Package ‘polle’

July 6, 2023

Title Policy Learning
Version 1.3
Description Framework for evaluating user-specified finite stage policies and learning realistic policies via doubly robust loss functions. Policy learning methods include doubly robust restricted Q-learning, sequential policy tree learning and outcome weighted learning. See Nordland and Holst (2022) <arXiv:2212.02335> for documentation and references.
License Apache License (>= 2)
Encoding UTF-8
Depends R (>= 4.0), SuperLearner
Imports data.table (>= 1.14.5), lava (>= 1.7.0), future.apply, progressr, methods, policytree (>= 1.2.0), survival, targeted, DynTxRegime
Suggests DTRlearn2, glmnet (>= 4.1-6), mgcv, xgboost, knitr, ranger, markdown, testthat (>= 3.0), ggplot2
RoxygenNote 7.2.3
BugReports https://github.com/AndreasNordland/polle/issues
NeedsCompilation no
Author Andreas Nordland [aut, cre],
Klaus Holst [aut] (<https://orcid.org/0000-0002-1364-6789>)
Maintainer Andreas Nordland <andreasnordland@gmail.com>
Repository CRAN
Date/Publication 2023-07-06 17:00:02 UTC

R topics documented:

polle-package ... 3
conditional ... 3
control_blip ... 4
control_drql ... 5
control_earl ... 5
control_owl ... 6
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>control_ptl</td>
</tr>
<tr>
<td>control_rwl</td>
</tr>
<tr>
<td>copy_policy_data</td>
</tr>
<tr>
<td>fit_g_functions</td>
</tr>
<tr>
<td>get_actions</td>
</tr>
<tr>
<td>get_action_set</td>
</tr>
<tr>
<td>get_g_functions</td>
</tr>
<tr>
<td>get_history_names</td>
</tr>
<tr>
<td>get_id</td>
</tr>
<tr>
<td>get_id_stage</td>
</tr>
<tr>
<td>get_K</td>
</tr>
<tr>
<td>get_n</td>
</tr>
<tr>
<td>get_policy</td>
</tr>
<tr>
<td>get_policy_actions</td>
</tr>
<tr>
<td>get_policy_functions.blip</td>
</tr>
<tr>
<td>get_policy_object</td>
</tr>
<tr>
<td>get_q_functions</td>
</tr>
<tr>
<td>get_stage_action_sets</td>
</tr>
<tr>
<td>get_utility</td>
</tr>
<tr>
<td>g_model</td>
</tr>
<tr>
<td>history</td>
</tr>
<tr>
<td>nuisance_functions</td>
</tr>
<tr>
<td>partial</td>
</tr>
<tr>
<td>plot.policy_data</td>
</tr>
<tr>
<td>plot.policy_eval</td>
</tr>
<tr>
<td>policy</td>
</tr>
<tr>
<td>policy_data</td>
</tr>
<tr>
<td>policy_def</td>
</tr>
<tr>
<td>policy_eval</td>
</tr>
<tr>
<td>policy_learn</td>
</tr>
<tr>
<td>predict.nuisance_functions</td>
</tr>
<tr>
<td>q_model</td>
</tr>
<tr>
<td>sim_multi_stage</td>
</tr>
<tr>
<td>sim_single_stage</td>
</tr>
<tr>
<td>sim_single_stage_multi_actions</td>
</tr>
<tr>
<td>sim_two_stage</td>
</tr>
<tr>
<td>sim_two_stage_multi_actions</td>
</tr>
<tr>
<td>subset_id</td>
</tr>
</tbody>
</table>
Description

Author(s)

Andreas Nordland (Maintainer) andreas.nordland@gmail.com, Klaus Holst.

conditional

Conditional Policy Evaluation

Description

conditional() is used to calculate the policy value for each group defined by a given baseline variable.

Usage

conditional(object, policy_data, baseline)

Arguments

- object: Policy evaluation object created by policy_eval().
- policy_data: Policy data object created by policy_data().
- baseline: Character string.

Value

object of inherited class 'estimate', see lava::estimate.default. The object is a list with elements 'coef' (policy value estimate for each group) and 'IC' (influence curve estimate matrix).
Examples

```r
library("polle")
library("data.table")
setDTthreads(1)
d <- sim_single_stage(n=2e3)
pd <- policy_data(d,
    action = "A",
    baseline = c("B"),
    covariates = c("Z","L"),
    utility = "U")

# static policy:
p <- policy_def(1)
pe <- policy_eval(pd,
    policy = p)

# conditional value for each group defined by B
conditional(pe, pd, "B")
```

control_blip

Control arguments for doubly robust blip-learning

Description

control_blip sets the default control arguments for doubly robust blip-learning, type = "blip".

Usage

```r
control_blip(blip_models = q_glm(~.))
```

Arguments

- **blip_models**: Single element or list of V-restricted blip-models created by `q_glm()`, `q_rf()`, `q_sl()` or similar functions.

Value

list of (default) control arguments.
control_drql

Description
control_drql sets the default control arguments for doubly robust Q-learning, type = "drql".

Usage
control_drql(qv_models = q_glm(~.))

Arguments
qv_models Single element or list of V-restricted Q-models created by q_glm(), q_rf(), q_sl() or similar functions.

Value
list of (default) control arguments.

control_earl

Description
control_earl sets the default control arguments for efficient augmentation and relaxation learning, type = "earl". The arguments are passed directly to DynTxRegime::earl() if not specified otherwise.

Usage
control_earl(
 moPropen,
 moMain,
 moCont,
 regime,
 iter = 0L,
 fSet = NULL,
 lambdas = 0.5,
 cvFolds = 0L,
 surrogate = "hinge",
 kernel = "linear",
 kparam = NULL,
 verbose = 0L
)
Arguments

- `moPropen`: Propensity model of class "ModelObj", see `modelObj::modelObj`.
- `moMain`: Main effects outcome model of class "ModelObj".
- `moCont`: Contrast outcome model of class "ModelObj".
- `regime`: An object of class `formula` specifying the design of the policy/regime.
- `iter`: Maximum number of iterations for outcome regression.
- `fSet`: A function or NULL defining subset structure.
- `lambdas`: Numeric or numeric vector. Penalty parameter.
- `cvFolds`: Integer. Number of folds for cross-validation of the parameters.
- `surrogate`: The surrogate 0-1 loss function. The options are "logit", "exp", "hinge", "sqhinge", "huber".
- `kernel`: The options are "linear", "poly", "radial".
- `kparam`: Numeric. Kernel parameter
- `verbose`: Integer.

