Package ‘policytree’

June 23, 2023

Title Policy Learning via Doubly Robust Empirical Welfare Maximization over Trees

Version 1.2.2

Description Learn optimal policies via doubly robust empirical welfare maximization over trees. Given doubly robust reward estimates, this package finds a rule-based treatment prescription policy, where the policy takes the form of a shallow decision tree that is globally (or close to) optimal.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

Suggests testthat (>= 3.0.4), DiagrammeR

RoxygenNote 7.2.3

LinkingTo Rcpp, BH

Imports Rcpp, grf (>= 2.0.0)

URL https://github.com/grf-labs/policytree

BugReports https://github.com/grf-labs/policytree/issues

NeedsCompilation yes

Author Erik Sverdrup [aut, cre], Ayush Kanodia [aut], Zhengyuan Zhou [aut], Susan Athey [aut], Stefan Wager [aut]

Maintainer Erik Sverdrup <erikcs@stanford.edu>

Repository CRAN

Date/Publication 2023-06-23 04:10:02 UTC

R topics documented:

conditional_means.causal_forest ... 2
double_robust_scores.causal_forest ... 3
Estimate mean rewards μ for each treatment a

$\mu_a = m(x) + (1 - e_a(x))\tau_a(x)$

Usage

```r
## S3 method for class 'causal_forest'
conditional_means(object, ...)

## S3 method for class 'causal_survival_forest'
conditional_means(object, ...)

## S3 method for class 'instrumental_forest'
conditional_means(object, ...)

## S3 method for class 'multi_arm_causal_forest'
conditional_means(object, outcome = 1, ...)
```

Arguments

- **object**: An appropriate causal forest type object
- **...**: Additional arguments
- **outcome**: Only used with multi arm causal forests. In the event the forest is trained with multiple outcomes Y, a column number/name specifying the outcome of interest. Default is 1.

Value

A matrix of estimated mean rewards
Methods (by class)

- **conditional_means(causal_forest)**: Mean rewards μ for control/treated
- **conditional_means(causal_survival_forest)**: Mean rewards μ for control/treated
- **conditional_means(instrumental_forest)**: Mean rewards μ for control/treated
- **conditional_means(multi_arm_causal_forest)**: Mean rewards μ for each treatment a

Examples

```r
# Compute conditional means for a multi-arm causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
forest <- grf::multi_arm_causal_forest(X, Y, W)
mu.hats <- conditional_means(forest)
head(mu.hats)

# Compute conditional means for a causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
mu.hats <- conditional_means(c.forest)
```

double_robust_scores.causal_forest

Matrix Γ of scores for each treatment a

Description

Computes a matrix of double robust scores $\Gamma_{ia} = \mu_a(x) + \frac{1}{\hat{e}_a(x)}(Y_i - \mu_a(x))1(A_i = a)$

Usage

```r
## S3 method for class 'causal_forest'
double_robust_scores(object, ...)

## S3 method for class 'causal_survival_forest'
double_robust_scores(object, ...)

## S3 method for class 'instrumental_forest'
double_robust_scores(object, compliance.score = NULL, ...)
```
double_robust_scores.causal_forest

S3 method for class 'multi_arm_causal_forest'

```
double_robust_scores(object, outcome = 1, ...)
```

```
double_robust_scores(object, ...)
```

Arguments

- **object**
 - An appropriate causal forest type object

- **...**
 - Additional arguments

- **compliance.score**
 - An estimate of the causal effect of Z on W, i.e., \(\Delta(X) = E(W \mid X, Z = 1) - E(W \mid X, Z = 0) \), for each sample \(i = 1, ..., n \). If NULL (default) then this is estimated with a causal forest.

- **outcome**
 - Only used with multi arm causal forests. In the event the forest is trained with multiple outcomes Y, a column number/name specifying the outcome of interest. Default is 1.

