Package ‘polle’

April 25, 2024

Title Policy Learning

Version 1.4

License Apache License (>= 2)

Encoding UTF-8

Depends R (>= 4.0), SuperLearner

Imports data.table (>= 1.14.5), lava (>= 1.7.0), future.apply, progressr, methods, policytree (>= 1.2.0), survival, targeted (>= 0.4), DynTxRegime

Suggests DTRlearn2, glmnet (>= 4.1-6), mgcv, xgboost, knitr, ranger, rmarkdown, testthat (>= 3.0), ggplot2

RoxygenNote 7.3.1

BugReports https://github.com/AndreasNordland/polle/issues

VignetteBuilder knitr

NeedsCompilation no

Author Andreas Nordland [aut, cre], Klaus Holst [aut] (<https://orcid.org/0000-0002-1364-6789>)

Maintainer Andreas Nordland <andreasnordland@gmail.com>

Repository CRAN

Date/Publication 2024-04-25 10:30:02 UTC

R topics documented:

 conditional ... 3
 control_blip ... 4
 control_drql ... 4
 control_earl ... 5
control_owl ... 6
control_ptl ... 7
control_rwl ... 8
copy_policy_data .. 9
fit_g_functions ... 10
get_actions ... 11
get_action_set ... 11
get_g_functions ... 12
get_history_names ... 13
get_id .. 14
get_id_stage ... 15
get_K .. 16
get_n .. 16
get_policy ... 17
get_policy_actions ... 18
get_policy_functions.blip ... 19
get_policy_object ... 21
get_q_functions ... 22
get_stage_action_sets .. 23
get_utility ... 23
g_model ... 24
history ... 27
nuisance_functions ... 29
partial ... 30
plot.policy_data ... 31
plot.policy_eval ... 32
policy ... 33
policy_data ... 34
policy_def ... 37
policy_eval ... 39
policy_learn ... 45
predict.nuisance_functions .. 48
q_model ... 49
sim_multi_stage .. 53
sim_single_stage ... 54
sim_single_stage_multi_actions ... 55
sim_two_stage .. 56
sim_two_stage_multi_actions ... 57
subset_id ... 58

Index ... 59
conditional

Conditional Policy Evaluation

Description

conditional() is used to calculate the policy value for each group defined by a given baseline variable.

Usage

conditional(object, policy_data, baseline)

Arguments

object Policy evaluation object created by policy_eval().
policy_data Policy data object created by policy_data().
baseline Character string.

Value

object of inherited class 'estimate', see lava::estimate.default. The object is a list with elements 'coef' (policy value estimate for each group) and 'IC' (influence curve estimate matrix).

Examples

library("polle")
library("data.table")
setDTthreads(1)
d <- sim_single_stage(n=2e3)
pd <- policy_data(d,
 action = "A",
 baseline = c("B"),
 covariates = c("Z","L"),
 utility = "U")

static policy:
p <- policy_def(1)

pe <- policy_eval(pd,
 policy = p)

conditional value for each group defined by B
conditional(pe, pd, "B")
control_blip

Control arguments for doubly robust blip-learning

Description
control_blip sets the default control arguments for doubly robust blip-learning. type = "blip".

Usage
control_blip(blip_models = q_glm(~.))

Arguments
blip_models Single element or list of V-restricted blip-models created by q_glm(), q_rf(), q_sl() or similar functions.

Value
list of (default) control arguments.

control_drql

Control arguments for doubly robust Q-learning

Description
control_drql sets the default control arguments for doubly robust Q-learning, type = "drql".

Usage
control_drql(qv_models = q_glm(~.))

Arguments
qv_models Single element or list of V-restricted Q-models created by q_glm(), q_rf(), q_sl() or similar functions.

Value
list of (default) control arguments.
control_earl

Control arguments for Efficient Augmentation and Relaxation Learning

Description
control_earl sets the default control arguments for efficient augmentation and relaxation learning, type = "earl". The arguments are passed directly to `DynTxRegime::earl()` if not specified otherwise.

Usage
```r
control_earl(
  moPropen,  # Propensity model of class "ModelObj", see modelObj::modelObj.
  moMain,    # Main effects outcome model of class "ModelObj".
  moCont,    # Contrast outcome model of class "ModelObj".
  regime,    # An object of class formula specifying the design of the policy/regime.
  iter = 0L, # Maximum number of iterations for outcome regression.
  fSet = NULL,  # A function or NULL defining subset structure.
  lambdas = 0.5,  # Numeric or numeric vector. Penalty parameter.
  cvFolds = 0L,  # Integer. Number of folds for cross-validation of the parameters.
  surrogate = "hinge",  # The surrogate 0-1 loss function. The options are "logit", "exp", "hinge", "sqhinge", "huber".
  kernel = "linear",  # The options are "linear", "poly", "radial".
  kparam = NULL,  # Numeric. Kernel parameter
  verbose = 0L  # Integer.
)
```

Arguments

- `moPropen`: Propensity model of class "ModelObj", see `modelObj::modelObj`.
- `moMain`: Main effects outcome model of class "ModelObj".
- `moCont`: Contrast outcome model of class "ModelObj".
- `regime`: An object of class `formula` specifying the design of the policy/regime.
- `iter`: Maximum number of iterations for outcome regression.
- `fSet`: A function or NULL defining subset structure.
- `lambdas`: Numeric or numeric vector. Penalty parameter.
- `cvFolds`: Integer. Number of folds for cross-validation of the parameters.
- `surrogate`: The surrogate 0-1 loss function. The options are "logit", "exp", "hinge", "sqhinge", "huber".
- `kernel`: The options are "linear", "poly", "radial".
- `verbose`: Integer.
Value

list of (default) control arguments.

Description

control_owl() sets the default control arguments for backwards outcome weighted learning, type = "owl". The arguments are passed directly to DTRlearn2::owl() if not specified otherwise.

Usage

control_owl(
 policy_vars = NULL,
 reuse_scales = TRUE,
 res.lasso = TRUE,
 loss = "hinge",
 kernel = "linear",
 augment = FALSE,
 c = 2^(-2:2),
 sigma = c(0.03, 0.05, 0.07),
 s = 2^(-2:2),
 m = 4
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy_vars</td>
<td>Character vector/string or list of character vectors/strings. Variable names used to restrict the policy. The names must be a subset of the history names, see get_history_names(). Not passed to owl().</td>
</tr>
<tr>
<td>reuse_scales</td>
<td>The history matrix passed to owl() is scaled using scale() as advised. If TRUE, the scales of the history matrix will be saved and reused when applied to (new) test data.</td>
</tr>
<tr>
<td>res.lasso</td>
<td>If TRUE a lasso penalty is applied.</td>
</tr>
<tr>
<td>loss</td>
<td>Loss function. The options are "hinge", "ramp", "logit", "logit.lasso", "l2", "l2.lasso".</td>
</tr>
<tr>
<td>kernel</td>
<td>Type of kernel used by the support vector machine. The options are "linear", "rbf".</td>
</tr>
<tr>
<td>augment</td>
<td>If TRUE the outcomes are augmented.</td>
</tr>
<tr>
<td>c</td>
<td>Regularization parameter.</td>
</tr>
<tr>
<td>sigma</td>
<td>Tuning parameter.</td>
</tr>
<tr>
<td>s</td>
<td>Slope parameter.</td>
</tr>
<tr>
<td>m</td>
<td>Number of folds for cross-validation of the parameters.</td>
</tr>
</tbody>
</table>
Value

list of (default) control arguments.

control_ptl

Control arguments for Policy Tree Learning

Description

`control_ptl` sets the default control arguments for doubly robust policy tree learning, type = "ptl". The arguments are passed directly to `policytree::policy_tree()` (or `policytree::hybrid_policy_tree()`) if not specified otherwise.

Usage

```r
control_ptl(
  policy_vars = NULL,
  hybrid = FALSE,
  depth = 2,
  search.depth = 2,
  split.step = 1,
  min.node.size = 1
)
```

Arguments

- `policy_vars` Character vector/string or list of character vectors/strings. Variable names used to construct the V-restricted policy tree. The names must be a subset of the history names, see `get_history_names()`. Not passed to `policy_tree()`.
- `hybrid` If TRUE, `policytree::hybrid_policy_tree()` is used to fit a policy tree. Not passed to `policy_tree()`.
- `depth` Integer or integer vector. The depth of the fitted policy tree for each stage.
- `search.depth` (only used if `hybrid = TRUE`) Integer or integer vector. Depth to look ahead when splitting at each stage.
- `split.step` Integer or integer vector. The number of possible splits to consider when performing policy tree search at each stage.
- `min.node.size` Integer or integer vector. The smallest terminal node size permitted at each stage.

Value

list of (default) control arguments.
Control arguments for Residual Weighted Learning

Description

control_rwl sets the default control arguments for residual learning, type = "rwl". The arguments are passed directly to `DynTxRegime::rwl()` if not specified otherwise.

Usage

```r
control_rwl(
  moPropen,
  moMain,
  regime,
  fSet = NULL,
  lambdas = 2,
  cvFolds = 0L,
  kernel = "linear",
  kparam = NULL,
  responseType = "continuous",
  verbose = 2L
)
```

Arguments

- **moPropen**: Propensity model of class "ModelObj", see `modelObj::modelObj`.
- **moMain**: Main effects outcome model of class "ModelObj".
- **regime**: An object of class `formula` specifying the design of the policy/regime.
- **fSet**: A function or NULL defining subset structure.
- **lambdas**: Numeric or numeric vector. Penalty parameter.
- **cvFolds**: Integer. Number of folds for cross-validation of the parameters. "logit", "exp", "hinge", "sqhinge", "huber".
- **kernel**: The options are "linear", "poly", "radial".
- **kparam**: Numeric. Kernel parameter
- **responseType**: Character string. Options are "continuous", "binary", "count".
- **verbose**: Integer.

