `action_levels(stop_at = 1)` are good choices depending on the situation (the first produces a warning, the other `stop()`s).

Labels

`label` may be a single string or a character vector that matches the number of expanded steps. `label` also supports `{glue}` syntax and exposes the following dynamic variables contextualized to the current step:

- `{.step}`: The validation step name
- `{.seg_col}`: The current segment’s column name
- `{.seg_val}`: The current segment’s value/group

The glue context also supports ordinary expressions for further flexibility (e.g., `{toupper(.step)}`) as long as they return a length-1 string.

Briefs

Want to describe this validation step in some detail? Keep in mind that this is only useful if `x` is an agent. If that’s the case, `brief` the agent with some text that fits. Don’t worry if you don’t want to do it. The `autobrief` protocol is kicked in when `brief = NULL` and a simple brief will then be automatically generated.

YAML

A pointblank agent can be written to YAML with `yaml_write()` and the resulting YAML can be used to regenerate an agent (with `yaml_read_agent()`) or interrogate the target table (via `yaml_agent_interrogate()`). When `tbl_match()` is represented in YAML (under the top-level `steps` key as a list member), the syntax closely follows the signature of the validation function. Here is an example of how a complex call of `tbl_match()` as a validation step is expressed in R code and in the corresponding YAML representation.

R statement:

```r
agent %>%
  tbl_match(
    tbl_compare = ~ file_tbl(
      file = from_github(
        file = "sj_all_revenue_large.rds",
        repo = "rich-iannone/intendo",
        subdir = "data-large"
      ),
    ),
  ),
```

YAML representation:

```yaml
steps:
  - name: tbl_match
    tbl_compare:
      file_tbl:
        file: "sj_all_revenue_large.rds"
        repo: "rich-iannone/intendo"
        subdir: "data-large"
```
YAML representation:

steps:
- tbl_match:
 tbl_compare: ~ file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
)
)
 preconditions: ~. %>% dplyr::filter(a < 10)
 segments: b ~ c("group_1", "group_2")
 actions:
 warn_fraction: 0.1
 stop_fraction: 0.2
 label: The `tbl_match()` step.
 active: false

In practice, both of these will often be shorter. Arguments with default values won’t be written to YAML when using `yaml_write()` (though it is acceptable to include them with their default when generating the YAML by other means). It is also possible to preview the transformation of an agent to YAML without any writing to disk by using the `yaml_agent_string()` function.

Examples

Create a simple table with three columns and four rows of values.

```r
tbl <-
dplyr::tibble(
  a = c(5, 7, 6, 5),
  b = c(7, 1, 0, 0),
  c = c(1, 1, 1, 3)
)

 tbl
 #> # A tibble: 4 x 3
 #>     a     b     c
 #>  <dbl> <dbl> <dbl>
 #> 1    5    7    1
 #> 2    7    1    1
 #> 3    6    0    1
 #> 4    5    0    3
```
Create a second table which is the same as tbl.

```r
tbl_2 <-
  dplyr::tibble(
    a = c(5, 7, 6, 5),
    b = c(7, 1, 0, 0),
    c = c(1, 1, 1, 3)
  )

tbl_2
#> # A tibble: 4 x 3
#>   a  b  c
#> <dbl> <dbl> <dbl>
#> 1 5    7    1
#> 2 7    1    1
#> 3 6    0    1
#> 4 5    0    3
```

A: Using an agent with validation functions and then interrogate():
Validate that the target table (tbl) and the comparison table (tbl_2) are equivalent in terms of content.

```r
agent <-
  create_agent(tbl = tbl) %>%
  tbl_match(tbl_compare = tbl_2) %>%
  interrogate()

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report, showing the single entry that corresponds to the validation step demonstrated here.

B: Using the validation function directly on the data (no agent):
This way of using validation functions acts as a data filter. Data is passed through but should stop() if there is a single test unit failing. The behavior of side effects can be customized with the actions option.

```r
tbl %>% tbl_match(tbl_compare = tbl_2)
#> # A tibble: 4 x 3
#> a b c
#> <dbl> <dbl> <dbl>
#> 1 5 7 1
#> 2 7 1 1
#> 3 6 0 1
#> 4 5 0 3
```

C: Using the expectation function:
With the expect_*() form, we would typically perform one validation at a time. This is primarily used in testthat tests.

```r
expect_tbl_match(tbl, tbl_compare = tbl_2)
```
D: Using the test function:
With the test_*() form, we should get a single logical value returned to us.

```r
tbl %>% test_tbl_match(tbl_compare = tbl_2)
#> [1] TRUE
```

### Function ID

2-33

### See Also

Other validation functions: `col_count_match()`, `col_exists()`, `col_is_character()`, `col_is_date()`, `col_is_factor()`, `col_is_integer()`, `col_is_logical()`, `col_is_numeric()`, `col_is_posix()`, `col_schema_match()`, `col_vals_between()`, `col_vals_decreasing()`, `col_vals_equal()`, `col_vals_expr()`, `col_vals_gt()`, `col_vals_gte()`, `col_vals_in_set()`, `col_vals_increasing()`, `col_vals_lt()`, `col_vals_lte()`, `col_vals_make_set()`., `col_vals_make_subset()`, `col_vals_not_between()`, `col_vals_not_equal()`, `col_vals_not_in_set()`, `col_vals_null()`, `col_vals_regex()`, `col_vals_within_spec()`, `conjointly()`, `row_count_match()`, `rows_complete()`, `rows_distinct()`, `serially()`, `specially()`

---

**tbl_source**

*Obtain a table-prep formula from a table store*

---

**Description**

The `tbl_source()` function provides a convenient means to access a table-prep formula from either a `tbl_store` object or a table store YAML file (which can be created with the `yaml_write()` function). A call to `tbl_source()` is most useful as an input to the `tbl` argument of `create_agent()`, `create_informant()`, or `set_tbl()`.

Should you need to obtain the table itself (that is generated via the table-prep formula), then the `tbl_get()` function should be used for that.

**Usage**

```r
tbl_source(tbl, store = NULL)
```

**Arguments**

- **tbl**
  - The table name associated with a table-prep formula. This is part of the table store. This table could be identified by its name (e.g., `tbl = "large_table"`) or by supplying a reference using a subset (with `$`) of the `tbl_store` object (e.g., `tbl = store$large_table`). If using the latter method then nothing needs to be supplied to `store`.

- **store**
  - Either a table store object created by the `tbl_store()` function or a path to a table store YAML file created by `yaml_write()`.
Value

A table-prep formula.

Examples

Let's create a tbl_store object by giving two table-prep formulas to tbl_store().

```r
store <-
 tbl_store(
 small_table_duck ~ db_tbl(
 table = small_table,
 dbname = "':memory:'",
 dbtype = "duckdb"
),
 sml_table ~ pointblank::small_table
)
```

We can pass a table-prep formula to create_agent() via tbl_source(), add some validation steps, and interrogate the table shortly thereafter.

```r
agent_1 <-
 create_agent(
 tbl = ~ tbl_source("sml_table", store),
 label = "\`tbl_source\` example",
 actions = action_levels(warn_at = 0.10)
) %%
 col_exists(columns = c(date, date_time)) %>%
 interrogate()
```

The agent_1 object can be printed to see the validation report in the Viewer.

`agent_1`

The tbl_store object can be transformed to YAML with the `yaml_write()` function. The following statement writes the `tbl_store.yml` file by default (but a different name could be used with the filename argument):

```r
yaml_write(store)
```

Let's modify the agent's target to point to the table labeled as "sml_table" in the YAML representation of the tbl_store.

```r
agent_2 <-
 agent_1 %>%
 set_tbl(~ tbl_source(tbl = "sml_table", store = "tbl_store.yml")
```
We can likewise write the agent to a YAML file with `yaml_write()` (writes to `agent-sml_table.yml` by default but the filename allows for any filename you want).

`yaml_write(agent_2)`

Now that both the agent and the associated table store are present as on-disk YAML, interrogations can be done by using `yaml_agent_interrogate()`.

`agent <- yaml_agent_interrogate(filename = "agent-sml_table.yml")`

**Function ID**

1-9

**See Also**

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_store()`, `validate_rmd()`

---

**tbl_store**

*Define a store of tables with table-prep formulas: a table store*

**Description**

It can be useful to set up all the data sources you need and just draw from them when necessary. This upfront configuration with `tbl_store()` lets us define the methods for obtaining tabular data from mixed sources (e.g., database tables, tables generated from flat files, etc.) and provide identifiers for these data preparation procedures.

What results from this work is a convenient way to materialize tables with `tbl_get()`. We can also get any table-prep formula from the table store with `tbl_source()`. The content of a table-prep formulas can involve reading a table from a location, or, it can involve data transformation. One can imagine scenarios where we might (1) procure several mutated variations of the same source table, (2) generate a table using disparate data sources, or (3) filter the rows of a database table according to the system time. Another nice aspect of organizing table-prep formulas in a single object is supplying it to the `tbl` argument of `create_agent()` or `create_informant()` via $ notation (e.g. `create_agent(tbl = <tbl_store>$<name>`) or with `tbl_source()` (e.g., `create_agent(tbl = ~ tbl_source("<name>", <tbl_store>))`).

**Usage**

`tbl_store(..., .list = list2(...), .init = NULL)`
Arguments

Expressions that contain table-prep formulas and table names for data retrieval. Two-sided formulas (e.g., `<LHS> ~ <RHS>`) are to be used, where the left-hand side is an identifier and the right-hand contains a statement that obtains a table (i.e., the table-prep formula). If the LHS is omitted then an identifier will be generated for you.

.list Allows for the use of a list as an input alternative to ... .init We can optionally provide an initialization statement (in a one-sided formula) that should be executed whenever any of tables in the table store are obtained. This is useful, for instance, for including a library() call that can be executed before any table-prep formulas in ...

Value

A tbl_store object that contains table-prep formulas.

YAML

A **pointblank** table store can be written to YAML with `yaml_write()` and the resulting YAML can be used in several ways. The ideal scenario is to have pointblank agents and informants also in YAML form. This way the agent and informant can refer to the table store YAML (via `tbl_source()`), and, the processing of both agents and informants can be performed with `yaml_agent_interrogate()` and `yaml_informant_incorporate()`. With the following R code, a table store with two table-prep formulas is generated and written to YAML (if no filename is given then the YAML is written to "tbl_store.yml").

R statement for generating the "tbl_store.yml" file:

```r
tbl_store(
 tbl_duckdb ~ db_tbl(small_table, dbname = "::memory::", dbtype = "duckdb"),
 sml_table_high ~ small_table %>% dplyr::filter(f == "high"),
 .init = ~ library(tidyverse)
) %>%
yaml_write()
```

YAML representation ("tbl_store.yml"):

```
type: tbl_store
tbls:
 tbl_duckdb: ~ db_tbl(small_table, dbname = "::memory::", dbtype = "duckdb")
 sml_table_high: ~ small_table %>% dplyr::filter(f == "high")
init: ~library(tidyverse)
```

This is useful when you want to get fresh pulls of prepared data from a source materialized in an R session (with the `tbl_get()` function. For example, the `sml_table_high` table can be obtained by using `tbl_get("sml_table_high", "tbl_store.yml")`. To get an agent to check this prepared data periodically, then the following example with `tbl_source()` will be useful:

R code to generate agent that checks `sml_table_high` and writing the agent to YAML:
create_agent(
  tbl = ~ tbl_source("sml_table_high", "tbl_store.yml"),
  label = "An example that uses a table store.",
  actions = action_levels(warn_at = 0.10)
) %>%
  col_exists(c(date, date_time)) %>%
  write_yml()

The YAML representation ("agent-sml_table_high.yml"):

tbl: ~ tbl_source("sml_table_high", "tbl_store.yml")
tbl_name: sml_table_high
label: An example that uses a table store.
actions:
  warn_fraction: 0.1
locale: en
steps:
  - col_exists:
      columns: c(date, date_time)

Now, whenever the sml_table_high table needs to be validated, it can be done with yaml_agent_interrogate() (e.g., yaml_agent_interrogate("agent-sml_table_high.yml")).

Examples

Creating an in-memory table store and adding table-prep formulas:
The table store provides a way to get the tables we need fairly easily. Think of an identifier for the table you’d like and then provide the code necessary to obtain that table. Then repeat as many times as you like!
Here we’ll define two tables that can be materialized later: tbl_duckdb (an in-memory DuckDB database table with pointblank’s small_table dataset) and sml_table_high (a filtered version of tbl_duckdb):

store_1 <-
  tbl_store(
    tbl_duckdb ~
      db_tbl(
        pointblank::small_table,
        dbname = ":memory:",
        dbtype = "duckdb"
      ),
    sml_table_high ~
      db_tbl(
        pointblank::small_table,
        dbname = ":memory:",
        dbtype = "duckdb"
      ) %>%
      dplyr::filter(f == "high")
  )
We can see what’s in the table store store_1 by printing it out:

store_1

```r
-- The `table_store` table-prep formulas
1 tbl_duckdb // ~ db_tbl(pointblank::small_table, dbname = "::memory:",
dbtype = "duckdb")
2 sml_table_high // ~ db_tbl(pointblank::small_table, dbname = "::memory:",
dbtype = "duckdb") %>% dplyr::filter(f == "high")

```

It’s good to check that the tables can be obtained without error. We can do this with the `tbl_get()` function. With that function, we need to supply the given name of the table-prep formula (in quotes) and the table store object.