Value

- list of (default) control arguments.

control_owl

Control arguments for Outcome Weighted Learning

Description

`control_owl()` sets the default control arguments for backwards outcome weighted learning, type = "owl". The arguments are passed directly to `DTRlearn2::owl()` if not specified otherwise.

Usage

```r
control_owl(
  policy_vars = NULL,
  reuse_scales = TRUE,
  res.lasso = TRUE,
  loss = "hinge",
  kernel = "linear",
  augment = FALSE,
  c = 2^(-2:2),
  sigma = c(0.03, 0.05, 0.07),
  s = 2^(-2:2),
  m = 4
)
```
control_ptl

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy_vars</td>
<td>Character vector/string or list of character vectors/strings. Variable names used to restrict the policy. The names must be a subset of the history names, see <code>get_history_names()</code>. Not passed to <code>owl()</code></td>
</tr>
<tr>
<td>reuse_scales</td>
<td>The history matrix passed to <code>owl()</code> is scaled using <code>scale()</code> as advised. If <code>TRUE</code>, the scales of the history matrix will be saved and reused when applied to (new) test data</td>
</tr>
<tr>
<td>res.lasso</td>
<td>If <code>TRUE</code> a lasso penalty is applied</td>
</tr>
<tr>
<td>loss</td>
<td>Loss function. The options are "hinge", "ramp", "logit", "logit.lasso", "l2", "l2.lasso".</td>
</tr>
<tr>
<td>kernel</td>
<td>Type of kernel used by the support vector machine. The options are "linear", "rbf".</td>
</tr>
<tr>
<td>augment</td>
<td>If <code>TRUE</code> the outcomes are augmented</td>
</tr>
<tr>
<td>c</td>
<td>Regularization parameter</td>
</tr>
<tr>
<td>sigma</td>
<td>Tuning parameter</td>
</tr>
<tr>
<td>s</td>
<td>Slope parameter</td>
</tr>
<tr>
<td>m</td>
<td>Number of folds for cross-validation of the parameters</td>
</tr>
</tbody>
</table>

Value

list of (default) control arguments.

control_ptl

Control arguments for Policy Tree Learning

Description

control_ptl sets the default control arguments for doubly robust policy tree learning, type = "ptl". The arguments are passed directly to `policytree::policy_tree()` (or `policytree::hybrid_policy_tree()` if not specified otherwise.

Usage

\[
\text{control_ptl(}
\text{ policy_vars = NULL,}
\text{ hybrid = FALSE,}
\text{ depth = 2,}
\text{ search.depth = 2,}
\text{ split.step = 1,}
\text{ min.node.size = 1}
\text{)}
\]
control_rwl

Arguments

policy_vars Character vector/string or list of character vectors/strings. Variable names used to construct the V-restricted policy tree. The names must be a subset of the history names, see get_history_names(). Not passed to policy_tree().

hybrid If TRUE, policytree::hybrid_policy_tree() is used to fit a policy tree. Not passed to policy_tree().

depth Integer or integer vector. The depth of the fitted policy tree for each stage.

search.depth (only used if hybrid = TRUE) Integer or integer vector. Depth to look ahead when splitting at each stage.

split.step Integer or integer vector. The number of possible splits to consider when performing policy tree search at each stage.

min.node.size Integer or integer vector. The smallest terminal node size permitted at each stage.

Value

list of (default) control arguments.

Description

control_rwl sets the default control arguments for residual learning, type = "rwl". The arguments are passed directly to DynTxRegime::rwl() if not specified otherwise.

Usage

control_rwl(
 moPropen,
 moMain,
 regime,
 fSet = NULL,
 lambdas = 2,
 cvFolds = 0L,
 kernel = "linear",
 kparam = NULL,
 responseType = "continuous",
 verbose = 2L
)
Arguments

- *moPropen*: Propensity model of class "ModelObj", see `modelObj::modelObj`.
- *moMain*: Main effects outcome model of class "ModelObj".
- *regime*: An object of class `formula` specifying the design of the policy/regime.
- *fSet*: A function or NULL defining subset structure.
- *lambdas*: Numeric or numeric vector. Penalty parameter.
- *kernel*: The options are "linear", "poly", "radial".
- *responseType*: Character string. Options are "continuous", "binary", "count".
- *verbose*: Integer.

Value

- list of (default) control arguments.

copy_policy_data

Copy Policy Data Object

Description

Objects of class `policy_data` contains elements of class `data.table`. `data.table` provide functions that operate on objects by reference. Thus, the `policy_data` object is not copied when modified by reference, see examples. An explicit copy can be made by `copy_policy_data`. The function is a wrapper of `data.table::copy()`.

Usage

`copy_policy_data(object)`

Arguments

- *object*: Object of class `policy_data`.

Value

- Object of class `policy_data`.
Examples

```r
library("polle")
### Single stage case: Wide data
d1 <- sim_single_stage(5e2, seed=1)
head(d1, 5)
# constructing policy_data object:
pd1 <- policy_data(d1,
  action="A",
  covariates=c("Z", "B", "L"),
  utility="U")
pd1

# True copy
pd2 <- copy_policy_data(pd1)
# manipulating the data.table by reference:
pd2$baseline_data[, id := id + 1]
head(pd2$baseline_data$id - pd1$baseline_data$id)

# False copy
pd2 <- pd1
# manipulating the data.table by reference:
pd2$baseline_data[, id := id + 1]
head(pd2$baseline_data$id - pd1$baseline_data$id)
```

fit_g_functions

Fit g-functions

Description

fit_g_functions is used to fit a list of g-models.

Usage

```r
fit_g_functions(policy_data, g_models, full_history = FALSE)
```

Arguments

- `policy_data`
 Policy data object created by `policy_data()`.

- `g_models`
 List of action probability models/g-models for each stage created by `g_empir()`, `g_glm()`, `g_rf()`, `g_sl()` or similar functions.

- `full_history`
 If TRUE, the full history is used to fit each g-model. If FALSE, the single stage/"Markov type" history is used to fit each g-model.

Examples

```r
library("polle")
### Simulating two-stage policy data
d <- sim_two_stage(2e3, seed=1)
```
get_actions

get_actions

Description

get_actions returns the actions at every stage for every observation in the policy data object.

Usage

g_get_actions(object)

Arguments

object Object of class policy_data.

Value

data.table with keys id and stage and character variable A.

