Package ‘poismf’

March 26, 2023

Type Package

Title Factorization of Sparse Counts Matrices Through Poisson Likelihood

Version 0.4.0-4

Maintainer David Cortes <david.cortes.rivera@gmail.com>

URL https://github.com/david-cortes/poismf

BugReports https://github.com/david-cortes/poismf/issues

Description Creates a non-negative low-rank approximate factorization of a sparse counts matrix by maximizing Poisson likelihood with L1/L2 regularization (e.g. for implicit-feedback recommender systems or bag-of-words-based topic modeling) (Cortes, (2018) <arXiv:1811.01908>), which usually leads to very sparse user and item factors (over 90% zero-valued). Similar to hierarchical Poisson factorization (HPF), but follows an optimization-based approach with regularization instead of a hierarchical prior, and is fit through gradient-based methods instead of variational inference.

License BSD_2_clause + file LICENSE

Imports Matrix (>= 1.3), methods

RoxygenNote 7.1.2

NeedsCompilation yes

Encoding UTF-8

Author David Cortes [aut, cre, cph], Jean-Sebastien Roy [cph] (Copyright holder of included tnc library), Stephen Nash [cph] (Copyright holder of included tnc library)

Repository CRAN

Date/Publication 2023-03-26 21:30:02 UTC
R topics documented:

- **factors** ... 2
- **factors.single** ... 3
- **get.factor.matrices** .. 4
- **get.model.mappings** .. 5
- **poismf** .. 6
- **poismf_unsafe** .. 11
- **predict.poismf** .. 12
- **print.poismf** ... 13
- **summary.poismf** ... 14
- **topN** ... 14
- **topN.new** ... 16

Index 18

factors

Determine latent factors for new rows/users

Description

Determines the latent factors for new users (rows) given their counts for existing items (columns).

This function will use the same method and hyperparameters with which the model was fit. If using this for recommender systems, it’s recommended to use instead the function **factors.single** as it’s likely to be more precise.

Note that, when using “method='pg'” (not recommended), results from this function and from ‘get.factor.matrices’ on the same data might differ a lot.

Usage

```r
factors(model, X, add_names = TRUE, nthreads = parallel::detectCores())
```

Arguments

- **model**
 - A Poisson factorization model as returned by ‘poismf’.

- **X**
 - New data for whose rows to determine latent factors. Can be passed as a ‘data.frame’ or as a sparse or dense matrix (see documentation of **poismf** for details on the data type). While other functions only accept sparse matrices in COO (triplets) format, this function will also take CSR matrices from the ‘SparseM’ and ‘Matrix’ packages (classes ‘dgRMatrix’/’RsparseMatrix’ for ‘Matrix’). Inputs will be converted to CSR regardless of their original format.
 - Note that converting a matrix to ‘dgRMatrix’ format might require using ‘as(m, "RsparseMatrix")’ instead of using ‘dgRMatrix’ directly.
 - If passing a ‘data.frame’, the first column should contain row indices or IDs, and these will be internally remapped - the mapping will be available as the row names for the matrix if passing ‘add_names=TRUE’, or as part of the outputs.
if passing 'add_names=FALSE'. The IDs passed in the first column will not be matched to the existing IDs of 'X' passed to 'poismf'.

If 'X' passed to 'poismf' was a 'data.frame', 'X' here must also be passed as 'data.frame'. If 'X' passed to 'poismf' was a matrix and 'X' is a 'data.frame', the second column of 'X' here should contain column numbers (with numeration starting at 1).

add_names Whether to add row names to the output matrix if the indices were internally remapped - they will only be so if the 'X' here is a 'data.frame'. Note that if the indices in passed in 'X' here (first and second columns) are integers, once row names are added, subsetting 'X' by an integer will give the row at that position - that is, if you want to obtain the corresponding row for ID=2 from 'X' in 'A_out', you need to use 'A_out["2",]', not 'A_out[2,]'.

nthreads Number of parallel threads to use.

Details

The factors are initialized to the mean of each column in the fitted model.

Value

- If 'X' was passed as a matrix, will output a matrix of dimensions (n, k) with the obtained factors. If passing 'add_names=TRUE' and 'X' passed to 'poismf' was a 'data.frame', this matrix will have row names. **Careful with subsetting with integers** (see documentation for 'add_names').