Details

This is the matrix used for CAIPWL (Cross-fitted Augmented Inverse Propensity Weighted Learning)

Value

A matrix of scores for each treatment

Methods (by class)

- \(\text{double_robust_scores(causal_forest)} \): Scores \((\Gamma_0, \Gamma_1) \)
- \(\text{double_robust_scores(causal_survival_forest)} \): Scores \((\Gamma_0, \Gamma_1) \)
- \(\text{double_robust_scores(instrumental_forest)} \): Scores \((-\Gamma, \Gamma) \)
- \(\text{double_robust_scores(multi_arm_causal_forest)} \): Matrix \(\Gamma \) of scores for each treatment \(a \)

Note

For instrumental_forest this method returns \((-\Gamma_i, \Gamma_i) \) where \(\Gamma_i \) is the double robust estimator of the treatment effect as in eqn. (44) in Athey and Wager (2021).

References

Examples

Compute double robust scores for a multi-arm causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
forest <- grf::multi_arm_causal_forest(X, Y, W)
scores <- double_robust_scores(forest)
head(scores)

Compute double robust scores for a causal forest
n <- 500
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
scores <- double_robust_scores(c.forest)

gen_data_epl

Example data generating process from Policy Learning With Observational Data

Description

The DGP from section 5.2 in Athey and Wager (2021)

Usage

gen_data_epl(n, type = c("continuous", "jump"))

Arguments

n
Number of observations

type
tau is "continuous" (default - equation 46) or exhibits "jumps" (equation 47)

Value

A list

References

Description

The DGP from section 6.4.1 in Zhou, Athey, and Wager (2023): There are \(d = 3 \) actions \((a_0, a_1, a_2)\)
which depend on 3 regions the covariates \(X \sim U[0, 1]^p \) reside in. Observed outcomes: \(Y \sim N(\mu_{a_i}(X_i), 4) \)

Usage

gen_data_mapl(n, p = 10, sigma2 = 4)

Arguments

- \(n \) Number of observations \(X \).
- \(p \) Number of features (minimum 7). Default is 10.
- \(\text{sigma2} \) Noise variance. Default is 4.

Value

A list with realized action \(a_i \), region \(r_i \), conditional mean \(\mu \), outcome \(Y \) and covariates \(X \)

References

hybrid_policy_tree

Hybrid tree search

Description

Finds a depth \(k \) tree by looking ahead \(l \) steps.

Usage

hybrid_policy_tree(
 X,
 Gamma,
 depth = 3,
 search.depth = 2,
 split.step = 1,
 min.node.size = 1,
 verbose = TRUE
)
Arguments

X
The covariates used. Dimension \(N \times p \) where \(p \) is the number of features.

Gamma
The rewards for each action. Dimension \(N \times d \) where \(d \) is the number of actions.

depth
The depth of the fitted tree. Default is 3.

search.depth
Depth to look ahead when splitting. Default is 2.

split.step
An optional approximation parameter, the number of possible splits to consider when performing tree search. split.step = 1 (default) considers every possible split, split.step = 10 considers splitting at every 10’th sample and may yield a substantial speedup for dense features. Manually rounding or re-encoding continuous covariates with very high cardinality in a problem specific manner allows for finer-grained control of the accuracy/runtime tradeoff and may in some cases be the preferred approach.

min.node.size
An integer indicating the smallest terminal node size permitted. Default is 1.

verbose
Give verbose output. Default is TRUE.

Details

Builds deeper trees by iteratively using exact tree search to look ahead \(l \) splits. For example, with depth = 3 and search.depth = 2, the root split is determined by a depth 2 exact tree, and two new depth 2 trees are fit in the two immediate children using exact tree search, leading to a total depth of 3 (the resulting tree may be shallower than the specified depth depending on whether leaf nodes were pruned or not). This algorithm scales with some coefficient multiple of the runtime of a search.depth policy_tree, which means that for this approach to be feasible it needs an \(n, p, d \) configuration in which a search.depth policy_tree runs in reasonable time.