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

fitting a single g-model across all stages:
g_functions <- fit_g_functions(policy_data = pd,
 g_models = g_glm(),
 full_history = FALSE)
g_functions

fitting a g-model for each stage:
g_functions <- fit_g_functions(policy_data = pd,
 g_models = list(g_glm(), g_glm()),
 full_history = TRUE)
g_functions

get_actions Get Actions

Description
g_get_actions returns the actions at every stage for every observation in the policy data object.

Usage
g_get_actions(object)

Arguments

object Object of class policy_data.

Value
data.table with keys id and stage and character variable A.

Examples
Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd
getting the actions:
head(get_actions(pd))

Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the actions set:
get_action_set(pd)
get_g_functions

Get g-functions

Description

get_g_functions() returns a list of (fitted) g-functions associated with each stage.

Usage

get_g_functions(object)

Arguments

object Object of class policy_eval or policy_object.

Value

List of class nuisance_functions.

See Also

predict.nuisance_functions

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

evaluating the static policy a=1 using inverse propensity weighting
based on a GLM model at each stage
pe <- policy_eval(type = "ipw",
 policy_data = pd,
 policy = policy_def(1, reuse = TRUE, name = "A=1"),
 g_models = list(g_glm(), g_glm())
)
pe

getting the g-functions
g_functions <- get_g_functions(pe)
g_functions

getting the fitted g-function values
head(predict(g_functions, pd))
get_history_names
Get history variable names

Description

get_history_names() returns the state covariate names of the history data table for a given stage. The function is useful when specifying the design matrix for \texttt{g_model} and \texttt{q_model} objects.

Usage

get_history_names(object, stage)

Arguments

- object: Policy data object created by \texttt{policy_data()}.
- stage: Stage number. If NULL, the state/Markov-type history variable names are returned.

Value

Character vector.

Examples

library("polle")
Multiple stages:
d3 <- sim_multi_stage(5e2, seed = 1)
pd3 <- policy_data(data = d3\$stage_data,
baseline_data = d3\$baseline_data,
type = "long",
id = "id",
stage = "stage",
event = "event",
action = "A",
utility = "U")
pd3
state/Markov type history variable names (H):
get_history_names(pd3)
full history variable names (H_k) at stage 2:
get_history_names(pd3, stage = 2)
Description

get_id returns the ID for every observation in the policy data object.

Usage

get_id(object)

Arguments

- **object**
 - Object of class `policy_data` or `history`.

Value

Character vector.

Examples

```r
### Two stages:
d <- sim_two_stage(5e2, seed=1)
# constructing policy_data object:
pd <- policy_data(d, 
  action = c("A_1", "A_2"),
  baseline = c("B"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

# getting the IDs:
head(get_id(pd))
```

Description

get_id returns the stages for every ID for every observation in the policy data object.

Usage

get_id_stage(object)
Arguments

object Object of class policy_data or history.

Value
data.table with keys id and stage.

Examples
Two stages:
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the IDs and stages:
head(get_id_stage(pd))

table

get_K Get Maximal Stages

Description

get_K returns the maximal number of stages for the observations in the policy data object.

Usage

get_K(object)

Arguments

object Object of class policy_data.

Value

Integer.
Examples

```r
d <- sim_multi_stage(5e2, seed = 1)
pd <- policy_data(data = d$stage_data,
    baseline_data = d$baseline_data,
    type = "long",
    id = "id",
    stage = "stage",
    event = "event",
    action = "A",
    utility = "U")
pd

# getting the maximal number of stages:
get_K(pd)
```

get_n

Get Number of Observations

Description

`get_n` returns the number of observations in the policy data object.

Usage

```r
get_n(object)
```

Arguments

- `object`: Object of class `policy_data`.

Value

Integer.

Examples

Two stages:
```r
d <- sim_two_stage(5e2, seed=1)
# constructing policy_data object:
pd <- policy_data(d,
    action = c("A_1", "A_2"),
    baseline = c("B"),
    covariates = list(L = c("L_1", "L_2"),
                      C = c("C_1", "C_2")),
    utility = c("U_1", "U_2", "U_3"))
pd

# getting the number of observations:
get_n(pd)
```
get_policy

Description

get_policy extracts the policy from a policy object or a policy evaluation object. The policy is a function which takes a policy data object as input and returns the policy actions.

Usage

get_policy(object)

Arguments

object Object of class policy_object or policy_eval.

Value

function of class policy.

Examples

library("polle")
Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("BB"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

V-restricted (Doubly Robust) Q-learning

specifying the learner:
pl <- policy_learn(type = "drql",
 control = control_drql(qv_models = q_glm(formula = ~ C)))

fitting the policy (object):
po <- pl(policy_data = pd,
 q_models = q_glm(),
 g_models = g_glm())

getting and applying the policy:
head(get_policy(po)(pd))

the policy learner can also be evaluated directly:
pe <- policy_eval(policy_data = pd,
 policy_learn = pl,
get_policy_actions

q_models = q_glm(),
g_models = g_glm()

getting and applying the policy again:
head(get_policy(pe)(pd))

get_policy_actions

Get Policy Actions

Description

get_policy_actions() extract the actions dictated by the (learned and possibly cross-fitted) policy a every stage.

Usage

get_policy_actions(object)

Arguments

object

Object of class policy_eval.

Value

data.table with keys id and stage and action variable d.

Examples

Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

defining a policy learner based on cross-fitted doubly robust Q-learning:
pl <- policy_learn(type = "drql",
 control = control_drql(qv_models = list(q_glm(~C_1), q_glm(~C_1+C_2))),
 full_history = TRUE,
 L = 2) # number of folds for cross-fitting

evaluating the policy learner using 2-fold cross fitting:
pe <- policy_eval(type = "dr",
 policy_data = pd,
 policy_learn = pl,
 q_models = q_glm(),
 g_models = g_glm(),
 M = 2) # number of folds for cross-fitting
Getting the cross-fitted actions dictated by the fitted policy:
head(get_policy_actions(pe))

get_policy_functions

Get Policy Functions

Description

`get_policy_functions()` returns a function defining the policy at the given stage. `get_policy_functions()` is useful when implementing the learned policy.

Usage

```r
## S3 method for class 'blip'
get_policy_functions(object, stage, include_g_values = FALSE, ...)  

## S3 method for class 'drql'
get_policy_functions(object, stage, include_g_values = FALSE, ...)  

get_policy_functions(object, stage, ...)  

## S3 method for class 'ptl'
get_policy_functions(object, stage, ...)  

## S3 method for class 'ql'
get_policy_functions(object, stage, include_g_values = FALSE, ...)  
```

Arguments

- **object**: Object of class "policy_object" or "policy_eval", see `policy_learn` and `policy_eval`
- **stage**: Integer. Stage number.
- **include_g_values**: If TRUE, the g-values are included as an attribute.
- **...**: Additional arguments.