- If 'X' was passed as a 'data.frame' and passing 'add_names=FALSE' here, will output a list with an entry 'factors' containing the latent factors as described above, and an entry 'mapping' indicating to which row ID does each row of the output correspond.

See Also

factors.single topN.new

Description

This is similar to obtaining topics for a document in LDA. See also function **factors** for getting factors for multiple users/rows at a time.

This function works with one user at a time, and will use the TNCG solver regardless of how the model was fit. Note that, since this optimization method may have different optimal hyperparameters than the other methods, it offers the option of varying those hyperparameters in here.
Usage

factors.single(
 model,
 X,
 l2_reg = model$l2_reg,
 l1_reg = model$l1_reg,
 weight_mult = model$weight_mult,
 maxupd = max(1000L, model$maxupd)
)

Arguments

model Poisson factorization model as returned by 'poismf'.
X Data with the non-zero item indices and counts for this new user. Can be passed as a sparse vector from package ‘Matrix’ (‘Matrix::dsparseVector’, which can be created from indices and values through function ‘Matrix::sparseVector’), or as a ‘data.frame’, in which case will take the first column as the item/column indices (enumeration starting at 1) and the second column as the counts. If ‘X’ passed to ‘poismf’ was a ‘data.frame’, ‘X’ here must also be a ‘data.frame’.
l2_reg Strength of L2 regularization to use for optimizing the new factors.
l1_reg Strength of the L1 regularization. Not recommended.
weight_mult Weight multiplier for the positive entries over the missing entries.
maxupd Maximum number of TNCG updates to perform. You might want to increase this value depending on the use-case.

Details

The factors are initialized to the mean of each column in the fitted model.

Value

Vector of dimensionality ‘model$k’ with the latent factors for the user, given the input data.

See Also

factors topN.new

get.factor.matrices Extract Latent Factor Matrices

Description

Extract the latent factor matrices for users (rows) and columns (items) from a Poisson factorization model object, as returned by function ‘poismf’.
get.model.mappings

Usage

get.factor.matrices(model, add_names = TRUE)

Arguments

model A Poisson factorization model, as produced by `poismf`.
add_names Whether to add row names to the matrices if the indices were internally remapped - they will only be so if the `X` passed to `poismf` was a `data.frame`. Note that if passing `X` as `data.frame` with integer indices to `poismf`, once row names are added, subsetting such matrix by an integer will give the row at that position - that is, if you want to obtain the corresponding row for ID=2 from `X` in `factors$A`, you need to use `factors$A["2",]`, not `factors$A[2,]`.

Details

If `X` passed to `poismf` was a `data.frame`, the mapping between IDs from `X` to row numbers in `A` and column numbers in `B` are available under `model$levels_A` and `model$levels_B`, respectively. They can also be obtained through `get.model.mappings`, and will be added as row names if using `add_names=TRUE`. Be careful about subsetting with integers (see documentation for `add_names` for details).

Value

List with entries `A` (the user factors) and `B` (the item factors).

See Also

get.model.mappings

get.model.mappings

Extract user/row and item/column mappings from Poisson model.

Description

Will extract the mapping between IDs passed as `X` to function `poismf` and row/column positions in the latent factor matrices and prediction functions.

Such a mapping will only be generated if the `X` passed to `poismf` was a `data.frame`, otherwise they will not be re-mapped.

Usage

get.model.mappings(model)

Arguments

model A Poisson factorization model as returned by `poismf`.

Value

A list with row entries:

- ‘rows’: a vector in which each user/row ID is placed at its ordinal position in the internal data structures. If there is no mapping (e.g. if ‘X’ passed to ‘poismf’ was a sparse matrix), will be ‘NULL’.
- ‘columns’: a vector in which each item/column ID is placed at its ordinal position in the internal data structures. If there is no mapping (e.g. if ‘X’ passed to ‘poismf’ was a sparse matrix), will be ‘NULL’.

See Also

get.factor.matrices

poismf | Factorization of Sparse Counts Matrices through Poisson Likelihood

Description

Creates a low-rank non-negative factorization of a sparse counts matrix by maximizing Poisson likelihood minus L1/L2 regularization, using gradient-based optimization procedures.