Value

list of (default) control arguments.
Description

Objects of class `policy_data` contains elements of class `data.table`. `data.table` provide functions that operate on objects by reference. Thus, the `policy_data` object is not copied when modified by reference, see examples. An explicit copy can be made by `copy_policy_data`. The function is a wrapper of `data.table::copy()`.

Usage

```r
copy_policy_data(object)
```

Arguments

- `object` Object of class `policy_data`.

Value

Object of class `policy_data`.

Examples

```r
library("polle")
### Single stage case: Wide data
d1 <- sim_single_stage(5e2, seed=1)
head(d1, 5)
# constructing policy_data object:
pd1 <- policy_data(d1,
    action="A",
    covariates=c("Z", "B", "L"),
    utility="U")
pd1

# True copy
pd2 <- copy_policy_data(pd1)
# manipulating the data.table by reference:
pd2$baseline_data[, id := id + 1]
head(pd2$baseline_data$id - pd1$baseline_data$id)

# False copy
pd2 <- pd1
# manipulating the data.table by reference:
pd2$baseline_data[, id := id + 1]
head(pd2$baseline_data$id - pd1$baseline_data$id)
```
fit_g_functions

Description

fit_g_functions is used to fit a list of g-models.

Usage

```
fit_g_functions(policy_data, g_models, full_history = FALSE)
```

Arguments

- `policy_data`: Policy data object created by `policy_data()`.
- `g_models`: List of action probability models/g-models for each stage created by `g_empir()`, `g_glm()`, `g_rf()`, `g_sl()` or similar functions.
- `full_history`: If TRUE, the full history is used to fit each g-model. If FALSE, the single stage/"Markov type" history is used to fit each g-model.

Examples

```r
library("polle")
### Simulating two-stage policy data
d <- sim_two_stage(2e3, seed=1)
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

# fitting a single g-model across all stages:
g_functions <- fit_g_functions(policy_data = pd,
  g_models = g_glm(),
  full_history = FALSE)
g_functions

# fitting a g-model for each stage:
g_functions <- fit_g_functions(policy_data = pd,
  g_models = list(g_glm(), g_glm()),
  full_history = TRUE)
g_functions
```
get_actions

Get Actions

Description

`get_actions` returns the actions at every stage for every observation in the policy data object.

Usage

```r
get_actions(object)
```

Arguments

- **object** Object of class `policy_data`.

Value

A data.table with keys id and stage and character variable A.

Examples

```r
### Two stages:
d <- sim_two_stage(5e2, seed=1)
# constructing policy_data object:
pd <- policy_data(d,
    action = c("A_1", "A_2"),
    baseline = c("B"),
    covariates = list(L = c("L_1", "L_2"),
                      C = c("C_1", "C_2")),
    utility = c("U_1", "U_2", "U_3"))
pd

# getting the actions:
head(get_actions(pd))
```

get_action_set

Get Action Set

Description

`get_action_set` returns the action set, i.e., the possible actions at each stage for the policy data object.

Usage

```r
get_action_set(object)
```
get_g_functions

Arguments

object Object of class policy_data.

Value

Character vector.

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the actions set:
get_action_set(pd)

get_g_functions

Get g-functions

Description

get_g_functions() returns a list of (fitted) g-functions associated with each stage.

Usage

get_g_functions(object)

Arguments

object Object of class policy_eval or policy_object.

Value

List of class nuisance_functions.

See Also

predict.nuisance_functions
get_history_names

Examples

```r
### Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
    action = c("A_1", "A_2"),
    baseline = c("B"),
    covariates = list(L = c("L_1", "L_2"),
                       C = c("C_1", "C_2")),
    utility = c("U_1", "U_2", "U_3"))
pd

# evaluating the static policy a=1 using inverse propensity weighting
# based on a GLM model at each stage
pe <- policy_eval(type = "ipw",
    policy_data = pd,
    policy = policy_def(1, reuse = TRUE, name = "A=1"),
    g_models = list(g_glm(), g_glm()))
pe

# getting the g-functions
g_functions <- get_g_functions(pe)
g_functions

# getting the fitted g-function values
head(predict(g_functions, pd))
```

get_history_names
Get history variable names

Description

get_history_names() returns the state covariate names of the history data table for a given stage. The function is useful when specifying the design matrix for g_model and q_model objects.

Usage

get_history_names(object, stage)

Arguments

- **object**: Policy data object created by policy_data().
- **stage**: Stage number. If NULL, the state/Markov-type history variable names are returned.

Value

Character vector.
get_id

Examples

library("polle")
Multiple stages:
d3 <- sim_multi_stage(5e2, seed = 1)
pd3 <- policy_data(data = d3$stage_data,
 baseline_data = d3$baseline_data,
 type = "long",
 id = "id",
 stage = "stage",
 event = "event",
 action = "A",
 utility = "U")
pd3

state/Markov type history variable names (H):
get_history_names(pd3)
full history variable names (H_k) at stage 2:
get_history_names(pd3, stage = 2)

get_id

Get IDs

Description
get_id returns the ID for every observation in the policy data object.

Usage
get_id(object)

Arguments

object Object of class policy_data or history.

Value
Character vector.

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd
getting the IDs:
head(get_id(pd))

Description

`get_id` returns the stages for every ID for every observation in the policy data object.

Usage

```r
get_id_stage(object)
```

Arguments

- **object**: Object of class `policy_data` or `history`.

Value

A `data.table` with keys `id` and `stage`.

Examples

```r
### Two stages:
d <- sim_two_stage(5e2, seed=1)
# constructing policy_data object:
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  baseline = c("B"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

# getting the IDs and stages:
head(get_id_stage(pd))
```
get_K
Get Maximal Stages

Description

get_K returns the maximal number of stages for the observations in the policy data object.

Usage

```r
get_K(object)
```

Arguments

- `object` Object of class `policy_data`.

Value

Integer.

Examples

```r
d <- sim_multi_stage(5e2, seed = 1)
pd <- policy_data(data = d$stage_data,
  baseline_data = d$baseline_data,
  type = "long",
  id = "id",
  stage = "stage",
  event = "event",
  action = "A",
  utility = "U")
pd
# getting the maximal number of stages:
get_K(pd)
```

get_n
Get Number of Observations

Description

get_n returns the number of observations in the policy data object.

Usage

```r
get_n(object)
```

Arguments

- `object` Object of class `policy_data`.

```r
d <- sim_multi_stage(5e2, seed = 1)
pd <- policy_data(data = d$stage_data,
  baseline_data = d$baseline_data,
  type = "long",
  id = "id",
  stage = "stage",
  event = "event",
  action = "A",
  utility = "U")
pd
# getting the maximal number of stages:
get_K(pd)
```
get_policy

Value

Integer.

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the number of observations:
get_n(pd)

get_policy

Get Policy

Description

get_policy extracts the policy from a policy object or a policy evaluation object. The policy is a function which take a policy data object as input and returns the policy actions.

Usage

get_policy(object)

Arguments

object Object of class policy_object or policy_eval.

Value

function of class policy.

Examples

library("polle")
Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
get_policy_actions

Description

get_policy_actions() extract the actions dictated by the (learned and possibly cross-fitted) policy at every stage.

Usage

get_policy_actions(object)

Arguments

- **object**: Object of class policy_eval.

Value

data.table with keys id and stage and action variable d.
Two stages:
```r
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
    action = c("A_1", "A_2"),
    covariates = list(L = c("L_1", "L_2"),
    C = c("C_1", "C_2")),
    utility = c("U_1", "U_2", "U_3"))
pd
```

defining a policy learner based on cross-fitted doubly robust Q-learning:
```r
pl <- policy_learn(type = "drql",
    control = control_drql(qv_models = list(q_glm(~C_1), q_glm(~C_1+C_2))),
    full_history = TRUE,
    L = 2) # number of folds for cross-fitting
```

evaluating the policy learner using 2-fold cross fitting:
```r
pe <- policy_eval(type = "dr",
    policy_data = pd,
    policy_learn = pl,
    q_models = q_glm(),
    g_models = g_glm(),
    M = 2) # number of folds for cross-fitting
```

Getting the cross-fitted actions dictated by the fitted policy:
```r
head(get_policy_actions(pe))
```

get_policy_functions

Get Policy Functions

Description

`get_policy_functions()` returns a function defining the policy at the given stage. `get_policy_functions()` is useful when implementing the learned policy.

Usage

```r
## S3 method for class 'blip'
get_policy_functions(object, stage, include_g_values = FALSE, ...)
```

```r
## S3 method for class 'drql'
get_policy_functions(object, stage, include_g_values = FALSE, ...)
```

```r
get_policy_functions(object, stage, ...)
```

```r
## S3 method for class 'ptl'
get_policy_functions(object, stage, ...)
```
S3 method for class 'ql'
get_policy_functions(object, stage, include_g_values = FALSE, ...)

Arguments

- **object**: Object of class "policy_object" or "policy_eval", see `policy_learn` and `policy_eval`.
- **stage**: Integer. Stage number.
- **include_g_values**: If TRUE, the g-values are included as an attribute.
- **...**: Additional arguments.

Value

Functions with arguments:

- data.table containing the variables needed to evaluate the policy (and g-function).