Value

Functions with arguments:

- \(\text{H} \) **data.table** containing the variables needed to evaluate the policy (and g-function).
Examples

```r
library("polle")

### Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
    action = c("A_1", "A_2"),
    baseline = "BB",
    covariates = list(L = c("L_1", "L_2"),
                     C = c("C_1", "C_2")),
    utility = c("U_1", "U_2", "U_3"))
pd

### Realistic V-restricted Policy Tree Learning
# specifying the learner:
pl <- policy_learn(type = "ptl",
    control = control_ptl(policy_vars = list(c("C_1", "BB"),
                                           c("L_1", "BB")),
    full_history = TRUE,
    alpha = 0.05)

# evaluating the learner:
pe <- policy_eval(policy_data = pd,
    policy_learn = pl,
    q_models = q_glm(),
    g_models = g_glm())

# getting the policy function at stage 2:
 pf2 <- get_policy_functions(pe, stage = 2)
args(pf2)

# applying the policy function to new data:
set.seed(1)
L_1 <- rnorm(n = 10)
new_H <- data.frame(C = rnorm(n = 10),
                     L = L_1,
                     L_1 = L_1,
                     BB = "group1")
d2 <- pf2(H = new_H)
head(d2)
```

Description

Extract the fitted policy object.

Usage

```r
get_policy_object(object)
```
Arguments

object Object of class policy_eval.

Value

Object of class policy_object.

Examples

library("polle")
Single stage:
d1 <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")
pd

evaluating the policy:
pe1 <- policy_eval(policy_data = pd1,
policy_learn = policy_learn(type = "drql",
control = control_drql(qv_models = q_glm(~.)),
g_models = g_glm(),
q_models = q_glm())

extracting the policy object:
get_policy_object(pe1)

get_q_functions() returns a list of (fitted) Q-functions associated with each stage.

Usage

get_q_functions(object)

Arguments

object Object of class policy_eval or policy_object.

Value

List of class nuisance_functions.

See Also

predict.nuisance_functions
get_stage_action_sets

Examples

Two stages:

```r
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  baseline = c("B"),
  covariates = list(L = c("L_1", "L_2"),
                     C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

# evaluating the static policy a=1 using outcome regression
# based on a GLM model at each stage.
pe <- policy_eval(type = "or",
  policy_data = pd,
  policy = policy_def(1, reuse = TRUE, name = "A=1"),
  q_models = list(q_glm(), q_glm()))
pe

# getting the Q-functions
q_functions <- get_q_functions(pe)

# getting the fitted g-function values
head(predict(q_functions, pd))
```

get_stage_action_sets Get Stage Action Sets

Description

get_stage_action_sets returns the action sets at each stage, i.e., the possible actions at each stage for the policy data object.

Usage

```r
get_stage_action_sets(object)
```

Arguments

object Object of class policy_data.

Value

List of character vectors.
Examples

Two stages:
```r
d <- sim_two_stage_multi_actions(5e2, seed=1)
# constructing policy_data object:
pd <- policy_data(d,
    action = c("A_1", "A_2"),
    baseline = c("B"),
    covariates = list(L = c("L_1", "L_2"),
                      C = c("C_1", "C_2")),
    utility = c("U_1", "U_2", "U_3"))
pd

# getting the stage actions set:
get_stage_action_sets(pd)
```

```
get_utility

Get the Utility

Description

get_utility() returns the utility, i.e., the sum of the rewards, for every observation in the policy data object.

Usage

get_utility(object)

Arguments

object Object of class policy_data.

Value

data.table with key id and numeric variable U.

Examples

### Two stages:
```r
d <- sim_two_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

getting the utility:
head(get_utility(pd))
```
Description

Use `g_glm()`, `g_empir()`, `g_glmnet()`, `g_rf()`, `g_sl()`, `g_xgboost` to construct an action probability model/g-model object. The constructors are used as input for `policy_eval()` and `policy_learn()`.

Usage

```r
g_empir
formula = ~1, ...)

g_glm(
 formula = ~.,
 family = "binomial",
 model = FALSE,
 na.action = na.pass,
 ...)

g_glmnet
formula = ~., family = "binomial", alpha = 1, s = "lambda.min", ...)

g_rf
formula = ~.,
num.trees = c(500),
mtry = NULL,
cv_args = list(K = 5, rep = 1),
...

g_sl
formula = ~.,
SL.library = c("SL.mean", "SL.glm"),
family = binomial(),
env = as.environment("package:SuperLearner"),
onlySL = TRUE,
...