The algorithm: desired depth is given by depth. Each node is split using exact tree search with depth = search.depth. When we reach a node where the current level + search.depth is equal to depth, we stop and attach the search.depth subtree to this node. We also stop if the best search.depth split yielded a leaf node.

Value

A policy_tree object.

Examples

Fit a depth three tree on doubly robust treatment effect estimates from a causal forest.
n <- 1500
p <- 5
X <- round(matrix(rnorm(n * p), n, p), 2)
W <- rbinom(n, 1, 1 / (1 + exp(X[, 3])))
tau <- 1 / (1 + exp((X[, 1] + X[, 2]) / 2)) - 0.5
Y <- X[, 3] + W * tau + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
dr.scores <- double_robust_scores(c.forest)
tree <- hybrid_policy_tree(X, dr.scores, depth = 3)
Predict treatment assignment.
predicted <- predict(tree, X)

multi_causal_forest
(deprecated) One vs. all causal forest for multiple treatment effect estimation

Description

Since policytree version 1.1 this function is deprecated in favor of the new estimator multi_arm_causal_forest available in GRF (version 2+). This function will continue to work for now but passes its arguments onto the "conformable" multi_arm_causal_forest in GRF, with a warning. (Note: for policy learning this forest works as before, but for individual point predictions, they differ as multi_arm_causal_forest predicts contrasts. See the GRF documentation example for details.)

Usage

multi_causal_forest(
 X,
 Y,
 W,
 Y.hat = NULL,
 W.hat = NULL,
 num.trees = 2000,
 sample.weights = NULL,
 clusters = NULL,
 equalize.cluster.weights = FALSE,
 sample.fraction = 0.5,
 mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
 min.node.size = 5,
 honesty = TRUE,
 honesty.fraction = 0.5,
 honesty.prune.leaves = TRUE,
 alpha = 0.05,
 imbalance.penalty = 0,
 stabilize.splits = TRUE,
 ci.group.size = 2,
 tune.parameters = "none",
 tune.num.trees = 200,
 tune.num.reps = 50,
 tune.num.draws = 1000,
 compute.oob.predictions = TRUE,
 orthog.boosting = FALSE,
 num.threads = NULL,
 seed = runif(1, 0, .Machine$integer.max)
)
Arguments

X
The covariates used in the causal regression.

Y
The outcome (must be a numeric vector with no NAs).

W
The treatment assignment (must be a categorical vector with no NAs).

Y.hat
Estimates of the expected responses E[Y | Xi], marginalizing over treatment. If Y.hat = NULL, these are estimated using a separate regression forest. See section 6.1.1 of the GRF paper for further discussion of this quantity. Default is NULL.

W.hat
Matrix with estimates of the treatment propensities E[W | Xi]. If W.hat = NULL, these are estimated using a k separate regression forests. Default is NULL.

num.trees
Number of trees grown in the forest. Note: Getting accurate confidence intervals generally requires more trees than getting accurate predictions. Default is 2000.

sample.weights
(Experimental) Weights given to each sample in estimation. If NULL, each observation receives the same weight. Note: To avoid introducing confounding, weights should be independent of the potential outcomes given X. Default is NULL.

clusters
Vector of integers or factors specifying which cluster each observation corresponds to. Default is NULL (ignored).

equalize.cluster.weights
If FALSE, each unit is given the same weight (so that bigger clusters get more weight). If TRUE, each cluster is given equal weight in the forest. In this case, during training, each tree uses the same number of observations from each drawn cluster: If the smallest cluster has K units, then when we sample a cluster during training, we only give a random K elements of the cluster to the tree-growing procedure. When estimating average treatment effects, each observation is given weight 1/cluster size, so that the total weight of each cluster is the same. Note that, if this argument is FALSE, sample weights may also be directly adjusted via the sample.weights argument. If this argument is TRUE, sample.weights must be set to NULL. Default is FALSE.

sample.fraction
Fraction of the data used to build each tree. Note: If honesty = TRUE, these subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry
Number of variables tried for each split. Default is \(\sqrt{p} + 20 \) where p is the number of variables.