```r
tbl_get(tbl = "tbl_duckdb", store = store_1)
Source: table<pointblank::small_table>
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. TRUE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
... with more rows
```

tbl_get(tbl = "sml_table_high", store = store_1)

```r
Source: lazy query
Database: duckdb_connection
date_time date a b c d e f
<dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
2 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. TRUE mid
5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
... with more rows
```

We can shorten the `tbl_store()` statement with some syntax that `pointblank` provides. The `sml_table_high` table-prep is simply a transformation of `tbl_duckdb`, so, we can use `{{ tbl_duckdb }}` in place of the repeated statement. Additionally, we can provide a `library()` call to the `.init` argument of `tbl_store()` so that `dplyr` is available (thus allowing us to use `filter(...)` instead of `dplyr::filter(...)`). Here is the revised `tbl_store()` call:

```r
```
store_2 <-
  tbl_store(
    tbl_duckdb ~
      db_tbl(
        pointblank::small_table,
        dbname =":memory:",
        dbtype ="duckdb"
      ),
      sml_table_high ~
      {{ tbl_duckdb }} %>%
      filter(f == "high"),
      .init = ~ library(tidyverse)
  )

Printing the table store store_2 now shows that we used an .init statement:

store_2

## -- The `table_store` table-prep formulas
## 1 tbl_duckdb // ~ db_tbl(pointblank::small_table, dbname =":memory:",
## dbtype ="duckdb")
## 2 sml_table_high // ~ {{tbl_duckdb}} %>% filter(f == "high")
## ----
## INIT // ~library(tidyverse)
## ----

Checking again with tbl_get() should provide the same tables as before:

tbl_get(tbl = "tbl_duckdb", store = store_2)

## # Source: table<pointblank::small_table> [?? x 8]
## # Database: duckdb_connection
## # date_time date a b c d e f
## # <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
## # 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
## # 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
## # 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
## # 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
## # 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
## # 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
## # 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
## # 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
## # 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## # 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
## # . . . with more rows

tbl_get(tbl = "sml_table_high", store = store_2)

## # Source: lazy query [?? x 8]
## # Database: duckdb_connection
## # date_time date a b c d e f
## # <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
Using a table store in a data validation workflow:
Define a tbl_store object by adding table-prep formulas inside the tbl_store() call.

```
store_3 <-
tbl_store(
 small_table_duck ~ db_tbl(
 table = small_table,
 dbname = "::memory:",
 dbtype = "duckdb"
),
 rna ~ db_tbl(
 table = "rna",
 dbname = "pfmegrnargs",
 dbtype = "postgres",
 host = "hh-pgsql-public.ebi.ac.uk",
 port = 5432,
 user = I("reader"),
 password = I("NWDMCE5xdipIjRrp")
),
 all_revenue ~ db_tbl(
 table = file_tbl(
 file = from_github(
 file = "sj_all_revenue_large.rds",
 repo = "rich-iannone/intendo",
 subdir = "data-large"
)
),
 dbname = "::memory:",
 dbtype = "duckdb"
),
 sml_table ~ pointblank::small_table
)
```

Let's get a summary of what's in the table store store_3 through printing:

```
store_3
-- The /grave.Var table_store/grave.Var table-prep formulas
1 small_table_duck // ~ db_tbl(table = small_table, dbname = "::memory:",
dbtype = "duckdb")
2 rna // ~db_tbl(table = "rna", dbname = "pfmegrnargs", dbtype =
"postgres", host = "hh-pgsql-public.ebi.ac.uk", port = 5432, user =
I("reader"), password = I("NWDMCE5xdipIjRrp"))
```
Once this object is available, you can check that the table of interest is produced to your specification with the `tbl_get()` function.

```r
tbl_get(
 tbl = "small_table_duck",
 store = store_3
)
```

Another way to get the same table materialized is by using `$` to get the entry of choice for `tbl_get()`.

```r
store_3$small_table_duck %>% tbl_get()
```
Creating an agent is easy when all table-prep formulas are encapsulated in a `tbl_store` object. Use `$` notation to pass the appropriate procedure for reading a table to the `tbl` argument.

```r
agent_1 <-
 create_agent(
 tbl = store_3$small_table_duck
)
```

There are other ways to use the table store to assign a target table to an agent, like using the `tbl_source()` function (which extracts the table-prep formula from the table store).

```r
agent_2 <-
 create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_duck",
 store = store_3
)
)
```

**Writing a table store to a YAML file:**
The table store can be moved to YAML with `yaml_write` and the `tbl_source()` call could then refer to that on-disk table store. Let's do that YAML conversion.

```r
yaml_write(store_3)
```

The above writes the `tbl_store.yml` file (by not providing a filename this default filename is chosen).

It can be convenient to read table-prep formulas from a YAML file that’s a table store. To achieve this, we can modify the `tbl_source()` statement in the `create_agent()` call so that `store` refers to the on-disk YAML file.

```r
agent_3 <-
 create_agent(
 tbl = ~ tbl_source(
 tbl = "small_table_duck",
 store = "tbl_store.yml"
)
)
```

**Function ID**

1-8

**See Also**

Other Planning and Prep: `action_levels()`, `create_agent()`, `create_informant()`, `db_tbl()`, `draft_validation()`, `file_tbl()`, `scan_data()`, `tbl_get()`, `tbl_source()`, `validate_rmd()`
Description

With any table object, you can produce a summary table that is scoped to string-based columns. The output summary table will have a leading column called “.param.” with labels for each of the three rows, each corresponding to the following pieces of information pertaining to string length:

1. Mean String Length (“length_mean”)
2. Minimum String Length (“length_min”)
3. Maximum String Length (“length_max”)

Only string data from the input table will generate columns in the output table. Column names from the input will be used in the output, preserving order as well.

Usage

```r
tt_string_info(tbl)
```

Arguments

- `tbl` *A data table*

  `obj: <tbl_*> // required`

  A table object to be used as input for the transformation. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object.

Value

A tibble object.

Examples

Get string information for the string-based columns in the `game_revenue` dataset that is included in the `pointblank` package.

```r
tt_string_info(tbl = game_revenue)
```

Ensure that `player_id` and `session_id` values always have the same fixed numbers of characters (15 and 24, respectively) throughout the table.
tt_string_info(tbl = game_revenue) %>%
  col_vals_equal(
    columns = player_id,
    value = 15
  ) %>%
  col_vals_equal(
    columns = session_id,
    value = 24
  )

#> # A tibble: 3 x 7
#> .param. player_id session_id item_type item_name acquisition country
#> <chr>   <dbl>   <dbl>   <dbl>   <dbl>       <dbl>  <dbl>
#> 1 length_mean 15 24 2.22 7.35 7.97 8.53
#> 2 length_min 15 24 2 5 5 5
#> 3 length_max 15 24 3 11 14 14

We see data, and not an error, so both validations were successful!

Let's use a \texttt{tt_string_info()}-transformed table with the \texttt{test_col_vals_lte()} to check that the maximum string length in column \textit{f} of the \textit{small_table} dataset is no greater than 4.

\begin{verbatim}
  tt_string_info(tbl = small_table) %>%
  test_col_vals_lte(
    columns = f,
    value = 4
  )
\end{verbatim}

#> [1] TRUE

**Function ID**

12-2

**See Also**

Other Table Transformers: \texttt{get_tt_param()}, \texttt{tt_summary_stats()}, \texttt{tt_tbl_colnames()}, \texttt{tt_tbl_dims()}, \texttt{tt_time_shift()}, \texttt{tt_time_slice()}

---

**\texttt{tt_summary_stats}**

\textit{Table Transformer: obtain a summary stats table for numeric columns}

**Description**

With any table object, you can produce a summary table that is scoped to the numeric column values. The output summary table will have a leading column called ".param." with labels for each of the nine rows, each corresponding to the following summary statistics:

1. Minimum ("min")
2. 5th Percentile ("p05")
3. 1st Quartile ("q_1")
4. Median ("med")
5. 3rd Quartile ("q_3")
6. 95th Percentile ("p95")
7. Maximum ("max")
8. Interquartile Range ("iqr")
9. Range ("range")

Only numerical data from the input table will generate columns in the output table. Column names from the input will be used in the output, preserving order as well.

Usage

`tt_summary_stats(tbl)`

Arguments

- `tbl` A data table
  
  A table object to be used as input for the transformation. This can be a data frame, a tibble, a `tbl_dbi` object, or a `tbl_spark` object.

Value

A tibble object.

Examples

Get summary statistics for the `game_revenue` dataset that is included in the `pointblank` package.

```r
tt_summary_stats(tbl = game_revenue)
```

```
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0 3.2
#> 2 p05 0.02 8.2
#> 3 q_1 0.09 18.5
#> 4 med 0.38 26.5
#> 5 q_3 1.25 33.8
#> 6 p95 22.0 39.5
#> 7 max 143. 41
#> 8 iqr 1.16 15.3
#> 9 range 143. 37.8
```

Table transformers work great in conjunction with validation functions. Let’s ensure that the maximum revenue for individual purchases in the `game_revenue` table is less than $150.
```r
tt_summary_stats(tbl = game_revenue) %>%
col_vals_lt(
 columns = item_revenue,
 value = 150,
 segments = .param. ~ "max"
)
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0.00 3.2
#> 2 p05 0.02 8.2
#> 3 q_1 0.09 18.5
#> 4 med 0.38 26.5
#> 5 q_3 1.25 33.8
#> 6 p95 22.0 39.5
#> 7 max 143. 41
#> 8 iqr 1.16 15.3
#> 9 range 143. 37.8

We see data, and not an error, so the validation was successful!