g_xgboost
formula = ~.,
objective = "binary:logistic",
params = list(),
nrounds, max_depth = 6,
eta = 0.3,
nthread = 1,
```
cv_args = list(K = 3, rep = 1)
)

Arguments

formula An object of class formula specifying the design matrix for the propensity model/g-model. Use get_history_names() to view the available variable names.

... Additional arguments passed to glm(), glmnet::glmnet, ranger::ranger or SuperLearner::SuperLearner.

family A description of the error distribution and link function to be used in the model.

model (Only used by g_glm) If FALSE model frame will not be saved.

na.action (Only used by g_glm) A function which indicates what should happen when the data contain NAs, see na.pass.

alpha (Only used by g_glmnet) The elastic net mixing parameter between 0 and 1. alpha equal to 1 is the lasso penalty, and alpha equal to 0 the ridge penalty.

s (Only used by g_glmnet) Value(s) of the penalty parameter lambda at which predictions are required, see glmnet::predict.glmnet().

num.trees (Only used by g_rf) Number of trees.

mtry (Only used by g_rf) Number of variables to possibly split at in each node.

cv_args (Only used by g_rf and g_xgboost) Cross-validation parameters. Only used if multiple hyper-parameters are given. K is the number of folds and rep is the number of replications.

SL.library (Only used by g_sl) Either a character vector of prediction algorithms or a list containing character vectors, see SuperLearner::SuperLearner.

env (Only used by g_sl) Environment containing the learner functions. Defaults to the calling environment.

onlySL (Only used by g_sl) Logical. If TRUE, only saves and computes predictions for algorithms with non-zero coefficients in the super learner object.

objective (Only used by g_xgboost) specify the learning task and the corresponding learning objective, see xgboost::xgboost.

params (Only used by g_xgboost) list of parameters.

nrounds (Only used by g_xgboost) max number of boosting iterations.

max_depth (Only used by g_xgboost) maximum depth of a tree.

eta (Only used by g_xgboost) learning rate.

nthread (Only used by g_xgboost) number of threads.

Details

g_glm() is a wrapper of glm() (generalized linear model).

g_empr() calculates the empirical probabilities within the groups defined by the formula.

g_glmnet() is a wrapper of glmnet::glmnet() (generalized linear model via penalized maximum likelihood).

g_rf() is a wrapper of ranger::ranger() (random forest). When multiple hyper-parameters are given, the model with the lowest cross-validation error is selected.

g_sl() is a wrapper of SuperLearner::SuperLearner (ensemble model).

g_xgboost() is a wrapper of xgboost::xgboost.
Value

g-model object: function with arguments ‘A’ (action vector), ‘H’ (history matrix) and ‘action_set’.

See Also

g_history_names(), get_g_functions().

Examples

library("polle")
## Two stages:
d <- sim_two_stage(2e2, seed=1)
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  baseline = c("B"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd

# available state history variable names:
get_history_names(pd)
# defining a g-model:
g_model <- g_glm(formula = ~B+C)

# evaluating the static policy (A=1) using inverse propensity weighting
# based on a state glm model across all stages:
pe <- policy_eval(type = "ipw",
  policy_data = pd,
  policy = policy_def(1, reuse = TRUE),
  g_models = g_model)

# inspecting the fitted g-model:
get_g_functions(pe)

# available full history variable names at each stage:
get_history_names(pd, stage = 1)
get_history_names(pd, stage = 2)

# evaluating the same policy based on a full history
# glm model for each stage:
pe <- policy_eval(type = "ipw",
  policy_data = pd,
  policy = policy_def(1, reuse = TRUE),
  g_models = list(g_glm(~ L_1 + B),
                    g_glm(~ A_1 + L_2 + B)),
  g_full_history = TRUE)

# inspecting the fitted g-models:
get_g_functions(pe)
Get History Object

Description

get_history summarizes the history and action at a given stage from a policy_data object.

Usage

get_history(object, stage = NULL, full_history = FALSE)

Arguments

- **object**: Object of class policy_data.
- **stage**: Stage number. If NULL, the state/Markov-type history across all stages is returned.
- **full_history**: Logical. If TRUE, the full history is returned If FALSE, only the state/Markov-type history is returned.

Details

Each observation has the sequential form

\[ O = B, U_1, X_1, A_1, ..., U_K, X_K, A_K, U_{K+1}, \]

for a possibly stochastic number of stages \( K \).

- \( B \) is a vector of baseline covariates.
- \( U_k \) is the reward at stage \( k \) (not influenced by the action \( A_k \)).
- \( X_k \) is a vector of state covariates summarizing the state at stage \( k \).
- \( A_k \) is the categorical action at stage \( k \).

Value

Object of class history. The object is a list containing the following elements:

- **H**: data.table with keys id and stage and with variables \( \{ B, X_k \} \) (state history) or \( \{ B, X_1, A_1, ..., X_k \} \) (full history), see details.
- **A**: data.table with keys id and stage and variable \( A_k \), see details.
- **action_name**: Name of the action variable in A.
- **action_set**: Sorted character vector defining the action set.
- **U**: (If stage is not NULL) data.table with keys id and stage and with variables U_bar and U_Aa for every a in the actions set. U_bar is the accumulated rewards up till and including the given stage, i.e., \( \sum_{j=1}^{k} U_j \). U_Aa is the deterministic reward of action a.
Examples

```r
library("polle")
Single stage:
constructing policy_data object:
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")
pd1

In the single stage case, set stage = NULL
h1 <- get_history(pd1)
head(h1$H)
head(h1$A)

Two stages:
constructing policy_data object:
pd2 <- policy_data(d2,
 action = c("A_1", "A_2"),
 baseline = c("B"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd2

getting the state/Markov-type history across all stages:
h2 <- get_history(pd2)
head(h2$H)
head(h2$A)

getting the full history at stage 2:
h2 <- get_history(pd2, stage = 2, full_history = TRUE)
head(h2$H)
head(h2$A)
head(h2$U)

getting the state/Markov-type history at stage 2:
h2 <- get_history(pd2, stage = 2, full_history = FALSE)
head(h2$H)
head(h2$A)

Multiple stages
constructing policy_data object:
pd3 <- policy_data(data = d3$stage_data,
 baseline_data = d3$baseline_data,
 type = "long",
 id = "id",
 stage = "stage",
 event = "event",
 action = "A",
 utility = "U")
pd3
```
# getting the full history at stage 2:
h3 <- get_history(pd3, stage = 2, full_history = TRUE)
head(h3$H)

# note that not all observations have two stages:
nrow(h3$H) # number of observations with two stages.
get_n(pd3) # number of observations in total.

## nuisance_functions

### Nuisance Functions

The fitted g-functions and Q-functions are stored in an object of class "nuisance_functions". The object is a list with a fitted model object for every stage. Information on whether the full history or the state/Markov-type history is stored as an attribute ("full_history").

### S3 generics

The following S3 generic functions are available for an object of class nuisance_functions:

- predict Predict the values of the g- or Q-functions based on a policy_data object.

### Examples

```r
Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))

evaluating the static policy a=1:
pe <- policy_eval(policy_data = pd,
 policy = policy_def(1, reuse = TRUE),
 g_models = g_glm(),
 q_models = q_glm())

getting the fitted g-functions:
(g_functions <- get_g_functions(pe))

getting the fitted Q-functions:
(q_functions <- get_q_functions(pe))

getting the fitted values:
head(predict(g_functions, pd))
head(predict(q_functions, pd))
```
partial  

Trim Number of Stages

Description

partial creates a partial policy data object by trimming the maximum number of stages in the policy data object to a fixed given number.

Usage

```r
partial(object, K)
```

Arguments

- `object` Object of class `policy_data`.
- `K` Maximum number of stages.

Value

Object of class `policy_data`.

Examples