The model idea is to approximate:
\[X \sim \text{Poisson}(AB^T) \]

Ideal for usage in recommender systems, in which the ‘X’ matrix would consist of interactions (e.g. clicks, views, plays), with users representing the rows and items representing the columns.

Usage

```r
poismf(
  X,
  k = 50,
  method = "tncg",
  l2_reg = "auto",
  l1_reg = 0,
  niter = "auto",
  maxupd = "auto",
  limit_step = TRUE,
  initial_step = 1e-07,
  early_stop = TRUE,
  reuse_prev = FALSE,
  weight_mult = 1,
  handle_interrupt = TRUE,
  nthreads = parallel::detectCores()
)
```
Arguments

X

The counts matrix to factorize. Can be:

- A `data.frame` with 3 columns, containing in this order: row index or user ID, column index or item ID, count value. The first two columns will be converted to factors to enumerate them internally, and will return those same values from `topN`. In order to avoid this internal re-enumeration, can pass `X` as a sparse COO matrix instead.
- A sparse matrix from package `Matrix` in triplets (COO) format (that is: `Matrix::dgTMatrix`) (recommended). Such a matrix can be created from row/column indices through function `Matrix::sparseMatrix` (with `repl="T"`). Will also accept them in CSC and CSR formats (`Matrix::dgCMatrix` and `Matrix::dgRMatrix`), but will be converted along the way (so it will be slightly slower).
- A sparse matrix in COO format from the ‘SparseM’ package. Will also accept them in CSR and CSC format, but will be converted along the way (so it will be slightly slower).
- A full matrix (of class `base::matrix`) - this is not recommended though.

Passing sparse matrices is faster as it will not need to re-enumerate the rows and columns. Dense (regular) matrices will be converted to sparse format, which is inefficient.

k

Number of latent factors to use (dimensionality of the low-rank factorization). If `k` is very small (e.g. `k=3`), it’s recommended to use `method='pg'`, otherwise it’s recommended to use `method='tncg'`, and if using `method='cg'`, it’s recommended to use large `k` (at least 100).

method

Optimization method to use as inner solver. Options are:

- `"tncg"` : will use the conjugate gradient method from reference [2]. This is the slowest option, but tends to find better local optima, and if either run for many inner iterations (controlled by `maxupd`) or releasing previous solutions each time (controlled by `reuse_prev`), tends to produce sparse latent factor matrices. Note that when releasing previous solutions, fitting times are much faster and the quality of the results as evaluated by ranking-based recommendation quality metrics is almost as good, but solutions tend to be less sparse (see reference [1] for details). Unlike the other two, this solver is extremely unlikely to fail to produce results, and it is thus the recommended one.
- `"cg"` : will use the conjugate gradient method from reference [3], which is faster than the one from reference [2], but tends not to reach as good local optima. Usually, with this method and the default hyperparameters, the latent factor matrices will be very sparse, but note that it can fail to produce results (in which case the obtained factors will be very poor quality without warning) when `k` is small (recommended to use `k>=100` when using this solver).
- `"pg"` : will use a proximal gradient method, which is a lot faster than the other two and more memory-efficient, but tends to only work with very large regularization values, and doesn’t find as good local optima, nor tends
to result in sparse factors. Under this method, top-N recommendations tend to have little variation from one user to another.

l2_reg
Strength of L2 regularization. It is recommended to use small values along with ‘method=tncg’, very large values along with ‘method=pg’, and medium to large values with ‘method=cg’. If passing "auto", will set it to 10^3 for TNGCG, 10^4 for CG, and 10^9 for PG.

l1_reg
Strength of L1 regularization. Not recommended.

niter
Number of outer iterations to perform. One iteration denotes an update over both matrices. If passing ‘auto’, will set it to 10 for TNGCG and PG, or to 30 for CG.