Let’s do another: for in-app purchases in the game_revenue table, check that the median revenue is somewhere between $8 and $12.

game_revenue %>%
dplyr::filter(item_type == "iap") %>%
tt_summary_stats() %>%
col_vals_between(
 columns = item_revenue,
 left = 8, right = 12,
 segments = .param. ~ "med"
)
#> # A tibble: 9 x 3
#> .param. item_revenue session_duration
#> <chr> <dbl> <dbl>
#> 1 min 0.4 3.2
#> 2 p05 1.39 5.99
#> 3 q_1 4.49 14.0
#> 4 med 10.5 22.6
#> 5 q_3 20.3 30.6
#> 6 p95 66.0 38.8
#> 7 max 143. 41
#> 8 iqr 15.8 16.7
#> 9 range 143. 37.8

We can get more creative with this transformer. Why not use a transformed table in a validation plan? While performing validations of the game_revenue table with an agent we can include the same revenue check as above by using tt_summary_stats() in the preconditions argument. This transforms the target table into a summary table for the validation step. The final step of the
transformation in preconditions is a `dplyr::filter()` step that isolates the row of the median statistic.

```
agent <-
  create_agent(
    tbl = game_revenue,
    tbl_name = "game_revenue",
    label = "\tt_summary_stats() example.",
    actions = action_levels(
      warn_at = 0.10,
      stop_at = 0.25,
      notify_at = 0.35
    )
  )
  rows_complete() %>%
  rows_distinct() %>%
  col_vals_between(
    columns = item_revenue,
    left = 8, right = 12,
    preconditions = ~ . %>%
    dplyr::filter(item_type == "iap") %>%
    tt_summary_stats() %>%
    dplyr::filter(.param. == "med")
  ) %>%
  interrogate()
```

Printing the agent in the console shows the validation report in the Viewer. Here is an excerpt of validation report. Take note of the final step (STEP 3) as it shows the entry that corresponds to the `col_vals_between()` validation step that uses the summary stats table as its target.

Function ID

12-1

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_shift()`, `tt_time_slice()`

tt_tbl_colnames

Table Transformer: get a table’s column names

Description

With any table object, you can produce a summary table that contains table’s column names. The output summary table will have two columns and as many rows as there are columns in the input table. The first column is the ".param." column, which is an integer-based column containing the indices of the columns from the input table. The second column, "value", contains the column names from the input table.
Usage

```
(tt_tbl_colnames(tbl)
```

Arguments

```
tbl A data table
```

obj:<tbl_> // required

A table object to be used as input for the transformation. This can be a data
frame, a tibble, a tbl_dbi object, or a tbl_spark object.

Value

A tibble object.

Examples

Get the column names of the game_revenue dataset that is included in the
pointblank package.

```
tt_tbl_colnames(tbl = game_revenue)
```

#> # A tibble: 11 x 2
#> .param. value
#> <int> <chr>
#> 1 1 player_id
#> 2 2 session_id
#> 3 3 session_start
#> 4 4 time
#> 5 5 item_type
#> 6 6 item_name
#> 7 7 item_revenue
#> 8 8 session_duration
#> 9 9 start_day
#> 10 10 acquisition
#> 11 11 country

This output table is useful when you want to validate the column names of the table. Here, we check
that game_revenue table, included in the pointblank package, has certain column names present
with test_col_vals_make_subset().

```
tt_tbl_colnames(tbl = game_revenue) %>%
  test_col_vals_make_subset(
    columns = value,
    set = c("acquisition", "country")
  )
```

#> [1] TRUE

We can check to see whether the column names in the specifications table are all less than
15 characters in length. For this, we would use the combination of tt_tbl_colnames(), then
tt_string_info(), and finally test_col_vals_lt() to perform the test.
This returned FALSE and this is because the column name credit_card_numbers is 16 characters long.

Function ID

12-4

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_dims(), tt_time_shift(), tt_time_slice()
Examples

Get the dimensions of the game_revenue dataset that is included in the pointblank package.

```r
tt_tbl_dims(tbl = game_revenue)
#> # A tibble: 2 x 2
#> .param. value
#> <chr> <int>
#> 1 rows 2000
#> 2 columns 11
```

This output table is useful when a table validation depends on its dimensions. Here, we check that game_revenue has at least 1500 rows.

```r
tt_tbl_dims(tbl = game_revenue) %>%
dplyr::filter(.param == "rows") %>%
test_col_vals_gt(
  columns = value,
  value = 1500
)
#> [1] TRUE
```

We can check small_table to ensure that number of columns is less than 10.

```r
tt_tbl_dims(tbl = small_table) %>%
dplyr::filter(.param == "columns") %>%
test_col_vals_lt(
  columns = value,
  value = 10
)
#> [1] TRUE
```

Function ID

12-3

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(), tt_time_shift(), tt_time_slice()
tt_time_shift
Table Transformer: shift the times of a table

Description

With any table object containing date or date-time columns, these values can be precisely shifted with `tt_time_shift()` and specification of the time shift. We can either provide a string with the time shift components and the shift direction (like "-4y 10d") or a `difftime` object (which can be created via `lubridate` expressions or by using the `base::difftime()` function).

Usage

```r
tt_time_shift(tbl, time_shift = "0y 0m 0d 0H 0M 0S")
```

Arguments

- **tbl**
 A data table

 obj:<tbl_*> // required

 A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

- **time_shift**
 Time-shift specification

 scalar<character> // default: "0y 0m 0d 0H 0M 0S"

 Either a character-based representation that specifies the time difference by which all time values in time-based columns will be shifted, or, a `difftime` object. The character string is constructed in the format "0y 0m 0d 0H 0M 0S" and individual time components can be omitted (i.e., "1y 5d" is a valid specification of shifting time values ahead one year and five days). Adding a "-" at the beginning of the string (e.g., "-2y") will shift time values back.

Details

The `time_shift` specification cannot have a higher time granularity than the least granular time column in the input table. Put in simpler terms, if there are any date-based based columns (or just a single date-based column) then the time shifting can only be in terms of years, months, and days. Using a `time_shift` specification of "20d 6H" in the presence of any dates will result in a truncation to "20d". Similarly, a `difftime` object will be altered in the same circumstances, however, the object will resolved to an exact number of days through rounding.

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided as `tbl`.
Examples

Let’s use the game_revenue dataset, included in the pointblank package, as the input table for the first demo. It has entries in the first 21 days of 2015 and we’ll move all of the date and date-time values to the beginning of 2021 with the tt_time_shift() function and the "6y" time_shift specification.

```r
tt_time_shift(
  tbl = game_revenue,
  time_shift = "6y"
)
```

```r
t #> # A tibble: 2,000 x 11
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 01:31:03 2021-01-01 01:31:27 iap
#> 2 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 01:31:03 2021-01-01 01:36:57 iap
#> 3 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 01:31:03 2021-01-01 01:37:45 iap
#> 4 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 01:31:03 2021-01-01 01:42:33 ad
#> 5 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 11:50:02 2021-01-01 11:55:20 ad
#> 6 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 11:50:02 2021-01-01 12:08:56 ad
#> 7 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 11:50:02 2021-01-01 12:14:08 ad
#> 8 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 11:50:02 2021-01-01 12:21:44 ad
#> 9 ECPANOIXLZHFB96 ECPANOIXLZ- 2021-01-01 11:50:02 2021-01-01 12:24:20 ad
#> 10 FXWUORGYNJAE271 FXWUORGYNJ- 2021-01-01 15:17:18 2021-01-01 15:19:36 ad
#> # i 1,990 more rows
#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>
```

Keeping only the date_time and a-f columns of small_table, also included in the package, shift the times back 2 days and 12 hours with the "-2d 12H" specification.

```r
small_table %>%
  dplyr::select(-date) %>%
  tt_time_shift("-2d 12H")
```

```r
#> # A tibble: 13 x 7
#> date_time a b c d e f
#> <dttm> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-01 23:00:00 2 1-cbd-345 3 3423. TRUE high
#> 2 2016-01-01 12:32:00 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-03 01:32:00 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-04 05:23:00 2 5-jdo-903 NA 2343. TRUE low
#> 5 2016-01-07 00:36:00 8 3-lkm-038 7 284. TRUE low
#> 6 2016-01-08 18:15:00 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-13 06:46:00 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-14 23:27:00 4 5-boe-639 2 1036. FALSE low
#> 9 2016-01-17 16:30:00 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-17 16:30:00 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-24 08:07:00 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-25 14:51:00 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-27 23:23:00 1 3-dka-303 NA 2230. TRUE high
```
tt_time_slice

Function ID

12-5

See Also

Other Table Transformers: `get_tt_param()`, `tt_string_info()`, `tt_summary_stats()`, `tt_tbl_colnames()`, `tt_tbl_dims()`, `tt_time_slice()`

tt_time_slice

Table Transformer: slice a table with a slice point on a time column

Description

With any table object containing date, date-time columns, or a mixture thereof, any one of those columns can be used to effectively slice the data table in two with a `slice_point` and you get to choose which of those slices you want to keep. The slice point can be defined in several ways. One method involves using a decimal value between 0 and 1, which defines the slice point as the time instant somewhere between the earliest time value (at 0) and the latest time value (at 1). Another way of defining the slice point is by supplying a time value, and the following input types are accepted: (1) an ISO 8601 formatted time string (as a date or a date-time), (2) a POSIXct time, or (3) a Date object.

Usage

```r
tt_time_slice(
  tbl,
  time_column = NULL,
  slice_point = 0,
  keep = c("left", "right"),
  arrange = FALSE
)
```

Arguments

- `tbl` *A data table obj:tbl_* > // required*
 A table object to be used as input for the transformation. This can be a data frame, a tibble, a tbl_dbi object, or a tbl_spark object.

- `time_column` *Column with time data scalar<character> // default: NULL (optional)*
 The time-based column that will be used as a basis for the slicing. If no time column is provided then the first one found will be used.

- `slice_point` *scalar<numeric|character|POSIXct|Date> // default: 0*
 The location on the `time_column` where the slicing will occur. This can either be a decimal value from 0 to 1, an ISO 8601 formatted time string (as a date or a date-time), a POSIXct time, or a Date object.
Data slice to keep
sing1-kw:[left|right] // default: "left"

Which slice should be kept? The "left" side (the default) contains data rows that are earlier than the slice_point and the "right" side will have rows that are later.

Arrange data slice by the time data?
scalar<logical> // default: FALSE

Should the slice be arranged by the time_column? This may be useful if the input tbl isn’t ordered by the time_column. By default, this is FALSE and the original ordering is retained.

Details

There is the option to arrange the table by the date or date-time values in the time_column. This ordering is always done in an ascending manner. Any NA/NULL values in the time_column will result in the corresponding rows can being removed (no matter which slice is retained).

Value

A data frame, a tibble, a tbl_dbi object, or a tbl_spark object depending on what was provided as tbl.