```r
library("polle")
Multiple stage case
constructing policy_data object:
d <- sim_multi_stage(5e2, seed = 1)
pd <- policy_data(data = d$stage_data,
baseline_data = d$baseline_data,
type = "long",
id = "id",
stage = "stage",
event = "event",
action = "A",
utility = "U")

pd <- partial(pd, K = 3)
```

```r
pd
```

### Creating a partial policy data object with 3 stages
```r
pd3 <- partial(pd, K = 3)
pd3
```
plot.policy_data  

Plot policy data for given policies

Description

Plot policy data for given policies

Usage

```r
S3 method for class 'policy_data'
plot(
x,
policy = NULL,
which = c(1),
stage = 1,
history_variables = NULL,
jitter = 0.05,
...
)
```

Arguments

- `x` Object of class `policy_data`
- `policy` An object or list of objects of class `policy`
- `which` A subset of the numbers 1:2
  - 1 Spaghetti plot of the cumulative rewards
  - 2 Plot of the policy actions for a given stage
- `stage` Stage number for plot 2
- `history_variables` character vector of length 2 for plot 2
- `jitter` numeric
- `...` Additional arguments

Examples

```r
library("polle")
library("data.table")
setDTthreads(1)
d3 <- sim_multi_stage(2e2, seed = 1)
pd3 <- policy_data(data = d3$stage_data,
 baseline_data = d3$baseline_data,
 type = "long",
 id = "id",
 stage = "stage",
 event = "event",
 action = "A",
```
utility = "U")

# specifying two static policies:
p0 <- policy_def(c(1,1,0,0), name = "p0")
p1 <- policy_def(c(1,0,0,0), name = "p1")

plot(pd3)
plot(pd3, policy = list(p0, p1))

# learning and plotting a policy:
pe3 <- policy_eval(pd3,
policy_learn = policy_learn(),
q_models = q_glm(formula = ~t + X + X_lead))
plot(pd3, list(get_policy(pe3), p0))

# plotting the recommended actions at a specific stage:
plot(pd3, get_policy(pe3),
which = 2,
stage = 2,
history_variables = c("t","X"))

---

**plot.policy_eval**  
*Plot histogram of the influence curve for a policy_eval object*

**Usage**

```r
S3 method for class 'policy_eval'
plot(x, ...)
```

**Arguments**

- `x` Object of class `policy_eval`
- `...` Additional arguments

**Examples**

d <- sim_two_stage(2e3, seed=1)
pd <- policy_data(d,
  action = c("A_1", "A_2"),
  baseline = "BB",
  covariates = list(L = c("L_1", "L_2"),
                    C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))

pe <- policy_eval(pd,
policy_learn = policy_learn()

plot(pe)

---

### Description

A function of inherited class "policy" takes a policy data object as input and returns the policy actions for every observation for every (observed) stage.

### Details

A policy can either be defined directly by the user using `policy_def` or a policy can be fitted using `policy_learn` (or `policy_eval`). `policy_learn` returns a `policy_object` from which the policy can be extracted using `get_policy`.

### Value

data.table with keys `id` and `stage` and action variable `d`.

### S3 generics

The following S3 generic functions are available for an object of class `policy`:

- `print` Basic print function

### Examples

#### Two stages:

```r
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))

defining a dynamic policy:
p <- policy_def(
 function(L) (L>0)*1,
 reuse = TRUE
)
p
head(p(pd), 5)
```

# V-restricted (Doubly Robust) Q-learning:

```r
pl <- policy_learn(type = "drql",
 control = control_drql(qv_models = q_glm(formula = ~ C)))
```
# fitting the policy (object):
policy_data <- pl(policy_data = pd, 
  q_models = q_glm(),
  g_models = g_glm())

p <- get_policy(po)
p
head(p(pd))

---

### policy_data

Create Policy Data Object

#### Description

policy_data() creates a policy data object which is used as input to `policy_eval()` and `policy_learn()` for policy evaluation and data adaptive policy learning.

#### Usage

```r
policy_data(
 data,
 baseline_data,
 type = "wide",
 action,
 covariates,
 utility,
 baseline = NULL,
 deterministic_rewards = NULL,
 id = NULL,
 stage = NULL,
 event = NULL,
 action_set = NULL,
 verbose = FALSE
)
```

#### Arguments

- **data**: `data.frame` or `data.table`; see Examples.
- **baseline_data**: `data.frame` or `data.table`; see Examples.
type
Action variable name(s). Character vector or character string.
- A vector is valid for wide data. The length of the vector determines the number of stages (K).
- A string is valid for single stage wide data or long data.

covariates
Stage specific covariate name(s). Character vector or named list of character vectors.
- A vector is valid for single stage wide data or long data.
- A named list is valid for multiple stages wide data. Each element must be a character vector with length K. Each vector can contain NA elements, if a covariate is not available for the given stage(s).

utility
Utility/Reward variable name(s). Character string or vector.
- A string is valid for long data and wide data with a single final utility.
- A vector is valid for wide data with incremental rewards. Must have length K+1; see Examples.

baseline
Baseline covariate name(s). Character vector.
deterministic_rewards
Deterministic reward variable name(s). Named list of character vectors of length K. The name of each element must be on the form "U_Aa" where "a" corresponds to an action in the action set.

id
ID variable name. Character string.
stage
Stage number variable name.
event
Event indicator name.
action_set
Character string. Action set across all stages.
verbose
Logical. If TRUE, formatting comments are printed to the console.
x
Object to be printed.
digits
Minimum number of digits to be printed.
...
Additional arguments passed to print.
object
Object of class policy_data
probs
numeric vector (probabilities)

Details
Each observation has the sequential form
\[ O = B, U_1, A_1, ..., U_K, X_K, A_K, U_{K+1}, \]
for a possibly stochastic number of stages K.
- \( B \) is a vector of baseline covariates.
- \( U_k \) is the reward at stage k (not influenced by the action \( A_k \)).
- \( X_k \) is a vector of state covariates summarizing the state at stage k.
- \( A_k \) is the categorical action at stage k.

The utility is given by the sum of the rewards, i.e., \( U = \sum_{k=1}^{K+1} U_k \).
Value

`policy_data()` returns an object of class "policy_data". The object is a list containing the following elements:

- `stage_data` data.table containing the id, stage number, event indicator, action ($A_k$), state covariates ($X_k$), reward ($U_k$), and the deterministic rewards.
- `baseline_data` data.table containing the id and baseline covariates ($B$).
- `colnames` List containing the state covariate names, baseline covariate names, and the deterministic reward variable names.
- `action_set` Sorted character vector describing the action set, i.e., the possible actions at all stages.
- `stage_action_sets` List of sorted character vectors describing the observed actions at each stage.
- `dim` List containing the number of observations (n) and the number of stages (K).

S3 generics

The following S3 generic functions are available for an object of class `policy_data`:

- `partial()` Trim the maximum number of stages in a `policy_data` object.
- `subset_id()` Subset a `policy_data` object on ID.
- `get_history()` Summarize the history and action at a given stage.
- `get_history_names()` Get history variable names.
- `get_actions()` Get the action at every stage.
- `get_utility()` Get the utility.
- `plot()` Plot method.

See Also

`policy_eval()`, `policy_learn()`, `copy_policy_data()`

Examples