min.node.size
A target for the minimum number of observations in each tree leaf. Note that nodes with size smaller than min.node.size can occur, as in the original random-Forest package. Default is 5.

honesty
Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE. For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and recommendations for parameter tuning, see the grf algorithm reference.

honesty.fraction
The fraction of data that will be used for determining splits if honesty = TRUE. Corresponds to set J1 in the notation of the paper. Default is 0.5 (i.e. half of the data is used for determining splits).
honesty.prune.leaves
If true, prunes the estimation sample tree such that no leaves are empty. If false, keep the same tree as determined in the splits sample (if an empty leave is encountered, that tree is skipped and does not contribute to the estimate). Setting this to false may improve performance on small/marginally powered data, but requires more trees (note: tuning does not adjust the number of trees). Only applies if honesty is enabled. Default is TRUE.

alpha
A tuning parameter that controls the maximum imbalance of a split. Default is 0.05.

imbalance.penalty
A tuning parameter that controls how harshly imbalanced splits are penalized. Default is 0.

stabilize.splits
Whether or not the treatment should be taken into account when determining the imbalance of a split. Default is TRUE.

ci.group.size
The forest will grow ci.group.size trees on each subsample. In order to provide confidence intervals, ci.group.size must be at least 2. Default is 2.

tune.parameters
A vector of parameter names to tune. If "all": all tunable parameters are tuned by cross-validation. The following parameters are tunable: ("sample.fraction", "mtry", "min.node.size", "honesty.fraction", "honesty.prune.leaves", "alpha", "imbalance.penalty"). If honesty is false these parameters are not tuned. Default is "none" (no parameters are tuned).

tune.num.trees
The number of trees in each 'mini forest' used to fit the tuning model. Default is 200.

tune.num.reps
The number of forests used to fit the tuning model. Default is 50.

tune.num.draws
The number of random parameter values considered when using the model to select the optimal parameters. Default is 1000.

compute.oob.predictions
Whether OOB predictions on training set should be precomputed. Default is TRUE.

orthog.boosting
Deprecated and unused after version 1.0.4.

num.threads
Number of threads used in training. By default, the number of threads is set to the maximum hardware concurrency.

seed
The seed of the C++ random number generator.

Value
A warning will be issued and this function passes its arguments onto the new estimator multi_arm_causal_forest and returns that object.
plot.policy_tree

Plot a policy_tree tree object.

Description
Plot a policy_tree tree object.

Usage
S3 method for class 'policy_tree'
plot(x, leaf.labels = NULL, ...)

Arguments

x
The tree to plot.

leaf.labels
An optional character vector of leaf labels for each treatment.

...
Additional arguments (currently ignored).

Examples

Plot a policy_tree object
Not run:
n <- 250
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- as.factor(sample(c("A", "B", "C"), n, replace = TRUE))
Y <- X[, 1] + X[, 2] * (W == "B") + X[, 3] * (W == "C") + runif(n)
multi.forest <- grf::multi_arm_causal_forest(X = X, Y = Y, W = W)
Gamma.matrix <- double_robust_scores(multi.forest)
tree <- policy_tree(X, Gamma.matrix, depth = 2)
plot(tree)

Provide optional names for the treatment names in each leaf node
'action.names' is by default the column names of the reward matrix
plot(tree, leaf.labels = tree$action.names)

Providing a custom character vector
plot(tree, leaf.labels = c("treatment A", "treatment B", "placebo C"))

Saving a plot in a vectorized SVG format can be done with the 'DiagrammeRsvg' package.
install.packages("DiagrammeRsvg")
tree.plot = plot(tree)
cat(DiagrammeRsvg::export_svg(tree.plot), file = 'plot.svg')

End(Not run)
policy_tree

Fit a policy with exact tree search

Description

Finds the optimal (maximizing the sum of rewards) depth k tree by exhaustive search. If the optimal action is the same in both the left and right leaf of a node, the node is pruned.