Examples

Let’s use the game_revenue dataset, included in the pointblank package, as the input table for the first demo. It has entries in the first 21 days of 2015 and we’ll elect to get all of the records where the time values are strictly for the first 15 days of 2015. The keep argument has a default of "left" so all rows where the time column is less than "2015-01-16 00:00:00" will be kept.

```r
tt_time_slice(
  tbl = game_revenue,
  time_column = "time",
  slice_point = "2015-01-16"
)
```

#> # A tibble: 1,208 x 11
#> player_id session_id session_start time item_type
#> <chr> <chr> <dttm> <dttm> <chr>
#> 1 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:31:27 iap
#> 2 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:36:57 iap
#> 3 ECPANOIXLZHF896 ECPANOIXLZ~ 2015-01-01 01:31:03 2015-01-01 01:37:45 iap
#> ... # i 1,198 more rows
validate_rmd

#> # i 6 more variables: item_name <chr>, item_revenue <dbl>,
#> # session_duration <dbl>, start_day <date>, acquisition <chr>, country <chr>

Omit the first 25% of records from small_table, also included in the package, with a fractional
slice_point of 0.25 on the basis of a timeline that begins at 2016-01-04 11:00:00 and ends at
2016-01-30 11:23:00.

```r
small_table %>%
tt_time_slice(
  slice_point = 0.25,
  keep = "right"
)
```

#> A tibble: 8 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 2 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 3 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE low
#> 4 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 5 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 6 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 7 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 8 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high

Function ID

12-6

See Also

Other Table Transformers: get_tt_param(), tt_string_info(), tt_summary_stats(), tt_tbl_colnames(),
tt_tbl_dims(), tt_time_shift()

validate_rmd Perform **pointblank** validation testing within R Markdown documents

Description

The validate_rmd() function sets up a framework for validation testing within specialized validation
code chunks inside an R Markdown document. To enable this functionality, validate_rmd() should be called early within an R Markdown document code chunk (preferably in the setup chunk) to signal that validation should occur within specific code chunks. The validation code chunks require the validate = TRUE option to be set. Using **pointblank** validation functions on data in these marked code chunks will flag overall failure if the stop threshold is exceeded anywhere. All errors are reported in the validation code chunk after rendering the document to HTML, where a centered status button either indicates success or the number of overall failures. Clicking the button reveals the otherwise hidden validation statements and their error messages (if any).
Usage

validate_rmd(summary = TRUE, log_to_file = NULL)

Arguments

summary
 Include a validation summary
 scalar<logical> // default: TRUE
 If TRUE then there will be a leading summary of all validations in the rendered
 R Markdown document. With FALSE, this element is not shown.

log_to_file
 Log validation results to a file
 scalar<logical|character> // default: NULL (optional)
 An option to log errors to a text file. By default, no logging is done but TRUE
 will write log entries to “validation_errors.log” in the working directory.
 To both enable logging and to specify a file name, include a path to a log file of
 the desired name.

Function ID

1-4

See Also

Other Planning and Prep: action_levels(), create_agent(), create_informant(), db_tbl(),
draft_validation(), file_tbl(), scan_data(), tbl_get(), tbl_source(), tbl_store()

write_testthat_file Transform a pointblank agent to a testthat test file

Description

With a pointblank agent, we can write a testthat test file and opt to place it in the testthat/tests
if it is available in the project path (we can specify an alternate path as well). This works by trans-
forming the validation steps to a series of expect_*() calls inside individual testthat::test_that() statements.

A major requirement for using write_testthat_file() on an agent is the presence of an expres-
sion that can retrieve the target table. Typically, we might supply a table-prep formula, which is a
formula that can be invoked to obtain the target table (e.g., tbl = ~ pointblank::small_table).
This user-supplied statement will be used by write_testthat_file() to generate a table-loading
statement at the top of the new testthat test file so that the target table is available for each of the
testthat::test_that() statements that follow. If an agent was not created using a table-prep
formula set for the tbl, it can be modified via the set_tbl() function.

Thresholds will be obtained from those applied for the stop state. This can be set up for a point-
blank agent by passing an action_levels object to the actions argument of create_agent() or
the same argument of any included validation function. If stop thresholds are not available, then a
threshold value of 1 will be used for each generated expect_*() statement in the resulting testthat
test file.
There is no requirement that the agent first undergo interrogation with \texttt{interrogate()}. However, it may be useful as a dry run to interactively perform an interrogation on the target data before generating the testthat test file.

Usage

\begin{verbatim}
write_testthat_file(
 agent,
 name = NULL,
 path = NULL,
 overwrite = FALSE,
 skips = NULL,
 quiet = FALSE
)
\end{verbatim}

Arguments

- \texttt{agent} \textit{The pointblank agent object}

 \texttt{obj:<ptblank_agent>} // \textbf{required}

 A \texttt{pointblank} agent object that is commonly created through the use of the \texttt{create_agent()} function.

- \texttt{name} \textit{Name for generated testthat file}

 \texttt{scalar<character>} // \textbf{default: NULL} (optional)

 An optional name for the testthat file. This should be a name without extension and without the leading "test-" text. If nothing is supplied, the name will be derived from the tbl_name in the agent. If that's not present, a generic name will be used.

- \texttt{path} \textit{File path}

 \texttt{scalar<character>} // \textbf{default: NULL} (optional)

 A path can be specified here if there shouldn't be an attempt to place the file in testthat/tests.

- \texttt{overwrite} \textit{Overwrite a previous file of the same name}

 \texttt{scalar<logical>} // \textbf{default: FALSE}

 Should a testthat file of the same name be overwritten?

- \texttt{skips} \textit{Test skipping}

 \texttt{vector<character>} // \textbf{default: NULL} (optional)

 This is an optional vector of test-skipping keywords modeled after the testthat \texttt{skip_on_} functions. The following keywords can be used to include \texttt{skip_on_} statements: "cran" (testthat::skip_on_cran()), "travis" (testthat::skip_on_travis()), "appveyor" (testthat::skip_on_appveyor()), "ci" (testthat::skip_on_ci()), "covr" (testthat::skip_on_covr()), "bioc" (testthat::skip_on_bioc()). There are keywords for skipping tests on certain operating systems and all of them will insert a specific testthat::skip_on_os() call. These are "windows" (skip_on_os("windows")), "mac" (skip_on_os("mac")), "linux" (skip_on_os("linux")), and "solaris" (skip_on_os("solaris")). These calls will be placed at the top of the generated testthat test file.
quiet

Inform (or not) upon file writing

scalar<logical> // default: FALSE

Should the function not inform when the file is written?

Details

Tests for inactive validation steps will be skipped with a clear message indicating that the reason for skipping was due to the test not being active. Any inactive validation steps can be forced into an active state by using the `activate_steps()` on an agent (the opposite is possible with the `deactivate_steps()` function).

The `testthat` package comes with a series of `skip_on_*()` functions which conveniently cause the test file to be skipped entirely if certain conditions are met. We can quickly set any number of these at the top of the `testthat` test file by supplying keywords as a vector to the `skips` option of `write_testthat_file()`. For instance, setting `skips = c("cran", "windows")` will add the `testthat` `skip_on_cran()` and `skip_on_os("windows")` statements, meaning that the generated test file won’t run on a CRAN system or if the system OS is Windows.

Here is an example of `testthat` test file output (“test-small_table.R”):

```r
# Generated by pointblank
tbl <- small_table
test_that("column `date_time` exists", {
  expect_col_exists(
    tbl,
    columns = date_time,
    threshold = 1
  )
})

test_that("values in `c` should be `<= `5`", {
  expect_col_vals_lte(
    tbl,
    columns = c,
    value = 5,
    threshold = 0.25
  )
})
```

This was generated by the following set of R statements:

```r
library(pointblank)
agent <-
  create_agent(
```
write_testthat_file

```r
tbl = ~ small_table,
    actions = action_levels(stop_at = 0.25)
) %>%
col_exists(date_time) %>%
col_vals_lte(c, value = 5)

write_testthat_file(
    agent = agent,
    name = "small_table",
    path = "."
)
```

Value

Invisibly returns `TRUE` if the `testthat` file has been written.

Examples

Creating a testthat file from an agent:

Let’s walk through a data quality analysis of an extremely small table. It’s actually called `small_table` and we can find it as a dataset in this package.

```r
small_table
#> # A tibble: 13 x 8
#>   date_time date a b c  d e f
#>   <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
#> 8 2016-01-17 11:27:00 2016-01-17 4 5-boe-639 2 1036. FALSE mid
#> 9 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 10 2016-01-20 04:30:00 2016-01-20 3 5-bce-642 9 838. FALSE high
#> 11 2016-01-26 20:07:00 2016-01-26 4 2-dmx-010 7 834. TRUE low
#> 12 2016-01-28 02:51:00 2016-01-28 2 7-dmx-010 8 108. FALSE low
#> 13 2016-01-30 11:23:00 2016-01-30 1 3-dka-303 NA 2230. TRUE high
```

Creating an `action_levels` object is a common workflow step when creating a pointblank agent. We designate failure thresholds to the `warn`, `stop`, and `notify` states using `action_levels()`.

```r
al <-
    action_levels(  
        warn_at = 0.10,  
        stop_at = 0.25,  
        notify_at = 0.35
    )
```
A pointblank agent object is now created and the al object is provided to the agent. The static thresholds provided by the al object make reports a bit more useful after interrogation.

```r
agent <-
  create_agent(
    tbl = ~ small_table,
    label = "An example.",
    actions = al
  )
  col_exists(c(date, date_time)) %>%
  col_vals_regex(b, regex = "[0-9]-[a-z]{3}-[0-9]{3}") %>%
  col_vals_gt(d, value = 100) %>%
  col_vals_lte(c, value = 5) %>%
  interrogate()
```

This agent and all of the checks can be transformed into a testthat file with `write_testthat_file()`. The stop thresholds will be ported over to the `expect_*()` functions in the new file.

```r
write_testthat_file(
  agent = agent,
  name = "small_table",
  path = "."
)
```

The above code will generate a file with the name "test-small_table.R". The path was specified with "." so the file will be placed in the working directory. If you'd like to easily add this new file to the tests/testthat directory then `path = NULL` (the default) will makes this possible (this is useful during package development).

What's in the new file? This:

```r
# Generated by pointblank
tbl <- small_table
test_that("column 'date' exists", {
  expect_col_exists(
    tbl, columns = date, threshold = 1
  )
})
test_that("column 'date_time' exists", {
  expect_col_exists(
    tbl,
  )
})
```
columns = date_time,
 threshold = 1
)
})
)

test_that("values in `b` should match the regular expression:
`[0-9]-[a-z]{3}-[0-9]{3}`", {

 expect_col_vals_regex(
 tbl,
 columns = b,
 regex = "[0-9]-[a-z]{3}-[0-9]{3}",
 threshold = 0.25
)
})
)

test_that("values in `d` should be > `100`", {

 expect_col_vals_gt(
 tbl,
 columns = d,
 value = 100,
 threshold = 0.25
)
})
)

test_that("values in `c` should be <= `5`", {

 expect_col_vals_lte(
 tbl,
 columns = c,
 value = 5,
 threshold = 0.25
)
})
)

Using an agent stored on disk as a YAML file:

An agent on disk as a YAML file can be made into a testthat file. The "agent-small_table.yml" file is available in the pointblank package and the path can be obtained with system.file().

```r

yml_file <-
  system.file("
yaml", "agent-small_table.yml",
    package = "pointblank"
  )
```

Writing the testthat file into the working directory is much the same as before but we’re reading the agent from disk this time. It’s a read and write combo, really. Again, we are choosing to write the file to the working directory by using path = ".".
write_testthat_file(
 agent = yaml_read_agent(yml_file),
 name = "from_agent_yaml",
 path = "."
)

Function ID

8-5

See Also

Other Post-interrogation: all_passed(), get_agent_x_list(), get_data_extracts(), get_sundered_data()

x_read_disk
Read an agent, informant, multiagent, or table scan from disk

Description

An agent, informant, multiagent, or table scan that has been written to disk (with `x_write_disk()`) can be read back into memory with the `x_read_disk()` function. For an agent or an informant object that has been generated in this way, it may not have a data table associated with it (depending on whether the keep_tbl option was TRUE or FALSE when writing to disk) but it should still be able to produce reporting (by printing the agent or informant to the console or using get_agent_report()/get_informant_report()). An agent will return an x-list with `get_agent_x_list()` and yield any available data extracts with `get_data_extracts()`. Furthermore, all of an agent’s validation steps will still be present (along with results from the last interrogation).

Usage

```r
x_read_disk(filename, path = NULL, quiet = FALSE)
```

Arguments

- **filename**
 File name
 scalar<character>
 The name of a file that was previously written by `x_write_disk()`.

- **path**
 File path
 scalar<character>
 An optional path to the file (combined with filename).