```r
library("polle")
Single stage: Wide data
d1 <- sim_single_stage(n = 5e2, seed=1)
head(d1, 5)
constructing policy_data object:
pd1 <- policy_data(d1,
 action="A",
 covariates=c("Z", "B", "L"),
 utility="U")
pd1
associated S3 methods:
methods(class = "policy_data")
head(get_actions(pd1), 5)
head(get_utility(pd1), 5)
```
policy_def

Define Policy

Description

policy_def returns a function of class policy. The function input is a policy_data object and it returns a data.table with keys id and stage and action variable d.

Usage

policy_def(policy_functions, full_history = FALSE, reuse = FALSE, name = NULL)

Arguments

policy_functions
  A single function/character string or a list of functions/character strings. The list must have the same length as the number of stages.

full_history
  If TRUE, the full history at each stage is used as input to the policy functions.
reuse If TRUE, the policy function is reused at every stage.

name Character string.

Value

Function of class "policy". The function takes a policy_data object as input and returns a data.table with keys id and stage and action variable d.

See Also

get_history_names(), get_history().

Examples

library("polle")
/// Single stage"
d1 <- sim_singleStage(5e2, seed=1)
pd1 <- policy_data(d1, action="A", covariates=list("Z", "B", "L"), utility="U")

# defining a static policy (A=1):
p1_static <- policy_def(1)

# applying the policy:
p1_static(pd1)

# defining a dynamic policy:
p1_dynamic <- policy_def(
  function(Z, L) ((3*Z + L -2.5)>0)*1
)
p1_dynamic(pd1)

/// Two stages:
d2 <- sim_twoStage(5e2, seed = 1)
pd2 <- policy_data(d2,
  action = c("A_1", "A_2"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))

# defining a static policy (A=0):
p2_static <- policy_def(0,
  reuse = TRUE)
p2_static(pd2)

# defining a reused dynamic policy:
p2_dynamic_reuse <- policy_def(
  function(L) (L > 0)*1,
  reuse = TRUE
)
p2_dynamic_reuse(pd2)
# defining a dynamic policy for each stage based on the full history:
# available variable names at each stage:
get_history_names(pd2, stage = 1)
get_history_names(pd2, stage = 2)

p2_dynamic <- policy_def(
  policy_functions = list(
    function(L_1) (L_1 > 0)*1,
    function(L_1, L_2) (L_1 + L_2 > 0)*1
  ),
  full_history = TRUE
)
p2_dynamic(pd2)

---

policy_eval

**Policy Evaluation**

**Description**

policy_eval() is used to estimate the value of a given fixed policy or a data adaptive policy (e.g. a policy learned from the data).

**Usage**

```r
policy_eval(
 policy_data,
 policy = NULL,
 policy_learn = NULL,
 g_functions = NULL,
 g_models = g_glm(),
 g_full_history = FALSE,
 save_g_functions = TRUE,
 q_functions = NULL,
 q_models = q_glm(),
 q_full_history = FALSE,
 save_q_functions = TRUE,
 type = "dr",
 M = 1,
 future_args = list(future.seed = TRUE),
 name = NULL
)
```