Usage

policy_tree(
 X,
 Gamma,
 depth = 2,
 split.step = 1,
 min.node.size = 1,
 verbose = TRUE
)

Arguments

X
 The covariates used. Dimension $N \times p$ where p is the number of features.

Gamma
 The rewards for each action. Dimension $N \times d$ where d is the number of actions.

depth
 The depth of the fitted tree. Default is 2.

split.step
 An optional approximation parameter, the number of possible splits to consider when performing tree search. split.step = 1 (default) considers every possible split, split.step = 10 considers splitting at every 10'th sample and may yield a substantial speedup for dense features. Manually rounding or re-encoding continuous covariates with very high cardinality in a problem specific manner allows for finer-grained control of the accuracy/runtime tradeoff and may in some cases be the preferred approach.

min.node.size
 An integer indicating the smallest terminal node size permitted. Default is 1.

verbose
 Give verbose output. Default is TRUE.

Details

Exact tree search is intended as a way to find shallow (i.e. depth 2 or 3) globally optimal tree-based policies on datasets of "moderate" size. The amortized runtime of exact tree search is $O(p^k n^k (\log n + d) + p n \log n)$ where p is the number of features, n the number of distinct observations, d the number of treatments, and $k \geq 1$ the tree depth. Due to the exponents in this expression, exact tree search will not scale to datasets of arbitrary size.

As an example, the runtime of a depth two tree scales quadratically with the number of observations, implying that doubling the number of samples will quadruple the runtime. n refers to the number of distinct observations, substantial speedups can be gained when the features are discrete (with all binary features, the runtime will be \sim linear in n), and it is therefore beneficial to round down/re-encode very dense data to a lower cardinality (the optional parameter split.step emulates this, though rounding/re-encoding allow for finer-grained control).
Value

A policy_tree object.

References

See Also

hybrid_policy_tree for building deeper trees.

Examples

```r
# Construct doubly robust scores using a causal forest.
N <- 10000
P <- 10
# Discretizing continuous covariates decreases runtime for policy learning.
X <- round(matrix(rnorm(N * P), N, P), 2)
colnames(X) <- make.names(1:P)
W <- rbinom(N, 1, 1 / (1 + exp(X[, 3])))
tau <- 1 / (1 + exp((X[, 1] + X[, 2]) / 2)) - 0.5
Y <- X[, 3] + W * tau + rnorm(N)
c.forest <- grf::causal_forest(X, Y, W)
# Retrieve doubly robust scores.
Dr.scores <- double_robust_scores(c.forest)
# Learn a depth-2 tree on a training set.
Train <- sample(1:N, N / 2)
Tree <- policy_tree(X[Train, ], Dr.scores[Train, ], 2)
Tree
# Evaluate the tree on a test set.
Test <- -Train
# One way to assess the policy is to see whether the leaf node (group) the test set samples
# are predicted to belong to have mean outcomes in accordance with the prescribed policy.
# Get the leaf node assigned to each test sample.
Node.id <- predict(Tree, X[Test, ], type = "node.id")
# Doubly robust estimates of E[Y(control)] and E[Y(treated)] by leaf node.
Values <- aggregate(Dr.scores[Test, ], by = list(leaf.node = Node.id),
  FUN = function(dr) c(mean = mean(dr), se = sd(dr) / sqrt(length(dr))))
```

Take cost of treatment into account by, for example, offsetting the objective
with an estimate of the average treatment effect.
ate <- grf::average_treatment_effect(c.forest)
cost.offset <- ate["estimate"]
dr.scores[, "treated"] <- dr.scores[, "treated"] - cost.offset
tree.cost <- policy_tree(X, dr.scores, 2)

Predict treatment assignment for each sample.
predicted <- predict(tree, X)

If there are too many covariates to make tree search computationally feasible, then one
approach is to consider for example only the top features according to GRF's variable importance.
var.imp <- grf::variable_importance(c.forest)
top.5 <- order(var.imp, decreasing = TRUE)[1:5]
tree.top5 <- policy_tree(X[, top.5], dr.scores, 2, split.step = 50)

predict.policy_tree
Predict method for policy_tree

Description

Predict values based on fitted policy_tree object.