- **quiet**
 Inform (or not) upon file writing
 scalar<logical>
 Should the function *not* inform when the file is written?
Details

Should a written-to-disk agent or informant possess a table-prep formula or a specific in-memory table we could use the interrogate() or incorporate() function again. For a data quality reporting workflow, it is useful to interrogate() target tables that evolve over time. While the same validation steps will be used, more can be added before calling interrogate(). For an information management workflow with an informant object, using incorporate() will update aspects of the reporting such as table dimensions, and info snippets/text will be regenerated.

Value

Either a ptblank_agent, ptblank_informant, or a ptblank_tbl_scan object.

Examples

A: Reading an agent from disk:
The process of developing an agent and writing it to disk with the x_write_disk() function is explained in that function’s documentation. Suppose we have such a written file that's named "agent-small_table.rds", we could read that to a new agent object with x_read_disk().

agent <- x_read_disk("agent-small_table.rds")

B: Reading an informant from disk:
If there is an informant written to disk via x_write_disk() and it's named "informant-small_table.rds". We could read that to a new informant object with x_read_disk().

informant <- x_read_disk("informant-small_table.rds")

C: Reading a multiagent from disk:
The process of creating a multiagent and writing it to disk with the x_write_disk() function is shown in that function’s documentation. Should we have such a written file called "multiagent-small_table.rds", we could read that to a new multiagent object with x_read_disk().

multiagent <- x_read_disk("multiagent-small_table.rds")

D: Reading a table scan from disk:
If there is a table scan written to disk via x_write_disk() and it's named "tbl_scan-storms.rds", we could read it back into R with x_read_disk().

tbl_scan <- x_read_disk("tbl_scan-storms.rds")

Function ID

9-2

See Also

Other Object Ops: activate_steps(), deactivate_steps(), export_report(), remove_steps(), set_tbl(), x_write_disk()
x_write_disk

Write an agent, informant, multiagent, or table scan to disk

Description

Writing an agent, informant, multiagent, or even a table scan to disk with x_write_disk() can be useful for keeping data validation intel or table information close at hand for later retrieval (with x_read_disk()). By default, any data table that the agent or informant may have held before being committed to disk will be expunged (not applicable to any table scan since they never hold a table object). This behavior can be changed by setting keep_tbl to TRUE but this only works in the case where the table is not of the tbl_dbi or the tbl_spark class.

Usage

 x_write_disk(
 x,
 filename,
 path = NULL,
 keep_tbl = FALSE,
 keep_extracts = FALSE,
 quiet = FALSE
)

Arguments

x One of several types of objects
<object> // required
An agent object of class ptblank_agent, an informant of class ptblank_informant, or an table scan of class ptblank_tbl_scan.

filename File name
scalar<character> // required
The filename to create on disk for the agent, informant, or table scan.

path File path
scalar<character> // default: NULL (optional)
An optional path to which the file should be saved (this is automatically combined with filename).

keep_tbl Keep data table inside object
scalar<logical> // default: FALSE
An option to keep a data table that is associated with the agent or informant (which is the case when the agent, for example, is created using create_agent(tbl = <data table, ...). The default is FALSE where the data table is removed before writing to disk. For database tables of the class tbl_dbi and for Spark DataFrames (tbl_spark) the table is always removed (even if keep_tbl is set to TRUE).
keep_extracts \textit{Keep data extracts inside object} \\
 scalar\textless{}\text{logical}\rangle \text{ // default: FALSE} \\
 An option to keep any collected extract data for failing rows. Only applies to agent objects. By default, this is FALSE (i.e., extract data is removed).

quiet \textit{Inform (or not) upon file writing} \\
 scalar\textless{}\text{logical}\rangle \text{ // default: FALSE} \\
 Should the function \textit{not} inform when the file is written?

Details

It is recommended to set up a table-prep formula so that the agent and informant can access refreshed data after being read from disk through \texttt{x_read_disk()}. This can be done initially with the tbl argument of \texttt{create_agent()}\texttt{/create_informant()} by passing in a table-prep formula or a function that can obtain the target table when invoked. Alternatively, we can use the \texttt{set_tbl()} with a similarly crafted tbl expression to ensure that an agent or informant can retrieve a table at a later time.

Value

Invisibly returns TRUE if the file has been written.

Examples

\textbf{A: Writing an agent to disk:}

Let's go through the process of (1) developing an agent with a validation plan (to be used for the data quality analysis of the \texttt{small_table} dataset), (2) interrogating the agent with the \texttt{interrogate()} function, and (3) writing the agent and all its intel to a file.

Creating an action_levels object is a common workflow step when creating a pointblank agent. We designate failure thresholds to the warn, stop, and notify states using \texttt{action_levels()}.

```
al <-
  action\_levels(
    warn\_at = 0.10,
    stop\_at = 0.25,
    notify\_at = 0.35
  )
```

Now, let's create a pointblank agent object and give it the al object (which serves as a default for all validation steps which can be overridden). The data will be referenced in the tbl argument with a leading `~`.

```
agent <-
  create\_agent(
    tbl = ~ small\_table,
    tbl\_name = "small\_table",
    label = "\texttt{\textbackslash{}\textbackslash{}x\_write\_disk()}\textbackslash{}",
    actions = al
  )
```
Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want. After that, use `interrogate()`.

```r
agent <-
  agent %>%
  col_exists(columns = c(date, date_time)) %>%
  col_vals_regex(  
    columns = b,  
    regex = "[0-9]-[a-z]{3}-[0-9]{3}"  
  ) %>%
  rows_distinct() %>%
  col_vals_gt(columns = d, value = 100) %>%
  col_vals_lte(columns = c, value = 5) %>%
  interrogate()
```

The agent can be written to a file with the `x_write_disk()` function.

```r
x_write_disk(  
  agent,  
  filename = "agent-small_table.rds"
)
```

We can read the file back as an agent with the `x_read_disk()` function and we'll get all of the intel along with the restored agent.

If you're consistently writing agent reports when periodically checking data, we could make use of the `affix_date()` or `affix_datetime()` depending on the granularity you need. Here's an example that writes the file with the format: "<filename>-YYYY-mm-dd_HH-MM-SS.rds".

```r
x_write_disk(  
  agent,  
  filename = affix_datetime("agent-small_table.rds")
)
```

B: Writing an informant to disk:

Let's go through the process of (1) creating an informant object that minimally describes the `small_table` dataset, (2) ensuring that data is captured from the target table using the `incorporate()` function, and (3) writing the informant to a file.

Create a pointblank informant object with `create_informant()` and the `small_table` dataset. Use `incorporate()` so that info snippets are integrated into the text.

```r
informant <-
  create_informant(  
    tbl = ~ small_table,  
    tbl_name = "small_table",  
    label = "\`x_write_disk\`"  
  ) %>%
  info_snippet(    
    snippet_name = "high_a",    
    fn = snip_highest(column = "a")
)
The informant can be written to a file with `x_write_disk()`. Let's do this with `affix_date()` so that the filename has a datestamp.

```r
x_write_disk(
 informant,
 filename = affix_date(
 "informant-small_table.rds"
)
)
```

We can read the file back into a new informant object (in the same state as when it was saved) by using `x_read_disk()`.

### C: Writing a multiagent to disk:

Let's create one more pointblank agent object, provide it with some validation steps, and `interrogate()`.

```r
agent_b <-
create_agent(
 tbl = ~ small_table,
 tbl_name = "small_table",
 label = "\`x_write_disk\`",
 actions = al
) %>%
col_vals_gt(
 columns = b,
 value = g,
 na_pass = TRUE,
 label = "b > g"
) %>%
col_is_character(
 columns = c(b, f),
)
Now we can combine the earlier agent object with the newer agent_b to create a multiagent.

```r
multiagent <- create_multiagent(agent, agent_b)
```

The multiagent can be written to a file with the `x_write_disk()` function.

```r
x_write_disk(
  multiagent,
  filename = "multiagent-small_table.rds"
)
```

We can read the file back as a multiagent with the `x_read_disk()` function and we’ll get all of the constituent agents and their associated intel back as well.

D: Writing a table scan to disk:

We can get a report that describes all of the data in the `storms` dataset.

```r
tbl_scan <- scan_data(tbl = dplyr::storms)
```

The table scan object can be written to a file with `x_write_disk()`.

```r
x_write_disk(
  tbl_scan,
  filename = "tbl_scan-storms.rds"
)
```

Function ID

9-1

See Also

Other Object Ops: `activate_steps()`, `deactivate_steps()`, `export_report()`, `remove_steps()`, `set_tbl()`, `x_read_disk()`

yaml_agent_interrogate

Get an agent from pointblank YAML and interrogate()

Description

The `yaml_agent_interrogate()` function operates much like the `yaml_read_agent()` function (reading a pointblank YAML file and generating an `agent` with a validation plan in place). The key difference is that this function takes things a step further and interrogates the target table (defined by table-prep formula that is required in the YAML file). The additional auto-invocation of `interrogate()` uses the default options of that function. As with `yaml_read_agent()` the agent is returned except, this time, it has intel from the interrogation.
yaml_agent_interrogate

Usage

yaml_agent_interrogate(filename, path = NULL)

Arguments

filename

* File name
* scalar<character> // required
* The name of the YAML file that contains fields related to an agent.

path

* @param path File path
* scalar<character> // default: NULL (optional)
* An optional path to the YAML file (combined with filename).

Value

A `ptblank_agent` object.

Examples

There’s a YAML file available in the `pointblank` package that’s also called "agent-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )
```

The YAML file can be read as an agent with a pre-existing validation plan by using the `yaml_read_agent()` function.

```r
agent <- yaml_read_agent(filename = yml_file_path)
agent
```

This particular agent is using `~ tbl_source("small_table", "tbl_store.yml")` to source the table-prep from a YAML file that holds a table store (can be seen using `yaml_agent_string(agent = agent)`). Let’s put that file in the working directory (the `pointblank` package has the corresponding YAML file):

```r
yml_tbl_store_path <-
  system.file(
    "yaml", "tbl_store.yml",
    package = "pointblank"
  )

file.copy(from = yml_tbl_store_path, to = ".")
```
As can be seen from the validation report, no interrogation was yet performed. Saving an agent to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on the same target table. We can either follow this up with `interrogate()` and get an agent with `intell`, or, we can interrogate directly from the YAML file with `yaml_agent_interrogate()`:

```r
agent <- yaml_agent_interrogate(filename = yml_file_path)
agent
```

Function ID

11-4

See Also

Other pointblank YAML: `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

yaml_agent_show_exprs Display validation expressions using pointblank YAML

Description

The `yaml_agent_show_exprs()` function follows the specifications of a pointblank YAML file to generate and show the pointblank expressions for generating the described validation plan. The expressions are shown in the console, providing an opportunity to copy the statements and extend as needed. A pointblank YAML file can itself be generated by using the `yaml_write()` function with a pre-existing `agent`, or, it can be carefully written by hand.

Usage

```r
yaml_agent_show_exprs(filename, path = NULL)
```

Arguments

- **filename**
  ```
  File name
  scalar<character>  // required
  ```
 The name of the YAML file that contains fields related to an `agent`.

- **path**
  ```
  # @param path File path
  scalar<character>  // default: NULL (optional)
  ```
 An optional path to the YAML file (combined with `filename`).
Examples

Let’s create a validation plan for the data quality analysis of the small_table dataset. We need an agent and its table-prep formula enables retrieval of the target table.

```r
agent <-
create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "A simple example with the 'small_table'.",
  actions = action_levels(
    warn_at = 0.10,
    stop_at = 0.25,
    notify_at = 0.35
  )
) %>%
col_exists(columns = c(date, date_time)) %>%
col_vals_regex(
  columns = b,
  regex = "[0-9]-[a-z][3]-[0-9][3]"
) %>%
rows_distinct() %>%
col_vals_gt(columns = d, value = 100) %>%
col_vals_lte(columns = c, value = 5)
```

The agent can be written to a pointblank YAML file with `yaml_write()`.