Using more iterations usually leads to better results for CG, at the expense of longer fitting times. TNGCG is more likely to converge to a local optimum with fewer outer iterations, with further iterations not changing the values of any single factor.

maxupd
Maximum number of inner iterations for each user/item vector. Note: for ‘method=TNCG’, this means maximum number of function evaluations rather than number of updates, so it should be higher. You might also want to try decreasing this while increasing ‘niter’. For ‘method=pg’, this will be taken as the actual number of updates, as it does not perform a line search like the other methods. If passing ‘auto’, will set it to ‘15*k’ for ‘method=tncg’, 5 for ‘method=cg’, and 10 for ‘method=pg’. If using ‘method=pg’, one might also want to try other combinations such as ‘maxupd=1’ and ‘niter=100’.

limit_step
When passing ‘method=cg’, whether to limit the step sizes in each update so as to drive at most one variable to zero each time, as prescribed in [3]. If running the procedure for many iterations, it’s recommended to set this to ‘TRUE’. You also might set ‘method=cg’ plus ‘maxupd=1’ and ‘limit_step=FALSE’ to reduce the algorithm to simple projected gradient descent with a line search.

initial_step
Initial step size to use for proximal gradient updates. Larger step sizes reach convergence faster, but are more likely to result in failed optimization. Ignored when passing ‘method=tncg’ or ‘method=cg’, as those will perform a line search instead.

early_stop
In the TNGCG method, whether to stop before reaching the maximum number of iterations if the updates do not change the factors significantly or at all.

reuse_prev
In the TNGCG method, whether to reuse the factors obtained in the previous iteration as starting point for each inner update. This has the effect of reaching convergence much quicker, but will oftentimes lead to slightly worse solutions. If passing ‘FALSE’ and ‘maxupd’ is small, the obtained factors might not be sparse at all. If passing ‘TRUE’, they will typically be less sparse than when passing ‘FALSE’ with large ‘maxupd’ or than with ‘method=cg’.

Setting it to ‘TRUE’ has the side effect of potentially making the factors obtained when fitting the model different from the factors obtained after calling the ‘predict_factors’ function with the same data the model was fit.

For methods other than TNGCG, this is always assumed ‘TRUE’.

weight_mult
Extra multiplier for the weight of the positive entries over the missing entries in the matrix to factorize. Be aware that Poisson likelihood will implicitly put more
weight on the non-missing entries already. Passing larger values will make the factors have larger values (which might be desirable), and can help with instability and failed optimization cases. If passing this, it’s recommended to try very large values (e.g. 10^2), and might require adjusting the other hyperparameters.

handle_interrupt
When receiving an interrupt signal, whether the model should stop early and leave a usable object with the parameters obtained up to the point when it was interrupted (when passing ‘TRUE’), or raise an interrupt exception without producing a fitted model object (when passing ‘FALSE’).

nthreads
Number of parallel threads to use.

Details
In order to speed up the optimization procedures, it’s recommended to use an optimized library for BLAS operations such as MKL or OpenBLAS (ideally the “openmp” variant). See this link for instructions on getting OpenBLAS in R for Windows.

When using proximal gradient method, this model is prone to numerical instability, and can turn out to spit all NaNs or zeros in the fitted parameters. The TNCG method is not prone to such failed optimizations.

Although the main idea behind this software is to produce sparse model/factor matrices, they are always taken in dense format when used inside this software, and as such, it might be faster to use these matrices through some other external library that would be able to exploit their sparsity.

For reproducible results, random number generation seeds can be controlled through ‘set.seed’.

Model quality or recommendation quality can be evaluated using the recometrics package.

Value
An object of class ‘poismf’ with the following fields of interest:

Fields
A The user/document/row-factor matrix (will be transposed due to R’s column-major storage of matrices).
B The item/word/column-factor matrix (will be transposed due to R’s column-major storage of matrices).
levels_A A vector indicating which user/row ID corresponds to each row position in the ‘A’ matrix. This will only be generated when passing ‘X’ as a ‘data.frame’, otherwise will not remap them.
levels_B A vector indicating which item/column ID corresponds to each row position in the ‘B’ matrix. This will only be generated when passing ‘X’ as a ‘data.frame’, otherwise will not remap them.