Examples

```r
library("polle")

### Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  baseline = "BB",
  covariates = list(L = c("L_1", "L_2"),
                    C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

### Realistic V-restricted Policy Tree Learning
# specifying the learner:
pl <- policy_learn(type = "ptl",
  control = control_ptl(policy_vars = list(c("C_1", "BB"),
                                                   c("L_1", "BB")),
                        full_history = TRUE,
                        alpha = 0.05)

# evaluating the learner:
pe <- policy_eval(policy_data = pd,
  policy_learn = pl,
  q_models = q_glm(),
  g_models = g_glm())

# getting the policy function at stage 2:
pf2 <- get_policy_functions(pe, stage = 2)
args(pf2)

# applying the policy function to new data:
set.seed(1)
```

get_policy_object

L_1 <- rnorm(n = 10)
new_H <- data.frame(C = rnorm(n = 10),
 L = L_1,
 L_1 = L_1,
 BB = "group1")
d2 <- pf2(H = new_H)
head(d2)

get_policy_object Get Policy Object

Description

Extract the fitted policy object.

Usage

get_policy_object(object)

Arguments

object Object of class policy_eval.

Value

Object of class policy_object.

Examples

library("polle")
Single stage:
d1 <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")
pd1

evaluating the policy:
pe1 <- policy_eval(policy_data = pd1,
policy_learn = policy_learn(type = "drql",
control = control_drql(qv_models = q_glm(~.))),
g_models = g_glm(),
q_models = q_glm())

extracting the policy object:
get_policy_object(pe1)
get_q_functions

Get Q-functions

Description

get_q_functions() returns a list of (fitted) Q-functions associated with each stage.

Usage

get_q_functions(object)

Arguments

object Object of class policy_eval or policy_object.

Value

List of class nuisance_functions.

See Also

predict.nuisance_functions

Examples

Two stages:

d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

evaluating the static policy a=1 using outcome regression
based on a GLM model at each stage.
pe <- policy_eval(type = "or",
 policy_data = pd,
 policy = policy_def(1, reuse = TRUE, name = "A=1"),
 q_models = list(q_glm(), q_glm()))
pe

getting the Q-functions
q_functions <- get_q_functions(pe)

getting the fitted g-function values
head(predict(q_functions, pd))
get_stage_action_sets \hspace{1cm} Get Stage Action Sets

Description

get_stage_action_sets returns the action sets at each stage, i.e., the possible actions at each stage for the policy data object.

Usage

get_stage_action_sets(object)

Arguments

object \hspace{1cm} Object of class \texttt{policy_data}.

Value

List of character vectors.

Examples

Two stages:

d <- sim_two_stage_multi_actions(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the stage actions set:
get_stage_action_sets(pd)

get_utility \hspace{1cm} Get the Utility

Description

get_utility() returns the utility, i.e., the sum of the rewards, for every observation in the policy data object.

Usage

get_utility(object)
Arguments

object Object of class policy_data.

Value
data.table with key id and numeric variable U.

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the utility:
head(get_utility(pd))

Description

Use g_glm(), g_empir(), g_glmnet(), g_rf(), g_sl(), g_xgboost to construct an action proba-
bility model/g-model object. The constructors are used as input for policy_eval() and policy_learn().

Usage

```
g_empir(formula = ~1, ...)

g_glm(
  formula = ~.,
  family = "binomial",
  model = FALSE,
  na.action = na.pass,
  ...
)

g_glmnet(formula = ~., family = "binomial", alpha = 1, s = "lambda.min", ...)

g_rf(
  formula = ~.,
  num.trees = c(500),
```
mtry = NULL,
cv_args = list(nfolds = 5, rep = 1),
...
)

g_sl(
 formula = ~.,
 SL.library = c("SL.mean", "SL.glm"),
 family = binomial(),
 env = as.environment("package:SuperLearner"),
 onlySL = TRUE,
 ...
)

g_xgboost(
 formula = ~.,
 objective = "binary:logistic",
 params = list(),
 nrounds,
 max_depth = 6,
 eta = 0.3,
 nthread = 1,
 cv_args = list(nfolds = 3, rep = 1)
)

Arguments

formula An object of class formula specifying the design matrix for the propensity model/g-model. Use get_history_names() to view the available variable names.

... Additional arguments passed to glm(), glmnet::glmnet, ranger::ranger or SuperLearner::SuperLearner.

family A description of the error distribution and link function to be used in the model.

model (Only used by g_glm) If FALSE model frame will not be saved.

na.action (Only used by g_glm) A function which indicates what should happen when the data contain NAs, see na.pass.

alpha (Only used by g_glmnet) The elastic net mixing parameter between 0 and 1. alpha equal to 1 is the lasso penalty, and alpha equal to 0 the ridge penalty.

s (Only used by g_glmnet) Value(s) of the penalty parameter lambda at which predictions are required, see glmnet::predict.glmnet().

num.trees (Only used by g_rf) Number of trees.

mtry (Only used by g_rf) Number of variables to possibly split at in each node.

cv_args (Only used by g_rf and g_xgboost) Cross-validation parameters. Only used if multiple hyper-parameters are given. K is the number of folds and rep is the number of replications.

SL.library (Only used by g_sl) Either a character vector of prediction algorithms or a list containing character vectors, see SuperLearner::SuperLearner.
env (Only used by \texttt{g_sl}) Environment containing the learner functions. Defaults to the calling environment.

\texttt{onlySL} (Only used by \texttt{g_sl}) Logical. If TRUE, only saves and computes predictions for algorithms with non-zero coefficients in the super learner object.

\texttt{objective} (Only used by \texttt{g_xgboost}) specify the learning task and the corresponding learning objective, see \texttt{xgboost::xgboost}.

\texttt{params} (Only used by \texttt{g_xgboost}) list of parameters.

\texttt{nrounds} (Only used by \texttt{g_xgboost}) max number of boosting iterations.

\texttt{max_depth} (Only used by \texttt{g_xgboost}) maximum depth of a tree.

\texttt{eta} (Only used by \texttt{g_xgboost}) learning rate.

\texttt{nthread} (Only used by \texttt{g_xgboost}) number of threads.

Details

\texttt{g_glm()} is a wrapper of \texttt{glm()} (generalized linear model).
\texttt{g_empir()} calculates the empirical probabilities within the groups defined by the formula.
\texttt{g_glmnet()} is a wrapper of \texttt{glmnet::glmnet()} (generalized linear model via penalized maximum likelihood).
\texttt{g_rf()} is a wrapper of \texttt{ranger::ranger()} (random forest). When multiple hyper-parameters are given, the model with the lowest cross-validation error is selected.
\texttt{g_sl()} is a wrapper of \texttt{SuperLearner::SuperLearner} (ensemble model).
\texttt{g_xgboost()} is a wrapper of \texttt{xgboost::xgboost}.

Value

\text{g-model object: function with arguments 'A' (action vector), 'H' (history matrix) and 'action_set'.}

See Also

\texttt{get_history_names()}, \texttt{get_g_functions()}.

Examples

library("polle")
Two stages:
d <- \text{sim_two_stage(2e2, seed=1)}
pd <- \text{policy_data(d,}
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = \text{list(L = c("L_1", "L_2"),}
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

\text{# available state history variable names:}
get_history_names(pd)
\text{# defining a g-model:}
g_model <- g_glm(formula = \text{"-B+C"})
evaluating the static policy (A=1) using inverse propensity weighting
based on a state glm model across all stages:
pe <- policy_eval(type = "ipw",
 policy_data = pd,
 policy = policy_def(1, reuse = TRUE),
 g_models = g_model)

inspecting the fitted g-model:
get_g_functions(pe)

available full history variable names at each stage:
get_history_names(pd, stage = 1)
get_history_names(pd, stage = 2)

evaluating the same policy based on a full history
glm model for each stage:
pe <- policy_eval(type = "ipw",
 policy_data = pd,
 policy = policy_def(1, reuse = TRUE),
 g_models = list(g_glm(~ L_1 + B),
 g_glm(~ A_1 + L_2 + B)),
 g_full_history = TRUE)

inspecting the fitted g-models:
get_g FUNCTIONS(pe)

history

Get History Object

Description

get_history summarizes the history and action at a given stage from a policy_data object.

Usage

get_history(object, stage = NULL, full_history = FALSE)

Arguments

- **object** Object of class policy_data.
- **stage** Stage number. If NULL, the state/Markov-type history across all stages is returned.
- **full_history** Logical. If TRUE, the full history is returned If FALSE, only the state/Markov-type history is returned.

Details

Each observation has the sequential form

\[O = B, U_1, X_1, A_1, ..., U_K, X_K, A_K, U_{K+1}, \]

for a possibly stochastic number of stages K.
• B is a vector of baseline covariates.
• U_k is the reward at stage k (not influenced by the action A_k).
• X_k is a vector of state covariates summarizing the state at stage k.
• A_k is the categorical action at stage k.

Value
Object of class history. The object is a list containing the following elements:

- **H** data.table with keys id and stage and with variables \{\(B, X_k\)\} (state history) or \{\(B, X_1, A_1, ..., X_k\)\} (full history), see details.
- **A** data.table with keys id and stage and variable A_k, see details.
- **action_name** Name of the action variable in A.
- **action_set** Sorted character vector defining the action set.
- **U** (If stage is not NULL) data.table with keys id and stage and with variables U_{bar} and U_{Aa} for every a in the actions set. U_{bar} is the accumulated rewards up till and including the given stage, i.e., $\sum_{j=1}^k U_j$. U_{Aa} is the deterministic reward of action a.