```r
yaml_write(
  agent = agent,
  filename = "agent-small_table.yml"
)
```

At a later time, the YAML file can be read into a new agent with the `yaml_read_agent()` function.

```r
agent <- yaml_read_agent(filename = "agent-small_table.yml")
agent
```

To get a sense of which expressions are being used to generate the new agent, we can use `yaml_agent_show_exprs()`.

```r
yaml_agent_show_exprs(filename = "agent-small_table.yml")
create_agent(
  tbl = ~ small_table,
  actions = action_levels(
    warn_at = 0.1,
    stop_at = 0.25,
    notify_at = 0.35
  ))
```
`yaml_agent_string`

Display **pointblank** YAML using an agent or a YAML file

Description

With **pointblank** YAML, we can serialize an agent’s validation plan (with `yaml_write()`), read it back later with a new agent (with `yaml_read_agent()`), or perform an interrogation on the target data table directly with the YAML file (with `yaml_agent_interrogate()`). The `yaml_agent_string()` function allows us to inspect the YAML generated by `yaml_write()` in the console, giving us a look at the YAML without needing to open the file directly. Alternatively, we can provide an `agent` to the `yaml_agent_string()` and view the YAML representation of the validation plan without needing to write the YAML to disk beforehand.

Usage

```r
yaml_agent_string(agent = NULL, filename = NULL, path = NULL, expanded = FALSE)
```
Arguments

- **agent**: An *agent* object of class `ptblank_agent`. If an object is provided here, then `filename` must not be provided.
- **filename**: The name of the YAML file that contains fields related to an *agent*. If a file name is provided here, then *agent* object must not be provided in `agent`.
- **path**: An optional path to the YAML file (combined with `filename`).
- **expanded**: Should the written validation expressions for an *agent* be expanded such that `tidyselect` expressions for columns are evaluated, yielding a validation function per column? By default, this is `FALSE` so expressions as written will be retained in the YAML representation.

Value

Nothing is returned. Instead, text is printed to the console.

Examples

There's a YAML file available in the `pointblank` package that's called "agent-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(  
    "yaml", "agent-small_table.yml",  
    package = "pointblank"  
  )
```

We can view the contents of the YAML file in the console with the `yaml_agent_string()` function.

```r
yaml_agent_string(filename = yml_file_path)
```

type: agent

tbl: `~ tbl_source("small_table", "tbl_store.yml")`

tbl_name: small_table

label: A simple example with the `small_table`.

lang: en
locale: en

actions:
 warn_fraction: 0.1
 stop_fraction: 0.25
 notify_fraction: 0.35

steps:
- col_exists:
 columns: vars(date)
- col_exists:
 columns: vars(date_time)
- col_vals_regex:
 columns: vars(b)
regex: '[0-9]-[a-z]{3}-[0-9]{3}'
- rows_distinct:
 columns: ~
- col_vals_gt:
 columns: vars(d)
 value: 100.0
- col_vals_lte:
 columns: vars(c)
 value: 5.0

Incidentally, we can also use `yaml_agent_string()` to print YAML in the console when supplying an agent object as the input. This can be useful for previewing YAML output just before writing it to disk with `yaml_write()`.

Function ID

11-5

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

yaml_exec

Execute all agent and informant YAML tasks

Description

The `yaml_exec()` function takes all relevant pointblank YAML files in a directory and executes them. Execution involves interrogation of agents for YAML agents and incorporation of informants for YAML informants. Under the hood, this uses `yaml_agent_interrogate()` and `yaml_informant_incorporate()` and then `x_write_disk()` to save the processed objects to an output directory. These written artifacts can be read in at any later time with the `x_read_disk()` function or the `read_disk_multiagent()` function. This is useful when data in the target tables are changing and the periodic testing of such tables is part of a data quality monitoring plan.

The output RDS files are named according to the object type processed, the target table, and the date-time of processing. For convenience and modularity, this setup is ideal when a table store YAML file (typically named "tbl_store.yml" and produced via the `tbl_store()` and `yaml_write()` workflow) is available in the directory, and when table-prep formulas are accessed by name through `tbl_source()`.

A typical directory of files set up for execution in this way might have the following contents:

- a "tbl_store.yml" file for holding table-prep formulas (created with `tbl_store()` and written to YAML with `yaml_write()`)
- one or more YAML agent files to validate tables (ideally using `tbl_source()`)
- one or more YAML informant files to provide refreshed metadata on tables (again, using `tbl_source()` to reference table preparations is ideal)
• an output folder (default is "output") to save serialized versions of processed agents and informants

Minimal example files of the aforementioned types can be found in the **pointblank** package through the following `system.file()` calls:

• `system.file("yaml", "agent-small_table.yml", package = "pointblank")`
• `system.file("yaml", "informant-small_table.yml", package = "pointblank")`
• `system.file("yaml", "tbl_store.yml", package = "pointblank")`

The directory itself can be accessed using `system.file("yaml", package = "pointblank")`.

Usage

```r
yaml_exec(
  path = NULL,
  files = NULL,
  write_to_disk = TRUE,
  output_path = file.path(path, "output"),
  keep_tbl = FALSE,
  keep_extracts = FALSE
)
```

Arguments

- **path**
 The path that contains the YAML files for agents and informants.

- **files**
 A vector of YAML files to use in the execution workflow. By default, `yaml_exec()` will attempt to process every valid YAML file in `path` but supplying a vector here limits the scope to the specified files.

- **write_to_disk**
 Should the execution workflow include a step that writes output files to disk? This internally calls `x_write_disk()` to write RDS files and uses the base filename of the agent/informant YAML file as part of the output filename, appending the date-time to the basename.

- **output_path**
 The output path for any generated output files. By default, this will be a subdirectory of the provided `path` called "output".

- **keep_tbl, keep_extracts**
 For agents, the table may be kept if it is a data frame object (databases tables will never be pulled for storage) and extracts, collections of table rows that failed a validation step, may also be stored. By default, both of these options are set to `FALSE`.

Value

Invisibly returns a named vector of file paths for the input files that were processed; file output paths (for wherever writing occurred) are given as the names.

Function ID

11-8
See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_informant_incorporate()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

Examples

```r
if (interactive()) {

  # The 'yaml' directory that is
  # accessible in the package through
  # 'system.file()' contains the files
  # 1. 'agent-small_table.yml'
  # 2. 'informant-small_table.yml'
  # 3. 'tbl_store.yml'

  # There are references in YAML files
  # 1 & 2 to the table store YAML file,
  # so, they all work together cohesively

  # Let's process the agent and the
  # informant YAML files with 'yaml_exec()';
  # and we'll specify the working directory
  # as the place where the output RDS files
  # are written

  output_dir <- getwd()

  yaml_exec(
    path = system.file(
      "yaml", package = "pointblank"
    ),
    output = output_dir
  )

  # This generates two RDS files in the
  # working directory: one for the agent
  # and the other for the informant; each
  # of them are automatically time-stamped
  # so that periodic execution can be
  # safely carried out without risk of
  # overwriting

}
```

Get an informant from `pointblank` YAML and `incorporate()`
Description

The `yaml_informant_incorporate()` function operates much like the `yaml_read_informant()` function (reading a `pointblank` YAML file and generating an informant with all information in place). The key difference is that this function takes things a step further and incorporates aspects from the the target table (defined by table-prep formula that is required in the YAML file). The additional auto-invocation of `incorporate()` uses the default options of that function. As with `yaml_read_informant()` the informant is returned except, this time, it has been updated with the latest information from the target table.

Usage

```r
yaml_informant_incorporate(filename, path = NULL)
```

Arguments

- `filename` *File name*
 - scalar<character> // required
 - The name of the YAML file that contains fields related to an informant.

- `path` *File path*
 - scalar<character> // default: NULL (optional)
 - An optional path to the YAML file (combined with filename).

Value

A `ptblank_informant` object.

Examples

There’s a YAML file available in the `pointblank` package that’s called “informant-small_table.yml”. The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(
    "yaml", "informant-small_table.yml",
    package = "pointblank"
  )
```

The YAML file can be read as an informant by using the `yaml_informant_incorporate()` function. If you expect metadata to change with time, it’s best to use `yaml_informant_incorporate()` instead of `yaml_read_informant()` since the former will go the extra mile and perform `incorporate()` in addition to the reading.

```r
informant <- yaml_informant_incorporate(filename = yml_file_path)
```

As can be seen from the information report, the available table metadata was restored and reported. If the metadata were to change with time, that would be updated as well.
yaml_read_agent

Function ID
11-7

See Also
Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_read_agent()`, `yaml_read_informant()`, `yaml_write()`

yaml_read_agent
Read a pointblank YAML file to create an agent object

Description

With `yaml_read_agent()` we can read a **pointblank** YAML file that describes a validation plan to be carried out by an **agent** (typically generated by the `yaml_write()` function). What’s returned is a new **agent** with that validation plan, ready to interrogate the target table at will (using the table-prep formula that is set with the `tbl` argument of `create_agent()`). The agent can be given more validation steps if needed before using `interrogate()` or taking part in any other agent ops (e.g., writing to disk with outputs intact via `x_write_disk()` or again to **pointblank** YAML with `yaml_write()`).

To get a picture of how `yaml_read_agent()` is interpreting the validation plan specified in the **pointblank** YAML, we can use the `yaml_agent_show_exprs()` function. That function shows us (in the console) the **pointblank** expressions for generating the described validation plan.

Usage

`yaml_read_agent(filename, path = NULL)`

Arguments

- **filename**
 File name

 scalar<character>
 // required

 The name of the YAML file that contains fields related to an **agent**.

- **path**
 File path

 scalar<character>
 // default: NULL (optional)

 An optional path to the YAML file (combined with filename).

Value

A ptblank_agent object.
Examples

There's a YAML file available in the pointblank package that's also called "agent-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )
```

The YAML file can be read as an agent with a pre-existing validation plan by using the `yaml_read_agent()` function.

```r
agent <- yaml_read_agent(filename = yml_file_path)
```

This particular agent is using `~ tbl_source("small_table", "tbl_store.yml")` to source the table-prep from a YAML file that holds a table store (can be seen using `yaml_agent_string(agent = agent)`). Let's put that file in the working directory (the pointblank package has the corresponding YAML file):

```r
yml_tbl_store_path <-
  system.file(
    "yaml", "tbl_store.yml",
    package = "pointblank"
  )

file.copy(from = yml_tbl_store_path, to = ".")
```

As can be seen from the validation report, no interrogation was yet performed. Saving an agent to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on the same target table. We can either follow this up with `interrogate()` and get an agent with intel, or, we can interrogate directly from the YAML file with `yaml_agent_interrogate()`:

```r
agent <- yaml_agent_interrogate(filename = yml_file_path)
```

Function ID

11-2

See Also

Other pointblank YAML: `yaml_agent_interrogate()`, `yaml_agent_show_exprs()`, `yaml_agent_string()`, `yaml_exec()`, `yaml_informant_incorporate()`, `yaml_read_informant()`, `yaml_write()`
yaml_read_informant
Read a pointblank YAML file to create an informant object

Description

With `yaml_read_informant()` we can read a pointblank YAML file that describes table information (typically generated by the `yaml_write()` function. What’s returned is a new `informant` object with the information intact. The `informant` object can be given more information through use of the `info_*()` functions.

Usage

```r
yaml_read_informant(filename, path = NULL)
```

Arguments

- `filename`
 File name
 scalar<character> // **required**
 The name of the YAML file that contains fields related to an `informant`.

- `path`
 File path
 scalar<character> // **default**: `NULL` (optional)
 An optional path to the YAML file (combined with `filename`).

Value

A `pointblank_informant` object.