References

See Also

predict.poismf topN factors get.factor.matrices get.model.mappings

Examples

library(poismf)

create a random sparse data frame in COO format
nrow <- 10^2 # <- users
ncol <- 10^3 # <- items
nnz <- 10^4 # <- events (agg)
set.seed(1)
X <- data.frame(
 row_ix = sample(nrow, size=nnz, replace=TRUE),
 col_ix = sample(ncol, size=nnz, replace=TRUE),
 count = rpois(nnz, 1) + 1
)
X <- X[!duplicated(X[, c("row_ix", "col_ix")]),]

can also pass X as sparse matrix - see below
X <- Matrix::sparseMatrix(
i=X$row_ix, j=X$col_ix, x=X$count,
repr="T")
the indices can also be characters or other types:
X$row_ix <- paste0("user", X$row_ix)
X$col_ix <- paste0("item", X$col_ix)

factorize the randomly-generated sparse matrix
model <- poismf(X, k=5, method="tncg", nthreads=1)

predict functionality (chosen entries in X)
predict entry [1, 10] (row 1, column 10)
predict(model, 1, 10, nthreads=1)
predict entries [1,4], [1,5], [1,6]
predict(model, c(1, 1, 1), c(4, 5, 6), nthreads=1)

ranking functionality (for recommender systems)
topN(model, user=2, n=5, exclude=X$col_ix[X$row_ix==2], nthreads=1)
topN.new(model, X=X[X$row_ix==2, c("col_ix","count")],
 n=5, exclude=X$col_ix[X$row_ix==2], nthreads=1)

obtaining latent factors
a_vec <- factors.single(model,
 X[X$row_ix==2, c("col_ix","count")])
poismf_unsafe

Description

This is a faster version of `poismf` which will not make any checks or castings on its inputs. It is intended as a fast alternative when a model is to be fit multiple times with different hyperparameters, and for allowing custom-initialized factor matrices. **Note that since it doesn’t make any checks or conversions, passing the wrong kinds of inputs or passing inputs with mismatching dimensions will crash the R process.**

For most use cases, it’s recommended to use the function `poismf` instead.

Usage

```r
poismf_unsafe(A, B, Xcsr, Xcsc, k, ...)
```

Arguments

- **A**

 Initial values for the user-factor matrix of dimensions [dimA, k], assuming row-major order. Can be passed as a vector of dimension [dimA*k], or as a matrix of dimension [k, dimA]. Note that R matrices use column-major order, so if you want to pass an R matrix as initial values, you’ll need to transpose it, hence the shape [k, dimA]. Recommended to initialize ‘~ Uniform(0.3, 0.31)’. **Will be modified in-place.**

- **B**

 Initial values for the item-factor matrix of dimensions [dimB, k]. See documentation about ‘A’ for more details.

- **Xcsr**

 The ‘X’ matrix in CSR format. Should be an object of class `Matrix::dgRMatrix`.

- **Xcsc**

 The ‘X’ matrix in CSC format. Should be an object of class `Matrix::dgCMatrix`.

- **k**

 The number of latent factors. **Must match the dimension of ‘A’ and ‘B’.**

- **...**

 Other hyperparameters that can be passed to ‘poismf’. See the documentation for `poismf` for details about possible hyperparameters.

Value

A ‘poismf’ model object. See the documentation for `poismf` for details.

See Also

`poismf`
Examples

```r
library(poismf)

### create a random sparse data frame in COO format
nrow <- 10^2 ## <- users
col <- 10^3 ## <- items
nnz <- 10^4 ## <- events (agg)
set.seed(1)
X <- data.frame(
  row_ix = sample(nrow, size=nnz, replace=TRUE),  
  col_ix = sample(ncol, size=nnz, replace=TRUE),  
  count = rpois(nnz, 1) + 1  
)
X <- X[!duplicated(X[, c("row_ix", "col_ix")]), ]

### convert to required format
Xcsr <- Matrix::sparseMatrix(
  i=X$row_ix, j=X$col_ix, x=X$count,  
  repr="R"
)
Xcsc <- Matrix::sparseMatrix(
  i=X$row_ix, j=X$col_ix, x=X$count,  
  repr="C"
)

### initialize factor matrices
k <- 5L
A <- rgamma(nrow*k, 1, 1)
B <- rgamma(ncol*k, 1, 1)

### call function
model <- poismf_unsafe(A, B, Xcsr, Xcsc, k, nthreads=1)
```

Description

Predict expected count for new row(user) and column(item) combinations

Usage

```r
## S3 method for class 'poismf'
predict(object, a, b = NULL, nthreads = parallel::detectCores(), ...)
```

Arguments

- **object**: A Poisson factorization model as returned by `poismf`.
- **a**, **b**: Additional arguments.
print.poismf

Can be either:

- A vector of length N with the users/rows to predict - each entry will be matched to the corresponding entry at the same position in 'b' - e.g. to predict value for entries (3,4), (3,5), and (3,6), should pass ‘a=c(3,3,3), b=c(3,5,6)’. If ‘X’ passed to ‘poismf’ was a ‘data.frame’, should match with the entries in its first column. If ‘X’ passed to ‘poismf’ was a matrix, should indicate the row numbers (numeration starting at 1).