Examples

```r
library("polle")

### Single stage:
d1 <- sim_single_stage(5e2, seed=1)
# constructing policy_data object:
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")
pd1

# In the single stage case, set stage = NULL
h1 <- get_history(pd1)
head(h1$H)
head(h1$A)

### Two stages:
d2 <- sim_two_stage(5e2, seed=1)
# constructing policy_data object:
pd2 <- policy_data(d2, 
  action = c("A_1", "A_2"), 
  baseline = c("B"), 
  covariates = list(L = c("L_1", "L_2"), 
                    C = c("C_1", "C_2")), 
  utility = c("U_1", "U_2", "U_3"))
pd2

# getting the state/Markov-type history across all stages:
h2 <- get_history(pd2)
head(h2$H)
head(h2$A)

# getting the full history at stage 2:
```
nuisance_functions

The fitted g-functions and Q-functions are stored in an object of class "nuisance_functions". The object is a list with a fitted model object for every stage. Information on whether the full history or the state/Markov-type history is stored as an attribute ("full_history").

S3 generics

The following S3 generic functions are available for an object of class nuisance_functions:

predict Predict the values of the g- or Q-functions based on a policy_data object.

Examples

Two stages:
```r
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
```
partial

Trim Number of Stages

Description

partial creates a partial policy data object by trimming the maximum number of stages in the policy data object to a fixed given number.

Usage

partial(object, K)

Arguments

- **object**: Object of class `policy_data`.
- **K**: Maximum number of stages.

Value

Object of class `policy_data`.

Examples

```r
library("polle")
### Multiple stage case
d <- sim_multi_stage(5e2, seed = 1)
# constructing policy_data object:
```
```r
pd <- policy_data(data = d$stage_data,
                  baseline_data = d$baseline_data,
                  type = "long",
                  id = "id",
                  stage = "stage",
                  event = "event",
                  action = "A",
                  utility = "U")

pd
# Creating a partial policy data object with 3 stages
pd3 <- partial(pd, K = 3)
pd3
```

plot.policy_data

Plot policy data for given policies

Description

Plot policy data for given policies

Usage

```r
## S3 method for class 'policy_data'
plot(
  x,
  policy = NULL,
  which = c(1),
  stage = 1,
  history_variables = NULL,
  jitter = 0.05,
  ...
)
```

Arguments

- **x**: Object of class `policy_data`
- **policy**: An object or list of objects of class `policy`
- **which**: A subset of the numbers 1:2
 - 1 Spaghetti plot of the cumulative rewards
 - 2 Plot of the policy actions for a given stage
- **stage**: Stage number for plot 2
- **history_variables**: character vector of length 2 for plot 2
- **jitter**: numeric
- **...**: Additional arguments
Examples

library("polle")
library("data.table")
setDTthreads(1)
d3 <- sim_multi_stage(2e2, seed = 1)
pd3 <- policy_data(data = d3$stage_data,
 baseline_data = d3$baseline_data,
 type = "long",
 id = "id",
 stage = "stage",
 event = "event",
 action = "A",
 utility = "U")

specifying two static policies:
p0 <- policy_def(c(1,1,0,0), name = "p0")
p1 <- policy_def(c(1,0,0,0), name = "p1")

plot(pd3)
plot(pd3, policy = list(p0, p1))

learning and plotting a policy:
pe3 <- policy_eval(pd3,
policy_learn = policy_learn(),
q_models = q_glm(formula = ~t + X + X_lead))
plot(pd3, list(get_policy(pe3), p0))

plotting the recommended actions at a specific stage:
plot(pd3, get_policy(pe3),
 which = 2,
 stage = 2,
 history_variables = c("t","X"))

plot.policy_eval

Plot histogram of the influence curve for a policy_eval object

Description

Plot histogram of the influence curve for a policy_eval object

Usage

S3 method for class 'policy_eval'
plot(x, ...)

Arguments

x Object of class policy_eval
...
Additional arguments
Examples

d <- sim_two_stage(2e3, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = "BB",
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))

pe <- policy_eval(pd,
 policy_learn = policy_learn())

plot(pe)

policy
Policy-class

Description

A function of inherited class "policy" takes a policy data object as input and returns the policy actions for every observation for every (observed) stage.

Details

A policy can either be defined directly by the user using policy_def or a policy can be fitted using policy_learn (or policy_eval). policy_learn returns a policy_object from which the policy can be extracted using get_policy.

Value

data.table with keys id and stage and action variable d.

S3 generics

The following S3 generic functions are available for an object of class policy:

print Baisc print function

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))

defining a dynamic policy:
p <- policy_def(
 function(L) (L>0)*1,
 reuse = TRUE
)
p
head(p(pd), 5)

V-restricted (Doubly Robust) Q-learning:
specifying the learner:
pl <- policy_learn(type = "drql",
 control = control_drql(qv_models = q_glm(formula = ~ C)))

fitting the policy (object):
po <- pl(policy_data = pd,
 q_models = q_glm(),
 g_models = g_glm())
p <- get_policy(po)
p
head(p(pd))

policy_data

Create Policy Data Object

Description

policy_data() creates a policy data object which is used as input to policy_eval() and policy_learn() for policy evaluation and data adaptive policy learning.

Usage

policy_data(
 data,
 baseline_data,
 type = "wide",
 action,
 covariates,
 utility,
 baseline = NULL,
 deterministic_rewards = NULL,
 id = NULL,
 stage = NULL,
 event = NULL,
 action_set = NULL,
 verbose = FALSE
)

S3 method for class 'policy_data'
print(x, digits = 2, ...)
S3 method for class 'policy_data'
summary(object, probs = seq(0, 1, 0.25), ...)

Arguments

data data.frame or data.table; see Examples.
baseline_data data.frame or data.table; see Examples.
type Character string. If "wide", data is considered to be on wide format. If "long", data is considered to be on long format; see Examples.
action Action variable name(s). Character vector or character string.
 • A vector is valid for wide data. The length of the vector determines the number of stages (K).
 • A string is valid for single stage wide data or long data.
covariates Stage specific covariate name(s). Character vector or named list of character vectors.
 • A vector is valid for single stage wide data or long data.
 • A named list is valid for multiple stages wide data. Each element must be a character vector with length K. Each vector can contain NA elements, if a covariate is not available for the given stage(s).
utility Utility/Reward variable name(s). Character string or vector.
 • A string is valid for long data and wide data with a single final utility.
 • A vector is valid for wide data with incremental rewards. Must have length K+1; see Examples.
baseline Baseline covariate name(s). Character vector.
deterministic_rewards Deterministic reward variable name(s). Named list of character vectors of length K. The name of each element must be on the form "U_Aa" where "a" corresponds to an action in the action set.
id ID variable name. Character string.
stage Stage number variable name.
event Event indicator name.
action_set Character string. Action set across all stages.
verbose Logical. If TRUE, formatting comments are printed to the console.
x Object to be printed.
digits Minimum number of digits to be printed.
... Additional arguments passed to print.
object Object of class policy_data
probs numeric vector (probabilities)
Details

Each observation has the sequential form

\[O = B, U_1, X_1, A_1, ..., U_K, X_K, A_K, U_{K+1}, \]

for a possibly stochastic number of stages \(K \).

- \(B \) is a vector of baseline covariates.
- \(U_k \) is the reward at stage \(k \) (not influenced by the action \(A_k \)).
- \(X_k \) is a vector of state covariates summarizing the state at stage \(k \).
- \(A_k \) is the categorical action at stage \(k \).

The utility is given by the sum of the rewards, i.e.,

\[U = \sum_{k=1}^{K+1} U_k. \]

Value

`policy_data()` returns an object of class "policy_data". The object is a list containing the following elements:

- `stage_data`
 data.table containing the id, stage number, event indicator, action (\(A_k \)), state covariates (\(X_k \)), reward (\(U_k \)), and the deterministic rewards.

- `baseline_data`
 data.table containing the id and baseline covariates (\(B \)).

- `colnames`
 List containing the state covariate names, baseline covariate names, and the deterministic reward variable names.

- `action_set`
 Sorted character vector describing the action set, i.e., the possible actions at all stages.

- `stage_action_sets`
 List of sorted character vectors describing the observed actions at each stage.

- `dim`
 List containing the number of observations (\(n \)) and the number of stages (\(K \)).

S3 generics

The following S3 generic functions are available for an object of class `policy_data`:

- `partial()` Trim the maximum number of stages in a `policy_data` object.
- `subset_id()` Subset a `policy_data` object on ID.
- `get_history()` Summarize the history and action at a given stage.
- `get_history_names()` Get history variable names.
- `get_actions()` Get the action at every stage.
- `get_utility()` Get the utility.
- `plot()` Plot method.

See Also

`policy_eval()`, `policy_learn()`, `copy_policy_data()`
Examples

library("polle")
Single stage: Wide data
d1 <- sim_single_stage(n = 5e2, seed=1)
head(d1, 5)
constructing policy_data object:
pd1 <- policy_data(d1,
 action="A",
 covariates=c("Z", "B", "L"),
 utility="U")
pd1
associated S3 methods:
methods(class = "policy_data")
head(get_actions(pd1), 5)
head(get_utility(pd1), 5)
head(get_history(pd1)$H, 5)
Two stage: Wide data
d2 <- sim_two_stage(5e2, seed=1)
head(d2, 5)
constructing policy_data object:
pd2 <- policy_data(d2,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd2
head(get_history(pd2, stage = 2)$H, 5) # state/Markov type history and action, (H_k,A_k).
head(get_history(pd2, stage = 2, full_history = TRUE)$H, 5) # Full history and action, (H_k,A_k).
Multiple stages: Long data
d3 <- sim_multi_stage(5e2, seed = 1)
head(d3$stage_data, 10)
constructing policy_data object:
pd3 <- policy_data(data = d3$stage_data,
 baseline_data = d3$baseline_data,
 type = "long",
 id = "id",
 stage = "stage",
 event = "event",
 action = "A",
 utility = "U")
pd3
head(get_history(pd3, stage = 3)$H, 5) # state/Markov type history and action, (H_k,A_k).
head(get_history(pd3, stage = 2, full_history = TRUE)$H, 5) # Full history and action, (H_k,A_k).
policy_def returns a function of class policy. The function input is a policy_data object and it returns a data.table with keys id and stage and action variable d.