Usage

```r
## S3 method for class 'policy_tree'
predict(object, newdata, type = c("action.id", "node.id"), ...)
```

Arguments

- `object`: policy_tree object
- `newdata`: Points at which predictions should be made. Note that this matrix should have the same number of columns as the training matrix, and that the columns must appear in the same order.
- `type`: The type of prediction required, "action.id" is the action id and "node.id" is the integer id of the leaf node the sample falls into. Default is "action.id".
- `...`: Additional arguments (currently ignored).

Value

A vector of predictions. For type = "action.id" each element is an integer from 1 to d where d is the number of columns in the reward matrix. For type = "node.id" each element is an integer corresponding to the node the sample falls into (level-ordered).
Examples

Construct doubly robust scores using a causal forest.
\n\n```r
n <- 10000
p <- 10
Discretizing continuous covariates decreases runtime for policy learning.
X <- round(matrix(rnorm(n * p), n, p), 2)
colnames(X) <- make.names(1:p)
W <- rbinom(n, 1, 1 / (1 + exp(X[, 3])))
tau <- 1 / (1 + exp((X[, 1] + X[, 2]) / 2)) - 0.5
Y <- X[, 3] + W * tau + rnorm(n)
c.forest <- grf::causal_forest(X, Y, W)
```

# Retrieve doubly robust scores.
\n\n```r
dr.scores <- double_robust_scores(c.forest)
```

Learn a depth-2 tree on a training set.
\n\n```r
train <- sample(1:n, n / 2)
tree <- policy_tree(X[train,], dr.scores[train,], 2)
tree
```

# Evaluate the tree on a test set.
\n\n```r
test <- -train
# One way to assess the policy is to see whether the leaf node (group) the test set samples
# are predicted to belong to have mean outcomes in accordance with the prescribed policy.
node.id <- predict(tree, X[test, ], type = "node.id")
```

Doubly robust estimates of E[Y(control)] and E[Y(treated)] by leaf node.
\n\n```r
values <- aggregate(dr.scores[test,], by = list(leaf.node = node.id),
 FUN = function(dr) c(mean = mean(dr), se = sd(dr) / sqrt(length(dr))))
print(values, digits = 1)
```

# Take cost of treatment into account by, for example, offsetting the objective
# with an estimate of the average treatment effect.
\n\n```r
ate <- grf::average_treatment_effect(c.forest)
cost.offset <- ate[["estimate"]]
dr.scores[, "treated"] <- dr.scores[, "treated"] - cost.offset
tree.cost <- policy_tree(X, dr.scores, 2)
```

If there are too many covariates to make tree search computationally feasible, then one
approach is to consider for example only the top features according to GRF's variable importance.
\n\n```r
var.imp <- grf::variable_importance(c.forest)
top.5 <- order(var.imp, decreasing = TRUE)[1:5]
tree.top5 <- policy_tree(X[, top.5], dr.scores, 2, split.step = 50)
```
**print.policy_tree**  
*Print a policy_tree object.*

---

**Description**

Print a policy_tree object.

**Usage**

```r
S3 method for class 'policy_tree'
print(x, ...)
```

**Arguments**

- `x` The tree to print.
- `...` Additional arguments (currently ignored).
Index

conditional_means
    (conditional_means.causal_forest), 2
conditional_means.causal_forest, 2

double_robust_scores
    (double_robust_scores.causal_forest), 3
double_robust_scores.causal_forest, 3

gen_data_epl, 5
gen_data_mapl, 6

hybrid_policy_tree, 6, 13

multi_causal_forest, 8

plot.policy_tree, 11
policy_tree, 12
predict.policy_tree, 14
print.policy_tree, 16