- A sparse matrix, ideally in COO (triplets) format from package ‘Matrix’ (‘Matrix::dgTMatrix’) or from package ‘SparseM’ (‘matrix.coo’), in which case it will make predictions for the non-zero entries in the matrix and will output another sparse matrix with the predicted entries as values. In this case, ‘b’ should not be passed. This option is not available if the ‘X’ passed to ‘poismf’ was a ‘data.frame’.

A vector of length N with the items/columns to predict - each entry will be matched to the corresponding entry at the same position in ‘a’ - e.g. to predict value for entries (3,4), (3,5), and (3,6), should pass ‘a=c(3,3,3), b=c(3,5,6)’. If ‘X’ passed to ‘poismf’ was a ‘data.frame’, should match with the entries in its second column. If ‘X’ passed to ‘poismf’ was a matrix, should indicate the column numbers (numeration starting at 1). If ‘a’ is a sparse matrix, should not pass ‘b’.

Number of parallel threads to use.

Not used.

Value

- If ‘a’ and ‘b’ were passed, will return a vector of length N with the predictions for the requested row/column combinations.

- If ‘b’ was not passed, will return a sparse matrix with the same entries and shape as ‘a’, but with the values being the predictions from the model for the non-missing entries. In such case, the output will be of class ‘Matrix::dgTMatrix’.

See Also

poismf topN factors

print.poismf

Get information about poismf object

Description

Print basic properties of a "poismf" object.

Usage

```r
## S3 method for class 'poismf'
print(x, ...)
```
Arguments

\begin{itemize}
 \item \texttt{x} \quad \text{An object of class "poismf" as returned by function "poismf".}
 \item \ldots \quad \text{Extra arguments (not used).}
\end{itemize}

\section*{summary.poismf}

\textit{Get information about poismf object}

\section*{Description}

Print basic properties of a "poismf" object (same as 'print.poismf' function).

\section*{Usage}

\begin{verbatim}
S3 method for class 'poismf'
summary(object, ...)
\end{verbatim}

\section*{Arguments}

\begin{itemize}
 \item \texttt{object} \quad \text{An object of class "poismf" as returned by function "poismf".}
 \item \ldots \quad \text{Extra arguments (not used).}
\end{itemize}

\section*{See Also}

\begin{itemize}
 \item \texttt{print.poismf}
\end{itemize}

\section*{topN}

\textit{Rank top-N highest-predicted items for an existing user}

\section*{Description}

Rank top-N highest-predicted items for an existing user

\section*{Usage}

\begin{verbatim}
topN(
 model,
 user,
 n = 10,
 include = NULL,
 exclude = NULL,
 output_score = FALSE,
 nthreads = parallel::detectCores()
)
\end{verbatim}
Arguments

model A Poisson factorization model as returned by ‘poismf’.
user User for which to rank the items. If ‘X’ passed to ‘poismf’ was a ‘data.frame’,
must match with the entries in its first column, otherwise should match with the
rows of ‘X’ (numeration starting at 1).
n Number of top-N highest-predicted results to output.
include List of items which will be ranked. If passing this, will only make a ranking
among these items. If ‘X’ passed to ‘poismf’ was a ‘data.frame’, must match
with the entries in its second column, otherwise should match with the columns
of ‘X’ (numeration starting at 1). Can only pass one of ‘include’ or ‘exclude.’
exclude List of items to exclude from the ranking. If passing this, will rank all the items
except for these. If ‘X’ passed to ‘poismf’ was a ‘data.frame’, must match with
the entries in its second column, otherwise should match with the columns
of ‘X’ (numeration starting at 1). Can only pass one of ‘include’ or ‘exclude.’
output_score Whether to output the scores in addition to the IDs. If passing ‘FALSE’, will
return a single array with the item IDs, otherwise will return a list with the item
IDs and the scores.
nthreads Number of parallel threads to use.