Usage

policy_def(policy_functions, full_history = FALSE, reuse = FALSE, name = NULL)

Arguments

- **policy_functions**: A single function/character string or a list of functions/character strings. The list must have the same length as the number of stages.
- **full_history**: If TRUE, the full history at each stage is used as input to the policy functions.
- **reuse**: If TRUE, the policy function is reused at every stage.
- **name**: Character string.

Value

Function of class "policy". The function takes a policy_data object as input and returns a data.table with keys id and stage and action variable d.

See Also

get_history_names(), get_history().

Examples

```r
library("polle")
### Single stage
d1 <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")
pd1

# defining a static policy (A=1):
pl_static <- policy_def(1)

# applying the policy:
pl_static(pd1)

# defining a dynamic policy:
pl_dynamic <- policy_def(
  function(Z, L) ((3*Z + 1*L -2.5)>0)*1)

pl_dynamic(pd1)

### Two stages:
d2 <- sim_two_stage(5e2, seed = 1)
pd2 <- policy_data(d2,
  action = c("A_1", "A_2"),
```
covariates = list(L = c("L_1", "L_2"),
C = c("C_1", "C_2"),
utility = c("U_1", "U_2", "U_3"))

defining a static policy (A=0):
p2_static <- policy_def(0,
reuse = TRUE)
p2_static(pd2)

defining a reused dynamic policy:
p2_dynamic_reuse <- policy_def(
 function(L) (L > 0)*1,
 reuse = TRUE)
p2_dynamic_reuse(pd2)

defining a dynamic policy for each stage based on the full history:
available variable names at each stage:
get_history_names(pd2, stage = 1)
get_history_names(pd2, stage = 2)

p2_dynamic <- policy_def(
 policy_functions = list(
 function(L_1) (L_1 > 0)*1,
 function(L_1, L_2) (L_1 + L_2 > 0)*1
),
 full_history = TRUE
)
p2_dynamic(pd2)

Description

`policy_eval()` is used to estimate the value of a given fixed policy or a data adaptive policy (e.g. a policy learned from the data).

Usage

```r
policy_eval(
policy_data,
policy = NULL,
policy_learn = NULL,
g_functions = NULL,
g_models = g_glm(),
g_full_history = FALSE,
save_g_functions = TRUE,
q_functions = NULL,
```
q_models = q_glm(),
q_full_history = FALSE,
save_q_functions = TRUE,
type = "dr",
M = 1,
future_args = list(future.seed = TRUE),
name = NULL
)

S3 method for class 'policy_eval'
coef(object, ...)

S3 method for class 'policy_eval'
IC(x, ...)

S3 method for class 'policy_eval'
vcov(object, ...)

S3 method for class 'policy_eval'
print(x, ...)

S3 method for class 'policy_eval'
summary(object, ...)

S3 method for class 'policy Eval'
estimate(x, ..., labels = x$name)

S3 method for class 'policy eval'
merge(x, y, ..., paired = TRUE)

Arguments

policy_data Policy data object created by policy_data().
policy Policy object created by policy_def().
policy_learn Policy learner object created by policy_learn().
g_functions Fitted g-model objects, see nuisance_functions. Preferably, use g_models.
g_models List of action probability models/g-models for each stage created by g_empir(), g_glm(), g_rf(), g_sl() or similar functions. Only used for evaluation if g_functions is NULL. If a single model is provided and g_full_history is FALSE, a single g-model is fitted across all stages. If g_full_history is TRUE the model is reused at every stage.
g_full_history If TRUE, the full history is used to fit each g-model. If FALSE, the state/Markov type history is used to fit each g-model.
save_g_functions
If TRUE, the fitted g-functions are saved.
q_functions: Fitted Q-model objects, see nuisance_functions. Only valid if the Q-functions are fitted using the same policy. Preferably, use q_models.

q_models: Outcome regression models/Q-models created by q_glm(), q_rf(), q_sl() or similar functions. Only used for evaluation if q_functions is NULL. If a single model is provided, the model is reused at every stage.

q_full_history: Similar to g_full_history.

save_q_functions: Similar to save_g_functions.

type: Type of evaluation (dr/doubly robust, ipw/inverse propensity weighting, or/outcome regression).

M: Number of folds for cross-fitting.

future_args: Arguments passed to future.apply::future_apply().

name: Character string.

object, x, y: Objects of class "policy_eval".

...: Additional arguments.

labels: Name(s) of the estimate(s).

paired: TRUE indicates that the estimates are based on the same data sample.

Details

Each observation has the sequential form

\[O = B, U_1, X_1, A_1, ..., U_K, X_K, A_K, U_{K+1}, \]

for a possibly stochastic number of stages K.

- B is a vector of baseline covariates.
- \(U_k \) is the reward at stage k (not influenced by the action \(A_k \)).
- \(X_k \) is a vector of state covariates summarizing the state at stage k.
- \(A_k \) is the categorical action within the action set \(A \) at stage k.

The utility is given by the sum of the rewards, i.e., \(U = \sum_{k=1}^{K+1} U_k \).

A policy is a set of functions \(d = \{d_1, ..., d_K\} \),

where \(d_k \) for \(k \in \{1, ..., K\} \) maps \(\{B, X_1, A_1, ..., A_{k-1}, X_k\} \) into the action set.

Recursively define the Q-models (q_models):

\[
Q^d_K(h_K, a_K) = E[U|H_K = h_K, A_K = a_K]
\]

\[
Q^d_k(h_k, a_k) = E[Q_{k+1}(H_{k+1}, d_{k+1}(B, X_1, A_1, ..., X_{k+1}))|H_k = h_k, A_k = a_k].
\]

If q_full_history = TRUE, \(H_k = \{B, X_1, A_1, ..., A_{k-1}, X_k\} \), and if q_full_history = FALSE, \(H_k = \{B, X_k\} \).

The g-models (g_models) are defined as

\[
g_k(h_k, a_k) = P(A_k = a_k|H_k = h_k).
\]
If \(g_{\text{full history}} = \text{TRUE} \), \(H_k = \{B, X_1, A_1, \ldots, A_{k-1}, X_k\} \), and if \(g_{\text{full history}} = \text{FALSE} \), \(H_k = \{B, X_k\} \). Furthermore, if \(g_{\text{full history}} = \text{FALSE} \) and \(g_{\text{models}} \) is a single model, it is assumed that \(g_1(h_1, a_1) = \ldots = g_K(h_K, a_K) \).

If type = "or" policy_eval returns the empirical estimates of the value (value_estimate):

\[
E [Q^d_1(H_1, d_1(...))]
\]

for an appropriate input ... to the policy.

If type = "ipw" policy_eval returns the empirical estimates of the value (value_estimate) and score (IC):

\[
E [\prod_{k=1}^{K} I\{A_k = d_k(...)} g_k(H_k, A_k)^{-1})U]. \\
\left(\prod_{k=1}^{K} I\{A_k = d_k(...)} g_k(H_k, A_k)^{-1})U - E [\prod_{k=1}^{K} I\{A_k = d_k(...)} g_k(H_k, A_k)^{-1})U].
\]

If type = "dr" policy_eval returns the empirical estimates of the value (value_estimate) and influence curve (IC):

\[
E[Z^d_1], \\
Z^d_1 - E[Z^d_1],
\]

where

\[
Z^d_1 = Q^d_1(H_1, d_1(...)) + \sum_{r=1}^{K} \prod_{j=1}^{r} I\{A_j = d_j(...)} \frac{I\{A_j = d_j(...)} g_j(H_j, A_j) \{Q^d_{r+1}(H_{r+1}, d_{r+1}(...)) - Q^d_r(H_r, d_r(...))\}.
\]

Value

policy_eval() returns an object of class "policy_eval". The object is a list containing the following elements:

- value_estimate Numeric. The estimated value of the policy.
- type Character string. The type of evaluation ("dr", "ipw", "or").
- IC Numeric vector. Estimated influence curve associated with the value estimate.
- value_estimate_ipw (only if type = "dr") Numeric. The estimated value of the policy based on inverse probability weighting.
- value_estimate_or (only if type = "dr") Numeric. The estimated value of the policy based on outcome regression.
- id Character vector. The IDs of the observations.
- policy_actions data.table with keys id and stage. Actions associated with the policy for every observation and stage.
- policy_object (only if policy = NULL and M = 1) The policy object returned by policy_learn, see policy_learn.
- g_functions (only if M = 1) The fitted g-functions. Object of class "nuisance_functions".
policy_eval

- **g_values**: The fitted g-function values.
- **q_functions**: The fitted Q-functions. Object of class "nuisance_functions".
- **q_values**: The fitted Q-function values.
- **cross_fits**: List containing the "policy_eval" object for every (validation) fold.
- **folds**: The (validation) folds used for cross-fitting.

S3 generics

The following S3 generic functions are available for an object of class `policy_eval`:

- `get_g_functions()`: Extract the fitted g-functions.
- `get_q_functions()`: Extract the fitted Q-functions.
- `get_policy()`: Extract the fitted policy object.
- `get_policy_functions()`: Extract the fitted policy function for a given stage.
- `get_policy_actions()`: Extract the (fitted) policy actions.
- `plot.policy_eval()`: Plot diagnostics.

References

See Also

lava::IC, lava::estimate.default.