Examples

There’s a YAML file available in the pointblank package that’s called "informant-small_table.yml". The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(
    "yaml", "informant-small_table.yml",
    package = "pointblank"
  )
```

The YAML file can be read as an informant by using the `yaml_read_informant()` function.

```r
informant <- yaml_read_informant(filename = yml_file_path)
```

As can be seen from the information report, the available table metadata was restored and reported. If you expect metadata to change with time, it might be beneficial to use `incorporate()` to query the target table. Or, we can perform this querying directly from the YAML file with `yaml_informant_incorporate()`.
yaml_write

Function ID

11-3

See Also

Other pointblank YAML: yaml_agent_interrogate(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_write()

Description

With yaml_write() we can take different pointblank objects (these are the ptblank_agent, ptblank_informant,
and tbl_store) and write them to Y AML. With an agent, for example, yaml_write() will write
that everything that is needed to specify an agent and its validation plan to a Y AML file. With
YAML, we can modify the YAML markup if so desired, or, use as is to create a new agent
with the yaml_read_agent() function. That agent will have a validation plan and is ready to
interrogate() the data. We can go a step further and perform an interrogation directly from the
YAML file with the yaml_agent_interrogate() function. That returns an agent with intel (having
already interrogated the target data table). An informant object can also be written to YAML
with yaml_write().

One requirement for writing an agent or an informant to YAML is that we need to have a table-prep
formula specified (it’s an R formula that is used to read the target table when interrogate() or
incorporate() is called). This option can be set when using create_agent()/create_informant()
or with set_tbl() (useful with an existing agent or informant object).

Usage

yaml_write(
 ..., .list = list2(...),
 filename = NULL,
 path = NULL,
 expanded = FALSE,
 quiet = FALSE
)

Arguments

... Pointblank agents, informants, table stores

<series of obj: ptblank_agent|ptblank_informant|tbl_store>> // required

Any mix of pointblank objects such as the agent (ptblank_agent), the informant (ptblank_informant),
or the table store (tbl_store). The agent and informant can be combined into a single YAML file
(so long as both objects
refer to the same table). A table store cannot be combined with either an agent or an informant so it must undergo conversion alone.

.list
Alternative to ...
<list of multiple expressions> // **required** (or, use ...)
Allows for the use of a list as an input alternative to .

filename
File name
scalar<character> // default: NULL (optional)
The name of the YAML file to create on disk. It is recommended that either the .yaml or .yml extension be used for this file. If not provided then default names will be used ("tbl_store.yml") for a table store and the other objects will get default naming to the effect of "<object>-<tbl_name>.yml".

path
File path
scalar<character> // default: NULL (optional)
An optional path to which the YAML file should be saved (combined with filename).

expanded
Expand validation when repeating across multiple columns
scalar<logical> // default: FALSE
Should the written validation expressions for an **agent** be expanded such that **tidyselect** expressions for columns are evaluated, yielding a validation function per column? By default, this is FALSE so expressions as written will be retained in the YAML representation.

quiet
Inform (or not) upon file writing
scalar<logical> // default: FALSE
. Should the function **not** inform when the file is written?

Value

Invisibly returns **TRUE** if the YAML file has been written.

Examples

Writing an agent object to a YAML file:

Let’s go through the process of developing an agent with a validation plan. We’ll use the **small_table** dataset in the following examples, which will eventually offload the developed validation plan to a YAML file.

```
small_table
#> # A tibble: 13 x 8
#> date_time date a b c d e f
#> <dttm> <date> <int> <chr> <dbl> <dbl> <lgl> <chr>
#> 1 2016-01-04 11:00:00 2016-01-04 2 1-bcd-345 3 3423. TRUE high
#> 2 2016-01-04 00:32:00 2016-01-04 3 5-egh-163 8 10000. TRUE low
#> 3 2016-01-05 13:32:00 2016-01-05 6 8-kdg-938 3 2343. TRUE high
#> 4 2016-01-06 17:23:00 2016-01-06 2 5-jdo-903 NA 3892. FALSE mid
#> 5 2016-01-09 12:36:00 2016-01-09 8 3-ldm-038 7 284. TRUE low
#> 6 2016-01-11 06:15:00 2016-01-11 4 2-dhe-923 4 3291. TRUE mid
#> 7 2016-01-15 18:46:00 2016-01-15 7 1-knw-093 3 843. TRUE high
```
Creating an `action_levels` object is a common workflow step when creating a `pointblank` agent. We designate failure thresholds to the `warn`, `stop`, and `notify` states using `action_levels()`.

```r
al <- action_levels(
  warn_at = 0.10,
  stop_at = 0.25,
  notify_at = 0.35
)
```

Now let's create the agent and pass it the `al` object (which serves as a default for all validation steps which can be overridden). The data will be referenced in `tbl` with a leading ~ and this is a requirement for writing to YAML since the preparation of the target table must be self contained.

```r
agent <- create_agent(
  tbl = ~ small_table,
  tbl_name = "small_table",
  label = "A simple example with the `small_table`.",
  actions = al
)
```

Then, as with any agent object, we can add steps to the validation plan by using as many validation functions as we want.

```r
agent <-
  agent %>%
  col_exists(columns = c(date, date_time)) %>%
  col_vals_regex(
    columns = b,
    regex = "[0-9]-[a-z]{3}-[0-9]{3}"
  ) %>%
  rows_distinct() %>%
  col_vals_gt(columns = d, value = 100) %>%
  col_vals_lte(columns = c, value = 5)
```

The agent can be written to a `pointblank`-readable YAML file with the `yaml_write()` function. Here, we'll use the filename "agent-small_table.yml" and, after writing, the YAML file will be in the working directory:

```r
yaml_write(agent, filename = "agent-small_table.yml")
```

We can view the YAML file in the console with the `yaml_agent_string()` function.

```r
yaml_agent_string(filename = "agent-small_table.yml")
```
Incidentally, we can also use `yaml_agent_string()` to print YAML in the console when supplying an agent as the input. This can be useful for previewing YAML output just before writing it to disk with `yaml_write()`.

Reading an agent object from a YAML file:

There’s a YAML file available in the `pointblank` package that’s also called “agent-small_table.yml”. The path for it can be accessed through `system.file()`:

```r
yml_file_path <-
  system.file(
    "yaml", "agent-small_table.yml",
    package = "pointblank"
  )
```

The YAML file can be read as an agent with a pre-existing validation plan by using the `yaml_read_agent()` function.

```r
agent <- yaml_read_agent(filename = yml_file_path)
agent
```

This particular agent is using `~ tbl_source("small_table", "tbl_store.yml")` to source the table-prep from a YAML file that holds a table store (can be seen using `yaml_agent_string(agent = agent)`). Let’s put that file in the working directory (the `pointblank` package has the corresponding YAML file):
As can be seen from the validation report, no interrogation was yet performed. Saving an agent to YAML will remove any traces of interrogation data and serve as a plan for a new interrogation on the same target table. We can either follow this up with \(\text{interrogate()}\) and get an agent with intel, or, we can interrogate directly from the YAML file with \(\text{yaml_agent_interrogate()}\):

```r
agent <- yaml_agent_interrogate(filename = yml_file_path)
```

Writing an informant object to a YAML file:

Let's walk through how we can generate some useful information for a really small table. We can create an informant object with \(\text{create_informant()}\) and we'll again use the small_table dataset.

```r
informant <-
  create_informant(
    tbl = small_table,
    tbl_name = "small_table",
    label = "A simple example with the \`small_table\`."
  )
```

Then, as with any informant object, we can add info text to the using as many \(\text{info___()}\) functions as we want.

```r
informant <-
  informant %>%
  info_columns(
    columns = a,
    info = "In the range of 1 to 10. (SIMPLE)"
  ) %>%
  info_columns(
    columns = starts_with("date"),
    info = "Time-based values (e.g., \`Sys.time\()\`)."
  ) %>%
  info_columns(
    columns = date,
    info = "The date part of \`date_time\`. (CALC)"
  )
```

The informant can be written to a \texttt{pointblank}-readable YAML file with the \texttt{yaml_write()} function. Here, we'll use the filename "informant-small_table.yml" and, after writing, the YAML file will be in the working directory:
yaml_write(informant, filename = "informant-small_table.yml")

We can inspect the YAML file in the working directory and expect to see the following:

type: informant
tbl: `small_table`
tbl_name: small_table
info_label: A simple example with the `small_table`.
lang: en
locale: en
table:
 name: small_table
 _columns: 8
 _rows: 13.0
 _type: tbl_df
columns:
 date_time:
 _type: POSIXct, POSIXt
 info: Time-based values (e.g., `Sys.time()`).
 date:
 _type: Date
 info: Time-based values (e.g., `Sys.time()`). The date part of `date_time`.
a:
 _type: integer
 info: In the range of 1 to 10. (SIMPLE)
b:
 _type: character
c:
 _type: numeric
d:
 _type: numeric
e:
 _type: logical
f:
 _type: character

Reading an informant object from a YAML file:
There's a YAML file available in the pointblank package that's also called "informant-small_table.yml". The path for it can be accessed through system.file():

yml_file_path <-
 system.file(
 "yaml", "informant-small_table.yml",
 package = "pointblank"
)

The YAML file can be read as an informant by using the yaml_read_informant() function.
informant <- yaml_read_informant(filename = yml_file_path)
informant
As can be seen from the information report, the available table metadata was restored and re-
ported. If you expect metadata to change with time, it might be beneficial to use incorporate()
to query the target table. Or, we can perform this querying directly from the YAML file with
yaml_informant_incorporate():