Details

Even though the fitted model matrices might be sparse, they are always used in dense format here.
In many cases it might be more efficient to produce the rankings externally through some library
that would exploit the sparseness for much faster computations. The matrices can be access under
‘model$A’ and ‘model$B’.

Value

- If passing ‘output_score=FALSE’ (the default), will return a vector of size ‘n’ with the top-
 N highest predicted items for this user. If the ‘X’ data passed to ‘poismf’ was a ‘data.frame’,
 will contain the item IDs from its second column, otherwise will be integers matching to the
 columns of ‘X’ (starting at 1). If ‘X’ was passed as ‘data.frame’, the entries in this vector
 might be coerced to character regardless of their original type.
- If passing ‘output_score=TRUE’, will return a list, with the first entry being the vector de-
 scribed above under name ‘ix’, and the second entry being the associated scores, as a numeric
 vector of size ‘n’.

See Also

topN.new predict.poismf factors.single
topN.new

Rank top-N highest-predicted items for a new user

Description

Rank top-N highest-predicted items for a new user

Usage

```r
topN.new(
  model,
  X,
  n = 10,
  include = NULL,
  exclude = NULL,
  output_score = FALSE,
  l2_reg = model$l2_reg,
  l1_reg = model$l1_reg,
  weight_mult = model$weight_mult,
  maxupd = max(1000L, model$maxupd),
  nthreads = parallel::detectCores()
)
```

Arguments

- `model` A Poisson factorization model as returned by `poismf`.
- `X` Data with the non-zero item indices and counts for this new user. Can be passed as a sparse vector from package `Matrix` (`Matrix::dsparseVector`, which can be created from indices and values through `Matrix::sparseVector`), or as a `data.frame`, in which case will take the first column as the item/column indices (numeration starting at 1) and the second column as the counts. If `X` passed to `poismf` was a `data.frame`, `X` here must also be a `data.frame`.
- `n` Number of top-N highest-predicted results to output.
- `include` List of items which will be ranked. If passing this, will only make a ranking among these items. If `X` passed to `poismf` was a `data.frame`, must match with the entries in its second column, otherwise should match with the columns of `X` (numeration starting at 1). Can only pass one of `include` or `exclude`. Must not contain duplicated entries.
- `exclude` List of items to exclude from the ranking. If passing this, will rank all the items except for these. If `X` passed to `poismf` was a `data.frame`, must match with the entries in its second column, otherwise should match with the columns of `X` (numeration starting at 1). Can only pass one of `include` or `exclude`. Must not contain duplicated entries.
- `output_score` Whether to output the scores in addition to the IDs. If passing `FALSE`, will return a single array with the item IDs, otherwise will return a list with the item IDs and the scores.
topN.new

`12_reg` Strength of L2 regularization to use for optimizing the new factors.

`11_reg` Strength of the L1 regularization. Not recommended.

`weight_mult` Weight multiplier for the positive entries over the missing entries.

`maxupd` Maximum number of TNCG updates to perform. You might want to increase this value depending on the use-case.

`nthreads` Number of parallel threads to use.

Details

This function calculates the latent factors in the same way as `factors.single` - see the documentation of `factors.single` for details.

Just like `topN`, it does not exploit any potential sparsity in the fitted matrices and vectors, so it might be a lot faster to produce the recommendations externally (see the documentation for `topN` for details).

The factors are initialized to the mean of each column in the fitted model.

Value

- If passing `output_score=FALSE` (the default), will return a vector of size `n` with the top-N highest predicted items for this user. If the `X` data passed to `poismf` was a `data.frame`, will contain the item IDs from its second column, otherwise will be integers matching to the columns of `X` (starting at 1). If `X` was passed as `data.frame`, the entries in this vector might be coerced to character regardless of their original type.
- If passing `output_score=TRUE`, will return a list, with the first entry being the vector described above under name `ix`, and the second entry being the associated scores, as a numeric vector of size `n`.

See Also

`factors.single` `topN`
Index

factors, 2, 3, 4, 10, 13
factors.single, 2, 3, 3, 15, 17

get.factor.matrices, 4, 6, 10
get.model.mappings, 5, 5, 10

poismf, 2, 6, 11, 13
poismf_unsafe, 11
predict.poismf, 10, 12, 15
print.poismf, 13, 14

summary.poismf, 14

topN, 10, 13, 14, 17
topN.new, 3, 4, 15, 16