Examples

```r
library("polle")
### Single stage:
d1 <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")
pd1

# defining a static policy (A=1):
pl1 <- policy_def(1)

# evaluating the policy:
pe1 <- policy_eval(policy_data = pd1,
                   policy = pl1,
                   g_models = g_glm(),
                   q_models = q_glm(),
                   name = "A=1 (glm)"

```
summarizing the estimated value of the policy:
(equivalent to summary(pe1)):
pe1
coef(pe1) # value coefficient
sqrt(vcov(pe1)) # value standard error

getting the g-function and Q-function values:
head(predict(get_g_functions(pe1), pd1))
head(predict(get_q_functions(pe1), pd1))

getting the fitted influence curve (IC) for the value:
head(IC(pe1))

evaluating the policy using random forest nuisance models:
set.seed(1)
pel_rf <- policy_eval(policy_data = pd1,
 policy = pl1,
 g_models = g_rf(),
 q_models = q_rf(),
 name = "A=1 (rf)"
)

merging the two estimates (equivalent to pe1 + pel_rf):
(est1 <- merge(pe1, pel_rf))
coef(est1)
head(IC(est1))

Two stages:
d2 <- sim_two_stage(5e2, seed=1)
pd2 <- policy_data(d2,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))

defining a policy learner based on cross-fitted doubly robust Q-learning:
pl2 <- policy_learn(type = "drql",
 control = control_drql(qv_models = list(q_glm(~C_1),
 q_glm(~C_1+C_2))),
 full_history = TRUE,
 L = 2) # number of folds for cross-fitting

evaluating the policy learner using 2-fold cross fitting:
pe2 <- policy_eval(type = "dr",
 policy_data = pd2,
 policy_learn = pl2,
 q_models = q_glm(),
 g_models = g_glm(),
 M = 2, # number of folds for cross-fitting
 name = "drql"
)

summarizing the estimated value of the policy:
pe2
getting the cross-fitted policy actions:
head(get_policy_actions(pe2))

S3 method for class 'policy_learn'
print(x, ...)

S3 method for class 'policy_object'
print(x, ...)

Arguments

- **type**: Type of policy learner method:
 - "ql": Quality/Q-learning.
 - "drql": Doubly Robust Q-learning.
 - "blip": Doubly Robust blip-learning (only for dichotomous actions).
 - "ptl": Policy Tree Learning.
 - "owl": Outcome Weighted Learning.
 - "earl": Efficient Augmentation and Relaxation Learning (only single stage).
 - "rwl": Residual Weighted Learning (only single stage).

- **control**: List of control arguments. Values (and default values) are set using control_{type}().

 Key arguments include:

 control_drql():

Description

`policy_learn()` is used to specify a policy learning method (Q-learning, doubly robust Q-learning, policy tree learning and outcome weighted learning). Evaluating the policy learner returns a policy object.

Usage

```r
policy_learn(
  type = "ql",
  control = list(),
  alpha = 0,
  full_history = FALSE,
  L = 1,
  cross_fit_g_models = TRUE,
  save_cross_fit_models = FALSE,
  future_args = list(future.seed = TRUE),
  name = type
)
```

```r
## S3 method for class 'policy_learn'
print(x, ...)
```

```r
## S3 method for class 'policy_object'
print(x, ...)
```
• `qv_models`: Single element or list of V-restricted Q-models created by `q_glm()`, `q_rf()`, `q_sl()` or similar functions.

control_blip():

• `blip_models`: Single element or list of V-restricted blip-models created by `q_glm()`, `q_rf()`, `q_sl()` or similar functions.

control_ptl():

• `policy_vars`: Character vector/string or list of character vectors/strings. Variable names used to construct the V-restricted policy tree. The names must be a subset of the history names, see `get_history_names()`.
• `hybrid`: If `TRUE`, `policytrees::hybrid_policy_tree()` is used to fit a policy tree.
• `depth`: Integer or integer vector. The depth of the fitted policy tree for each stage.

control_owl():

• `policy_vars`: As in `control_ptl()`.
• `loss`: Loss function. The options are "hinge", "ramp", "logit", "logit.lasso", "l2", "l2.lasso".
• `kernel`: Type of kernel used by the support vector machine. The options are "linear", "rbf".
• `augment`: If `TRUE` the outcomes are augmented.

control_earl()/control_rwl():

• `moPropen`: Propensity model of class "ModelObj", see `modelObj::modelObj`.
• `moMain`: Main effects outcome model of class "ModelObj".
• `moCont`: Contrast outcome model of class "ModelObj".
• `regime`: An object of class `formula` specifying the design of the policy.
• `surrogate`: The surrogate 0-1 loss function. The options are "logit", "exp", "hinge", "sqhinge", "huber".
• `kernel`: The options are "linear", "poly", "radial".

alpha Probability threshold for determining realistic actions.
full_history If `TRUE`, the full history is used to fit each policy function (e.g. QV-model, policy tree). If `FALSE`, the single stage/"Markov type" history is used to fit each policy function.
L Number of folds for cross-fitting nuisance models.
cross_fit_g_models If `TRUE`, the g-models will not be cross-fitted even if `L > 1`.
save_cross_fit_models If `TRUE`, the cross-fitted models will be saved.
future_args Arguments passed to `future.apply::future_apply()`.
name Character string.
x Object of class "policy_object" or "policy_learn".
... Additional arguments passed to print.
Value

Function of inherited class "policy_learn". Evaluating the function on a policy_data object returns an object of class policy_object. A policy object is a list containing all or some of the following elements:

- **q_functions**: Fitted Q-functions. Object of class "nuisance_functions".
- **g_functions**: Fitted g-functions. Object of class "nuisance_functions".
- **action_set**: Sorted character vector describing the action set, i.e., the possible actions at each stage.
- **alpha**: Numeric. Probability threshold to determine realistic actions.
- **K**: Integer. Maximal number of stages.
- **qv_functions**: (only if type = "drql") Fitted V-restricted Q-functions. Contains a fitted model for each stage and action.
- **ptl_objects**: (only if type = "ptl") Fitted V-restricted policy trees. Contains a policy_tree for each stage.
- **ptl_designs**: (only if type = "ptl") Specification of the V-restricted design matrix for each stage.

S3 generics

The following S3 generic functions are available for an object of class "policy_object":

- **get_g_functions()**: Extract the fitted g-functions.
- **get_q_functions()**: Extract the fitted Q-functions.
- **get_policy()**: Extract the fitted policy object.
- **get_policy_functions()**: Extract the fitted policy function for a given stage.
- **get_policy_actions()**: Extract the (fitted) policy actions.

References

See Also

policy_eval()
Examples

```r
library("polle")
### Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  baseline = c("BB"),
  covariates = list(L = c("L_1", "L_2"),
                     C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

### V-restricted (Doubly Robust) Q-learning

# specifying the learner:
pl <- policy_learn(
  type = "drql",
  control = control_drql(qv_models = list(q_glm(formula = ~ C_1 + BB),
                                          q_glm(formula = ~ L_1 + BB)),
                          full_history = TRUE )
)

# evaluating the learned policy
pe <- policy_eval(policy_data = pd,
  policy_learn = pl,
  q_models = q_glm(),
  g_models = g_glm())

pe

# getting the policy object:
po <- get_policy_object(pe)
# inspecting the fitted QV-model for each action strata at stage 1:
po$qv_functions$stage_1
head(get_policy(pe)(pd))
```

predict.nuisance_functions

Predict g-functions and Q-functions

Description

`predict()` returns the fitted values of the g-functions and Q-functions when applied to a (new) policy data object.

Usage

```r
## S3 method for class 'nuisance_functions'
predict(object, new_policy_data, ...)
```
Arguments

object Object of class "nuisance_functions". Either g_functions or q_functions as returned by policy_eval() or policy_learn().

new_policy_data Policy data object created by policy_data().

... Additional arguments.

Value
data.table with keys id and stage and variables g_a or Q_a for each action a in the actions set.

Examples

library("polle")
Single stage:
d <- sim_single_stage(5e2, seed=1)
pd <- policy_data(d, action="A", covariates=list("Z", "B", "L"), utility="U")
pd
defining a static policy (A=1):
pl <- policy_def(1, name = "A=1")
doubly robust evaluation of the policy:
pe <- policy_eval(policy_data = pd,
 policy = pl,
 g_models = g_glm(),
 q_models = q_glm())
summarizing the estimated value of the policy:
pe
getting the fitted g-function values:
head(predict(get_g_functions(pe), pd))
getting the fitted Q-function values:
head(predict(get_q_functions(pe), pd))

q_model

q_model class object

Description

Use q_glm(), q_glmnet(), q_rf(), and q_sl() to construct an outcome regression model/Q-model object. The constructors are used as input for policy_eval() and policy_learn().