```
informant <- yaml_informant_incorporate(filename = yml_file_path)
```

There will be no apparent difference in this particular case since small_data is a static table
with no alterations over time. However, using yaml_informant_incorporate() is good practice
since this refreshing of data will be important with real-world datasets.

Function ID

11-1

See Also

Other pointblank YAML: yaml_agent_interroge(), yaml_agent_show_exprs(), yaml_agent_string(),
yaml_exec(), yaml_informant_incorporate(), yaml_read_agent(), yaml_read_informant()
Index

* Datasets
 game_revenue, 283
 game_revenue_info, 284
 small_table, 369
 small_table_sqlite, 370
 specifications, 384
* Emailing
 email_blast, 268
 email_create, 272
 stock_msg_body, 386
 stock_msg_footer, 386
* Incorporate and Report
 get_informant_report, 295
 incorporate, 311
* Information Functions
 info_columns, 313
 info_columns_from_tbl, 317
 info_section, 319
 info_snippet, 323
 info_tabular, 326
 snip_highest, 371
 snip_list, 372
 snip_lowest, 375
 snip_stats, 376
* Interrogate and Report
 get_agent_report, 285
 interrogate, 329
* Logging
 log4r_step, 331
* Object Ops
 activate_steps, 9
 deactivate_steps, 261
 export_report, 274
 remove_steps, 335
 set_tbl, 368
 x_read_disk, 426
 x_write_disk, 428
* Planning and Prep
 action_levels, 4
 create_agent, 239
 create_informant, 247
 db_tbl, 255
 draft_validation, 262
 file_tbl, 277
 scan_data, 358
 tbl_get, 388
 tbl_source, 397
 tbl_store, 399
 validate_rmd, 419
* Post-interrogation
 all_passed, 16
 get_agent_x_list, 290
 get_data_extracts, 293
 get_sundered_data, 302
 write_testthat_file, 420
* Table Transformers
 get_tt_param, 306
 tt_string_info, 407
 tt_summary_stats, 408
 tt_tbl_colnames, 411
 tt_tbl_dims, 413
 tt_time_shift, 415
 tt_time_slice, 417
* The multiagent
 create_multiagent, 252
 get_multiagent_report, 297
 read_disk_multiagent, 334
* Utility and Helper Functions
 affix_date, 11
 affix_datetime, 13
 col_schema, 71
 from_github, 281
 has_columns, 308
 stop_if_not, 387
* datasets
 game_revenue, 283
 game_revenue_info, 284
 small_table, 369
* pointblank YAML
 yaml_agent_interrogate, 432
 yaml_agent_show_exprs, 434
 yaml_agent_string, 436
 yaml_exec, 438
 yaml_informant_incorporate, 440
 yaml_read_agent, 442
 yaml_read_informant, 444
 yaml_write, 445

* validation functions
 col_count_match, 18
 col_exists, 24
 col_is_character, 30
 col_is_date, 36
 col_is_factor, 42
 col_is_integer, 47
 col_is_logical, 53
 col_is_numeric, 59
 col_is_posix, 65
 col_schema_match, 73
 col_vals_between, 80
 col_vals_decreasing, 89
 col_vals_equal, 98
 col_vals_expr, 106
 col_vals_gt, 113
 col_vals_gte, 121
 col_vals_in_set, 137
 col_vals_increasing, 129
 col_vals_lt, 145
 col_vals_lte, 152
 col_vals_make_set, 160
 col_vals_make_subset, 168
 col_vals_not_between, 175
 col_vals_not_equal, 185
 col_vals_not_in_set, 192
 col_vals_null, 200
 col_vals_regex, 214
 col_vals_within_spec, 222
 conjointly, 231
 row_count_match, 350
 rows_complete, 337
 rows_distinct, 343
 serially, 360
 specially, 377
 tbl_match, 390

action_levels, 4, 246, 251, 260, 268, 281, 360, 390, 399, 406, 420
activate_steps, 9, 261, 277, 336, 369, 427, 432
activate_steps(), 261, 336, 422
affix_date, 11, 16, 73, 282, 310, 387
affix_date(), 13, 16, 276, 430, 431
affix_datetime, 13, 13, 73, 282, 310, 387
affix_datetime(), 13, 16, 430
all_passed, 16, 292, 295, 305, 426
all_passed(), 242, 329

base::difftime(), 415
base::strptime(), 11, 14
blastula::creds(), 269
blastula::creds_anonymous(), 269
blastula::creds_file(), 269
blastula::creds_key(), 269

col_count_match, 18, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 120, 128, 137, 144, 152, 160, 167, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397
col_exists, 24, 24, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 120, 128, 137, 144, 152, 160, 167, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397
col_exists(), 231, 232
col_is_character, 24, 30, 30, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 120, 128, 137, 144, 152, 160, 167, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397
col_is_date, 24, 30, 35, 36, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 120, 128, 137, 144, 152, 160, 167, 175, 184,
col_is_factor, 24, 30, 35, 41, 42, 53, 59, 64, 70, 80, 89, 98, 105, 113, 120, 128, 137, 144, 152, 160, 167, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_equal(), 192

col_vals_expr, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 106, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_gt, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_gte, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_in_set, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_gte(), 80, 120, 176

col_vals_in_set(), 199

col_vals_increasing, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_increasing(), 97, 361

col_vals_lte, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_lte(), 80, 160, 176

col_vals_decreasing, 24, 30, 35, 41, 47, 53, 59, 64, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 357, 367, 384, 397

col_vals_decreasing(), 137

col_schema(), 13, 16, 71, 282, 310, 387

col_schema(), 73, 74, 78

index
email_create, 272, 272, 386
email_create(email_create), 269, 386
expect_col_count_match
(col_count_match), 18
expect_col_exists (col_exists), 24
expect_col_is_character
(col_is_character), 30
expect_col_is_date (col_is_date), 36
expect_col_is_factor (col_is_factor), 42
expect_col_is_integer (col_is_integer), 47
expect_col_is_logical (col_is_logical), 53
expect_col_is_numeric (col_is_numeric), 59
expect_col_is_posix (col_is_posix), 65
expect_col_schema_match
(col_schema_match), 73
expect_col_vals_between (col_vals_between), 80
expect_col_vals_decreasing (col_vals_decreasing), 89
expect_col_vals_equal (col_vals_equal), 98
expect_col_vals_expr (col_vals_expr), 106
expect_col_vals_gt (col_vals_gt), 113
expect_col_vals_gte (col_vals_gte), 121
expect_col_vals_in_set (col_vals_in_set), 137
expect_col_vals_increasing (col_vals_increasing), 129
expect_col_vals_le (col_vals_le), 145
expect_col_vals_lte (col_vals_lte), 152
expect_col_vals_make_set (col_vals_make_set), 160
expect_col_vals_make_subset (col_vals_make_subset), 168
expect_col_vals_not_between (col_vals_not_between), 175
expect_col_vals_not_equal (col_vals_not_equal), 185
expect_col_vals_not_in_set (col_vals_not_in_set), 192
expect_col_vals_not_null (col_vals_not_null), 200
expect_col_vals_null (col_vals_null), 207
expect_col_vals_regex (col_vals_regex), 214
expect_col_vals_within_spec (col_vals_within_spec), 222
expect_col_vals_within_spec (conjointly), 384
expect_conjointly (conjointly), 231
expect_row_count_match
(row_count_match), 350
expect_rows_complete (rows_complete), 337
expect_rows_distinct (rows_distinct), 343
expect_serially (serially), 360
export_report (export_report), 408, 306, 293, 293, 274, 274, 369, 427,
371, 371, 242, 242, 286, 289, 358
file_tbl (file_tbl), 9, 246, 251, 260, 268, 277, 360, 390, 399, 406, 420
get_data_extracts (get_data_extracts), 292, 295, 242
get_data_extracts (get_data_extracts), 242, 246, 426
get_agent_report (get_agent_report), 239, 240, 242, 246,
263, 274, 293, 298, 329, 426
get_agent_report (get_agent_report), 17, 242, 246, 269, 426
game_revenue (game_revenue), 283, 285, 370, 371, 385
game_revenue_info (game_revenue_info), 284, 284, 370, 371, 385
has_columns (has_columns), 20, 26, 32, 37, 43, 49, 55, 61, 66, 76, 83, 92, 100, 108, 115, 123,
131, 139, 147, 155, 162, 170, 178,
has_columns (has_columns), 272, 272, 386
has_columns (get_agent_report), 384
get_sundered_data (get_sundered_data), 18, 292, 295, 302, 426
get_sundered_data (get_sundered_data), 242
get_multiagent_report (get_multiagent_report), 244, 252, 254,
274
get_tt_param (get_tt_param), 306, 408, 411, 413, 414, 417, 419
index_456
INDEX

I(), 255, 256, 288, 296, 298
incorporate, 296, 311
incorporate(), 247, 250, 276, 316, 322, 325, 326, 328, 371, 374, 375, 377, 427, 430, 441, 444, 445, 451
info_columns, 313, 319, 322, 326, 329, 372, 375–377
info_columns(), 247, 251, 312, 317–319, 323, 371, 374, 375, 377
info_columns_from_tbl(), 251, 284, 318
info_section(), 247, 312, 323
info_snippet(), 247, 311, 312, 316, 322, 328, 371, 374, 375–377
info_tabular(), 247, 319, 323, 328
interrogate, 290, 329

glog4r_step, 331
glog4r_step(), 11

read_disk_multiagent, 254, 301, 334
read_disk_multiagent(), 244, 438
remove_steps, 10, 261, 277, 335, 369, 427, 432
rlang::expr(), 113
row_count_match, 24, 30, 36, 41, 47, 53, 59, 65, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 337, 350, 358, 367, 384, 397
rows_complete, 24, 30, 36, 41, 47, 53, 59, 65, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 337, 350, 358, 367, 384, 397
rows_distinct, 24, 30, 36, 41, 47, 53, 59, 65, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 343, 358, 367, 384, 397
rows_distinct(), 239, 246, 293

scan_data, 9, 246, 251, 260, 268, 281, 358, 390, 399, 406, 420
scan_data(), 291
serially, 24, 30, 36, 41, 47, 53, 59, 65, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 358, 360, 384, 397
set_tbl, 10, 261, 277, 336, 368, 427, 432
set_tbl(), 388, 397, 420, 429, 445
small_table, 274, 276, 284, 285, 369, 371, 385, 429, 430
small_table_sqlite, 284, 285, 370, 370, 385
snip_highest(), 247, 324, 325
snip_list(), 247, 324
snip_lowest(), 247, 324
snip_stats, 317, 319, 322, 326, 329, 372, 375, 376, 376
snip_stats(), 247, 324
specially, 24, 30, 36, 41, 47, 53, 59, 65, 70, 80, 89, 98, 105, 113, 121, 128, 137, 144, 152, 160, 168, 175, 184, 192, 199, 206, 213, 221, 230, 238, 343, 350, 358, 367, 377, 397
specifications, 284, 285, 370, 371, 384
stock_msg_body, 272, 273, 386, 386
stock_msg_footer, 272, 273, 386, 386
stop_if_not, 13, 16, 73, 282, 310, 387
stop_on_fail(action_levels), 4
tbl_get, 9, 246, 251, 260, 268, 281, 360, 388, 390, 406, 420
tbl_get(), 259, 260, 280, 389, 397, 399, 400, 402, 403, 405
test_col_exists (col_exists), 24
 (col_is_character), 30
 (col_is_date) (col_is_date), 36
 (col_is_factor) (col_is_factor), 42
 (col_is_integer) (col_is_integer), 47
 (col_is_logical) (col_is_logical), 53
 (col_is_numeric) (col_is_numeric), 59
 (col_is_posix) (col_is_posix), 65
 (col_schema_match), 73
 (col_vals_between) (col_vals_between), 80
 (col_vals_between), 361
 (col_vals_decreasing), 89
 (col_vals_equal) (col_vals_equal), 98
 (col_vals_expr) (col_vals_expr), 106
 (col_vals_gt) (col_vals_gt), 113
 (col_vals_gte) (col_vals_gte), 121
 (col_vals_in_set) (col_vals_in_set), 137
 (col_vals_increasing), 129
 (col_vals_lt) (col_vals_lt), 145
 (col_vals_lte), 412
 (col_vals_lte), 152
 (col_vals_lte), 307, 408
 (col_vals_make_set) (col_vals_make_set), 160
 (col_vals_make_subset) (col_vals_make_subset), 168
 (col_vals_make_subset), 412
index

validate_rmd(), 387
warn_on_fail(action_levels), 4
write_testthat_file, 18, 292, 295, 305, 420

x_read_disk, 10, 261, 277, 336, 369, 426, 432
x_read_disk(), 244, 250, 334, 335, 428–432, 438
x_write_disk, 10, 261, 277, 336, 369, 427, 428
x_write_disk(), 11, 13, 16, 244, 250, 252, 334, 426, 427, 438, 439, 442

yaml_agent_interrogate, 432, 436, 438, 440, 442, 443, 445, 451

yaml_agent_show_exprs, 434, 438, 440, 442, 443, 445, 451
yaml_agent_show_exprs(), 244, 333, 442

yaml_agent_string, 434, 436, 438, 440, 442, 443, 445, 451

yaml_agent_string(), 22, 28, 34, 40, 46, 52, 57, 63, 69, 78, 87, 95, 104, 111, 119, 127, 135, 143, 151, 158, 166, 174, 182, 191, 198, 205, 212, 220, 228, 236, 244, 333, 342, 349, 356, 365, 382, 395, 407, 448

yaml_exec, 434, 436, 438, 442, 443, 445, 451

yaml_informant_incorporate, 434, 436, 438, 440, 442, 443, 445, 451

yaml_read_agent, 434, 436, 438, 440, 442, 444, 445, 451

yaml_read_informant, 434, 436, 438, 440, 442, 443, 444, 451

yaml_read_informant(), 249, 315, 321, 324, 327, 441, 450

yaml_write, 434, 436, 438, 440, 442, 443, 445, 449