Usage

q_glm(
 formula = ~A * .,
 family = gaussian(),
)
model = FALSE,
na.action = na.pass,
...
)

q_glmnet(
 formula = ~A * .,
 family = "gaussian",
 alpha = 1,
 s = "lambda.min",
 ...
)

q_rf(
 formula = ~.,
 num.trees = c(250, 500, 750),
 mtry = NULL,
 cv_args = list(nfolds = 3, rep = 1),
 ...
)

q_sl(
 formula = ~.,
 SL.library = c("SL.mean", "SL.glm"),
 env = as.environment("package:SuperLearner"),
 onlySL = TRUE,
 discreteSL = FALSE,
 ...
)

q_xgboost(
 formula = ~.,
 objective = "reg:squarederror",
 params = list(),
 nrounds,
 max_depth = 6,
 eta = 0.3,
 nthread = 1,
 cv_args = list(nfolds = 3, rep = 1)
)

Arguments

formula An object of class formula specifying the design matrix for the outcome regression model/Q-model at the given stage. The action at the given stage is always denoted 'A', see examples. Use get_history_names() to see the additional available variable names.

family A description of the error distribution and link function to be used in the model.
model (Only used by q_glm) If FALSE model frame will not be saved.
na.action (Only used by q_glm) A function which indicates what should happen when the data contain NAs, see na.pass.
... Additional arguments passed to glm(), glmnet::glmnet, ranger::ranger or SuperLearner::SuperLearner.
alpha (Only used by q_glmnet) The elasticnet mixing parameter between 0 and 1. alpha equal to 1 is the lasso penalty, and alpha equal to 0 the ridge penalty.
s (Only used by q_glmnet) Value(s) of the penalty parameter lambda at which predictions are required, see glmnet::predict.glmnet().
num.trees (Only used by q_rf) Number of trees.
mtry (Only used by q_rf) Number of variables to possibly split at in each node.
cv_args (Only used by q_rf) Cross-validation parameters. Only used if multiple hyper-parameters are given. K is the number of folds and rep is the number of replications.
SL.library (Only used by q_sl) Either a character vector of prediction algorithms or a list containing character vectors, see SuperLearner::SuperLearner.
env (Only used by q_sl) Environment containing the learner functions. Defaults to the calling environment.
onlySL (Only used by q_sl) Logical. If TRUE, only saves and computes predictions for algorithms with non-zero coefficients in the super learner object.
discreteSL (Only used by q_sl) If TRUE, select the model with the lowest cross-validated risk.
objective (Only used by q_xgboost) specify the learning task and the corresponding learning objective, see xgboost::xgboost.
params (Only used by q_xgboost) list of parameters.
nrounds (Only used by q_xgboost) max number of boosting iterations.
max_depth (Only used by q_xgboost) maximum depth of a tree.
et (Only used by q_xgboost) learning rate.
nthread (Only used by q_xgboost) number of threads.

Details

q_glm() is a wrapper of glm() (generalized linear model).
q_glmnet() is a wrapper of glmnet::glmnet() (generalized linear model via penalized maximum likelihood).
q_rf() is a wrapper of ranger::ranger() (random forest). When multiple hyper-parameters are given, the model with the lowest cross-validation error is selected.
q_sl() is a wrapper of SuperLearner::SuperLearner (ensemble model). q_xgboost() is a wrapper of xgboost::xgboost.

Value

q_model object: function with arguments ’AH’ (combined action and history matrix) and ’V_res’ (residual value/expected utility).
See Also

`get_history_names()`, `get_q_functions()`.

Examples

```r
library("polle")
## Single stage case
d1 <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(d1,
  action="A",
  covariates=list("Z", "B", "L"),
  utility="U")
pd1

# available history variable names for the outcome regression:
get_history_names(pd1)

# evaluating the static policy a=1 using inverse
# propensity weighting based on the given Q-model:
pe1 <- policy_eval(type = "or",
  policy_data = pd1,
  policy = policy_def(1, name = "A=1"),
  q_model = q_glm(formula = ~A*))
pe1

# getting the fitted Q-function values
head(predict(get_q_functions(pe1), pd1))

## Two stages:
d2 <- sim_two_stage(5e2, seed=1)
pd2 <- policy_data(d2,
  action = c("A_1", "A_2"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd2

# available full history variable names at each stage:
get_history_names(pd2, stage = 1)
get_history_names(pd2, stage = 2)

# evaluating the static policy a=1 using outcome
# regression based on a glm model for each stage:
pe2 <- policy_eval(type = "or",
  policy_data = pd2,
  policy = policy_def(1, reuse = TRUE, name = "A=1"),
  q_model = list(q_glm(~ A * L_1),
                 q_glm(~ A * (L_1 + L_2))),
  q_full_history = TRUE)
pe2

# getting the fitted Q-function values
```
sim_multi_stage

head(predict(get_q_functions(pe2), pd2))

sim_multi_stage Simulate Multi-Stage Data

Description

Simulate Multi-Stage Data

Usage

sim_multi_stage(
 n,
 par = list(tau = 10, gamma = c(0, -0.2, 0.3), alpha = c(0, 0.5, 0.2, -0.5, 0.4),
 beta = c(3, -0.5, -0.5), psi = 1, xi = 0.3),
 a = function(t, x, beta, ...) {
 (beta[3] * x))
 stats::rbinom(n = 1, size = 1, prob = prob)
 },
 seed = NULL
)

Arguments

n Number of observations.
par Named list with distributional parameters.
 • tau: τ
 • gamma: γ
 • alpha: α
 • beta: β
 • psi: ψ
 • xi: ξ
a Function used to specify the action/treatment at every stage.
seed Integer.

Details

sim_multi_stage samples n iid observation \(O \) with the following distribution:

\[
W \sim N(0, 1) B \sim Ber(\xi)
\]

For \(k \geq 1 \) let

\[
(T_k - T_{k-1}) | X_{k-1}, A_{k-1}, W \sim \begin{cases} \text{Exp} \left(\exp \left(\gamma^T [1, X_{k-1}, W] \right) \right) + \psi & A_{k-1} = 1 \\
\infty & A_{k-1} = 0
\end{cases} \\
X_k | T_k, X_{k-1}, B \sim \begin{cases} N \left(\alpha^T [1, T_k], T_k \right) \\
0 & T_k = \infty
\end{cases}
\]

Note that \(\psi \) is the minimum increment.
Value

list with elements stage_data (data.table) and baseline_data (data.table).

sim_single_stage
Simulate Single-Stage Data

Description

Simulate Single-Stage Data

Usage

```r
sim_single_stage(
  n = 10000,
  par = c(k = 0.1, d = 0.5, a = 1, b = -2.5, c = 3, p = 0.3),
  action_model = function(Z, L, B, k, d) {
    k * (Z + L - 1) * Z^(-2) + d * (B == 1)
  },
  utility_model = function(Z, L, A, a, b, c) {
    Z + L + A * (c * Z + a * L + b)
  },
  seed = NULL,
  return_model = FALSE,
  ...
)
```

Arguments

- **n**
 Number of observations.

- **par**
 Named vector with distributional parameters.

 - **k**: κ
 - **d**: δ
 - **a**: α
 - **b**: β
 - **c**: γ
 - **p**: π

- **action_model**
 Function used to specify the action/treatment probability (logit link).

- **utility_model**
 Function used to specify the conditional mean utility.

- **seed**
 Integer.

- **return_model**
 If TRUE, the lava::lvm model is returned.

- **...**
 Additional arguments passed to lava::lvm().
sim_single_stage_multi_actions

Details

sim_single_stage samples n iid observation \(O = (B, Z, L, A, U) \) with the following distribution:

\[
B \sim \text{Bernoulli}(\pi), Z, L \sim \text{Uniform}([0, 1]) | Z, L, B \sim \text{Bernoulli}(\expit(\kappa Z^{-2}(Z+L-1)+\delta B)) | Z, L, A \sim \mathcal{N}(Z+L+\alpha L+\beta)
\]

Value
data.frame with n rows and columns Z, L, B, A, and U.

sim_single_stage_multi_actions
Simulate Single-Stage Multi-Action Data

Description

Simulate Single-Stage Multi-Action Data

Usage

sim_single_stage_multi_actions(n = 1000, seed = \text{NULL})

Arguments

\(n \) Number of observations.
\(seed \) Integer.

Details

sim_single_stage_multi_actions samples n iid observation \(O = (z, x, a, u) \) with the following distribution:

\[
z, x \sim \text{Uniform}([0, 1]) | \tilde{a} \sim \mathcal{N}(0, 1) a \sim \begin{cases} 0 & \text{if } \tilde{a} < -1 \\ 1 & \text{if } -1 \leq \tilde{a} < 0.5 \\ 2 & \text{otherwise} \end{cases}
\]

\(u \sim \mathcal{N}(x+z+I\{a = 2\}(x-0.5)+I\{a = 1\}) \)

Value
data.frame with n rows and columns z, x, a, and u.
Simulate Two-Stage Data

Usage

```r
sim_two_stage(
  n = 10000,
  par = c(gamma = 0.5, beta = 1),
  seed = NULL,
  action_model_1 = function(C_1, beta, ...) stats::rbinom(n = NROW(C_1), size = 1, prob = lava::expit(beta * C_1)),
  action_model_2 = function(C_2, beta, ...) stats::rbinom(n = NROW(C_1), size = 1, prob = lava::expit(beta * C_2)),
  deterministic_rewards = FALSE
)
```

Arguments

- `n` Number of observations.
- `par` Named vector with distributional parameters.
 - `gamma`: γ
 - `beta`: β
- `seed` Integer.
- `action_model_1` Function used to specify the action/treatment at stage 1.
- `action_model_2` Function used to specify the action/treatment at stage 2.
- `deterministic_rewards` Logical. If TRUE, the deterministic reward contributions are returned as well (columns U_1_A0, U_1_A1, U_2_A0, U_2_A1).

Details

`sim_two_stage` samples n iid observation O with the following distribution: BB is a random categorical variable with levels group1, group2, and group3. Furthermore,

$B \sim N(0, 1)$

$L_1 \sim N(L_1, 1)$

$C_1 \sim Bernoulli(expit(\beta C_1))$

$L_2 \sim N(0, 1)$

$A_1 \sim N(\gamma L_1 + 2)$

The rewards are calculated as

$$U_1 = L_1 U_2 = A_1 \cdot C_1 + L_2 U_3 = A_2 \cdot C_2 + L_3.$$

Value

`data.table` with n rows and columns B, BB, L_1, C_1, A_1, L_2, C_2, A_2, L_3, U_1, U_2, U_3 (U_1_A0, U_1_A1, U_2_A0, U_2_A1).
Simulate Two-Stage Multi-Action Data

Description
Simulate Two-Stage Multi-Action Data

Usage

```r
sim_two_stage_multi_actions(
  n = 1000,
  par = list(gamma = 0.5, beta = 1, prob = c(0.2, 0.4, 0.4)),
  seed = NULL,
  action_model_1 = function(C_1, beta, ...) stats::rbinom(n = NROW(C_1), size = 1, prob =
    lava::expit(beta * C_1))
)
```

Arguments

- `n` Number of observations.
- `par` Named vector with distributional parameters.
 - `gamma`: γ
 - `beta`: β
 - `prob`: p
- `seed` Integer.
- `action_model_1` Function used to specify the dichotomous action/treatment at stage 1.

Details

`sim_two_stage_multi_actions` samples `n` iid observation `O` with the following distribution: `BB` is a random categorical variable with levels `group1`, `group2`, and `group3`. Furthermore,

\[
B \sim \mathcal{N}(0,1)L_1 \sim \mathcal{N}(0,1)C_1 \quad | \quad L_1 \sim \mathcal{N}(L_1,1)P(A_1 = 'yes' | C_1) = \text{expit}(\beta C_1)P(A_1 = 'no' | C_1) = 1-P(A_1 = 'yes')
\]

The rewards are calculated as

\[
U_1 = L_1U_2 = A_1 \cdot C_1 + L_2U_3 = A_2 \cdot C_2 + L_3.
\]

Value

`data.table` with `n` rows and columns `B`, `BB`, `L_1`, `C_1`, `A_1`, `L_2`, `C_2`, `A_2`, `L_3`, `U_1`, `U_2`, `U_3`.
subset_id

Subset Policy Data on ID

Description

subset_id returns a policy data object containing the given IDs.

Usage

subset_id(object, id, preserve_action_set = TRUE)

Arguments

- **object** Object of class policy_data.
- **id** character vectors of IDs.
- **preserve_action_set** If TRUE, the action sets must be preserved.

Value

Object of class policy_data.

Examples

```r
library("polle")
### Single stage:
d <- sim_single_stage(5e2, seed=1)
# constructing policy_data object:
pd <- policy_data(d, action="A", covariates=list("Z", "B", "L"), utility="U")
pd

# getting the observation IDs:
get_id(pd)[1:10]

# subsetting on IDs:
pdsub <- subset_id(pd, id = 250:500)
pdsub
g_sub(pdsub)[1:10]
```
Index

+.policy_eval(policy_eval), 39
coef.policy_eval(policy_eval), 39
conditional, 3
control_blip, 4
control_blip(), 46
control_drlq(), 45
control_earl, 5
control_earl(), 46
control_owl, 6
control_owl(), 46
control_ptl, 7
control_ptl(), 46
control_rwl, 8
control_rwl(), 46
copy_policy_data, 9
copy_policy_data(), 36
data.frame, 35
data.table, 9, 11, 15, 18, 20, 24, 28, 33, 35, 36, 38, 42, 49, 54, 56, 57
data.table::copy(), 9
DTRlearn2::owl(), 6
DynTxRegime::earl, 5
DynTxRegime::rwl(), 8
estimate.policy_eval(policy_eval), 39
fit_g_functions, 10
formula, 5, 8, 25, 46, 50
future.apply::future_apply(), 41, 46
g_empir(g_model), 24
g_empir(), 10, 40
g(glm)(g_model), 24
g(glm), 10, 40
g_glmnet(g_model), 24
g_model, 13, 24
g_rf(g_model), 24
g_rf(), 10, 40
g_sl(g_model), 24
g_sl(), 10, 40
g_xgboost(g_model), 24
get_action_set, 11
get_actions, 11
get_actions(), 36
get_g_functions, 12
get_g_functions(), 26, 43, 47
get_history(history), 27
get_history(), 36, 38
get_history_names(), 25, 26, 38, 50, 52
get_id, 14
get_id_stage, 15
get_K, 16
get_n, 16
get_policy, 17, 33
get_policy(), 43, 47
get_policy_actions, 18
get_policy_actions(), 43, 47
get_policy_functions
 (get_policy_functions.blip), 19
get_policy_functions(), 43, 47
get_policy_functions.blip, 19
get_policy_object, 21
get_q_functions, 22
get_q_functions(), 43, 47, 52
get_stage_action_sets, 23
get_utility, 23
get_utility(), 36
glm(), 25, 26, 51
glmnet::glmnet, 25, 51
glmnet::glmnet(), 26, 51
glmnet::predict.glmnet(), 25, 51
history, 14, 15, 27, 28
IC.policy_eval(policy_eval), 39
lava::estimate.default, 3, 43
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>lava::IC</td>
<td>43</td>
</tr>
<tr>
<td>lava::lvm</td>
<td>54</td>
</tr>
<tr>
<td>lava::lvm()</td>
<td>54</td>
</tr>
<tr>
<td>merge.policy_eval (policy_eval)</td>
<td>39</td>
</tr>
<tr>
<td>modelObj::modelObj</td>
<td>5, 8, 46</td>
</tr>
<tr>
<td>na.pass</td>
<td>25, 51</td>
</tr>
<tr>
<td>nuisance_functions</td>
<td>12, 22, 29, 40, 41</td>
</tr>
<tr>
<td>partial</td>
<td>30</td>
</tr>
<tr>
<td>partial()</td>
<td>36</td>
</tr>
<tr>
<td>plot</td>
<td>36</td>
</tr>
<tr>
<td>plot.policy_data</td>
<td>31</td>
</tr>
<tr>
<td>plot.policy_eval</td>
<td>32</td>
</tr>
<tr>
<td>plot.policy_eval()</td>
<td>43</td>
</tr>
<tr>
<td>policy</td>
<td>17, 31, 33, 38</td>
</tr>
<tr>
<td>policy_data</td>
<td>9, 11, 12, 14–16, 23, 24, 27, 29–31, 34, 35, 38, 47, 58</td>
</tr>
<tr>
<td>policy_data()</td>
<td>3, 10, 13, 40, 49</td>
</tr>
<tr>
<td>policy_def</td>
<td>33, 37</td>
</tr>
<tr>
<td>policy_def()</td>
<td>40</td>
</tr>
<tr>
<td>policy_eval</td>
<td>12, 17, 18, 20–22, 32, 33, 39</td>
</tr>
<tr>
<td>policy_eval()</td>
<td>3, 24, 34, 36, 47, 49</td>
</tr>
<tr>
<td>policy_learn</td>
<td>20, 33, 42, 45</td>
</tr>
<tr>
<td>policy_learn()</td>
<td>24, 34, 36, 40, 49</td>
</tr>
<tr>
<td>policy_object</td>
<td>12, 17, 21, 22, 33, 47</td>
</tr>
<tr>
<td>policy_object (policy_learn)</td>
<td>45</td>
</tr>
<tr>
<td>policy_tree</td>
<td>47</td>
</tr>
<tr>
<td>policytree::hybrid_policy_tree()</td>
<td>7, 46</td>
</tr>
<tr>
<td>policytree::policy_tree()</td>
<td>7</td>
</tr>
<tr>
<td>predict.nuisance_functions</td>
<td>12, 22, 48</td>
</tr>
<tr>
<td>print.policy_data (policy_data)</td>
<td>34</td>
</tr>
<tr>
<td>print.policy_eval (policy_eval)</td>
<td>39</td>
</tr>
<tr>
<td>print.policy_learn (policy_learn)</td>
<td>45</td>
</tr>
<tr>
<td>print.policy_object (policy_learn)</td>
<td>45</td>
</tr>
<tr>
<td>q_glm(q_model)</td>
<td>49</td>
</tr>
<tr>
<td>q_glm()</td>
<td>4, 41, 46</td>
</tr>
<tr>
<td>q_glmnet(q_model)</td>
<td>49</td>
</tr>
<tr>
<td>q_model</td>
<td>13, 49</td>
</tr>
<tr>
<td>q_rf(q_model)</td>
<td>49</td>
</tr>
<tr>
<td>q_rf()</td>
<td>4, 41, 46</td>
</tr>
<tr>
<td>q_sl(q_model)</td>
<td>49</td>
</tr>
<tr>
<td>q_sl()</td>
<td>4, 41, 46</td>
</tr>
<tr>
<td>q_xgboost(q_model)</td>
<td>49</td>
</tr>
<tr>
<td>ranger::ranger</td>
<td>25, 51</td>
</tr>
<tr>
<td>ranger::ranger()</td>
<td>26, 51</td>
</tr>
<tr>
<td>xgboost::xgboost</td>
<td>26, 51</td>
</tr>
<tr>
<td>scale()</td>
<td>6</td>
</tr>
<tr>
<td>sim_multi_stage</td>
<td>53</td>
</tr>
<tr>
<td>sim_single_stage</td>
<td>54</td>
</tr>
<tr>
<td>sim_single_stage_multi_actions</td>
<td>55</td>
</tr>
<tr>
<td>sim_two_stage</td>
<td>56</td>
</tr>
<tr>
<td>sim_two_stage_multi_actions</td>
<td>57</td>
</tr>
<tr>
<td>subset_id</td>
<td>58</td>
</tr>
<tr>
<td>subset_id()</td>
<td>36</td>
</tr>
<tr>
<td>summary.policy_data (policy_data)</td>
<td>34</td>
</tr>
<tr>
<td>summary.policy_eval (policy_eval)</td>
<td>39</td>
</tr>
<tr>
<td>SuperLearner::SuperLearner</td>
<td>25, 26, 51</td>
</tr>
<tr>
<td>vcov.policy_eval (policy_eval)</td>
<td>39</td>
</tr>
<tr>
<td>xgboost::xgboost</td>
<td>26, 51</td>
</tr>
</tbody>
</table>