```r
S3 method for class 'policy_eval'
coef(object, ...)
```

```r
S3 method for class 'policy_eval'
IC(x, ...)
```
## Arguments

policy_data  Policy data object created by `policy_data()`.
policy      Policy object created by `policy_def()`.
policy_learn Policy learner object created by `policy_learn()`.
g_functions Fitted g-model objects, see `nuisance_functions`. Preferably, use `g_models`.
g_models   List of action probability models/g-models for each stage created by `g_empir()`, `g_glm()`, `g_rf()`, `g_sl()` or similar functions. Only used for evaluation if `g_functions` is `NULL`. If a single model is provided and `g_full_history` is `FALSE`, a single g-model is fitted across all stages. If `g_full_history` is `TRUE` the model is reused at every stage.
g_full_history If TRUE, the full history is used to fit each g-model. If FALSE, the state/Markov type history is used to fit each g-model.
save_g_functions If TRUE, the fitted g-functions are saved.
q_functions Fitted Q-model objects, see `nuisance_functions`. Only valid if the Q-functions are fitted using the same policy. Preferably, use `q_models`.
q_models   Outcome regression models/Q-models created by `q_glm()`, `q_rf()`, `q_sl()` or similar functions. Only used for evaluation if `q_functions` is `NULL`. If a single model is provided, the model is reused at every stage.
q_full_history Similar to `g_full_history`.
save_q_functions Similar to `save_g_functions`.
type        Type of evaluation (dr/doubly robust, ipw/inverse propensity weighting, or/outcome regression).
M           Number of folds for cross-fitting.
future_args Arguments passed to `future.apply::future_apply()`.
name Character string.
object, x, y Objects of class "policy_eval".
... Additional arguments.
labels Name(s) of the estimate(s).
paired TRUE indicates that the estimates are based on the same data sample.

Details

Each observation has the sequential form

\[ O = B, U_1, X_1, A_1, ..., U_K, X_K, A_K, U_{K+1}, \]

for a possibly stochastic number of stages K.

- \( B \) is a vector of baseline covariates.
- \( U_k \) is the reward at stage k (not influenced by the action \( A_k \)).
- \( X_k \) is a vector of state covariates summarizing the state at stage k.
- \( A_k \) is the categorical action within the action set \( A \) at stage k.

The utility is given by the sum of the rewards, i.e.,

\[ U = \sum_{k=1}^{K+1} U_k. \]

A policy is a set of functions

\[ d = \{d_1, ..., d_K\}, \]

where \( d_k \) for \( k \in \{1, ..., K\} \) maps \( \{B, X_1, A_1, ..., A_{k-1}, X_k\} \) into the action set.

Recursively define the Q-models (q_models):

\[ Q^d_K(h_K, a_K) = E[U|H_K = h_K, A_K = a_K] \]
\[ Q^d_k(h_k, a_k) = E[Q^{d_{k+1}}(H_{k+1}, d_{k+1}(B, X_1, A_1, ..., X_{k+1}))|H_K = h_k, A_K = a_k]. \]

If \( q_{full\_history} = TRUE \), \( H_k = \{B, X_1, A_1, ..., A_{k-1}, X_k\} \), and if \( q_{full\_history} = FALSE \), \( H_k = \{B, X_k\} \).

The g-models (g_models) are defined as

\[ g_k(h_k, a_k) = P(A_k = a_k|H_k = h_k). \]

If \( g_{full\_history} = TRUE \), \( H_k = \{B, X_1, A_1, ..., A_{k-1}, X_k\} \), and if \( g_{full\_history} = FALSE \), \( H_k = \{B, X_k\} \). Furthermore, if \( g_{full\_history} = FALSE \) and \( g_{models} \) is a single model, it is assumed that \( g_1(h_1, a_1) = ... = g_K(h_K, a_K) \).

If type = "or" policy_eval returns the empirical estimates of the value (value_estimate):

\[ E[Q^d_1(H_1, d_1(\ldots))] \]

for an appropriate input ... to the policy.

If type = "ipw" policy_eval returns the empirical estimates of the value (value_estimate) and score (IC):

\[ E[\prod_{k=1}^{K} I\{A_k = d_k(\ldots\})g_k(H_k, A_k)^{-1})U]. \]
\[
\left( \prod_{k=1}^{K} I\{A_k = d_k(\ldots)\}g_k(H_k, A_k)^{-1}\right)U - E\left( \prod_{k=1}^{K} I\{A_k = d_k(\ldots)\}g_k(H_k, A_k)^{-1}\right)U. 
\]

If type = "dr" policy_eval returns the empirical estimates of the value (value_estimate) and influence curve (IC):
\[
E[Z_d^1], \\
Z_1^d - E[Z_1^d],
\]
where
\[
Z_1^d = Q_1^d(H_1, d_1(\ldots)) + \sum_{r=1}^{K} \prod_{j=1}^{r} I\{A_j = d_j(\ldots)\} \frac{I\{A_j = d_j(\ldots)\}}{g_j(H_j, A_j)} \left( Q_{r+1}^d(H_{r+1}, d_{r+1}(\ldots)) - Q_r^d(H_r, d_r(\ldots)) \right).
\]

Value

policy_eval() returns an object of class "policy_eval". The object is a list containing the following elements:

- value_estimate: Numeric. The estimated value of the policy.
- type: Character string. The type of evaluation ("dr", "ipw", "or").
- IC: Numeric vector. Estimated influence curve associated with the value estimate.
- value_estimate_ipw: (only if type = "dr") Numeric. The estimated value of the policy based on inverse probability weighting.
- value_estimate_or: (only if type = "dr") Numeric. The estimated value of the policy based on outcome regression.
- id: Character vector. The IDs of the observations.
- policy_actions: data.table with keys id and stage. Actions associated with the policy for every observation and stage.
- policy_object: (only if policy = NULL and M = 1) The policy object returned by policy_learn, see policy_learn.
- g_functions: (only if M = 1) The fitted g-functions. Object of class "nuisance_functions".
- g_values: The fitted g-function values.
- q_functions: (only if M = 1) The fitted Q-functions. Object of class "nuisance_functions".
- q_values: The fitted Q-function values.
- cross_fits: (only if M > 1) List containing the "policy_eval" object for every (validation) fold.
- folds: (only if M > 1) The (validation) folds used for cross-fitting.
S3 generics

The following S3 generic functions are available for an object of class `policy_eval`:

- `get_g_functions()` Extract the fitted g-functions.
- `get_q_functions()` Extract the fitted Q-functions.
- `get_policy()` Extract the fitted policy object.
- `get_policy_functions()` Extract the fitted policy function for a given stage.
- `get_policy_actions()` Extract the (fitted) policy actions.
- `plot.policy_eval()` Plot diagnostics.

References


See Also

`lava::IC`, `lava::estimate.default`.

Examples

```r
library("polle")
Single stage:
dl <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(dl, action="A", covariates=list("Z", "B", "L"), utility="U")
pd1

defining a static policy (A=1):
pl1 <- policy_def(1)

evaluating the policy:
pe1 <- policy_eval(policy_data = pd1, policy = pl1,
g_models = g_glm(),
q_models = q_glm(),
name = "A=1 (glm)"

summarizing the estimated value of the policy:
(equivalent to summary(pe1)):
pe1
 coef(pe1) # value coefficient
 sqrt(vcov(pe1)) # value standard error

getting the g-function and Q-function values:
head(predict(get_g_functions(pe1), pd1))
```
head(predict(get_q_functions(pe1), pd1))

# getting the fitted influence curve (IC) for the value:
head(IC(pe1))

# evaluating the policy using random forest nuisance models:
set.seed(1)
pe1_rf <- policy_eval(policy_data = pd1,
  policy = pl1,
  g_models = g_rf(),
  q_models = q_rf(),
  name = "A=1 (rf)"
)

# merging the two estimates (equivalent to pe1 + pe1_rf):
(est1 <- merge(pe1, pe1_rf))
coef(est1)
head(IC(est1))

### Two stages:
d2 <- sim_two_stage(5e2, seed=1)
pd2 <- policy_data(d2,
  action = c("A_1", "A_2"),
  covariates = list(L = c("L_1", "L_2"),
                   C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))

# defining a policy learner based on cross-fitted doubly robust Q-learning:
pl2 <- policy_learn(type = "drql",
  control = control_drql(qv_models = list(q_glm(~C_1),
                                           q_glm(~C_1+C_2))),
  full_history = TRUE,
  L = 2) # number of folds for cross-fitting

# evaluating the policy learner using 2-fold cross fitting:
pe2 <- policy_eval(type = "dr",
  policy_data = pd2,
  policy_learn = pl2,
  q_models = q_glm(),
  g_models = g_glm(),
  M = 2, # number of folds for cross-fitting
  name = "drql")

# summarizing the estimated value of the policy:
pe2

# getting the cross-fitted policy actions:
head(get_policy_actions(pe2))
**Description**

`policy_learn()` is used to specify a policy learning method (Q-learning, doubly robust Q-learning, policy tree learning and outcome weighted learning). Evaluating the policy learner returns a policy object.

**Usage**

```r
policy_learn(
 type = "ql",
 control = list(),
 alpha = 0,
 full_history = FALSE,
 L = 1,
 cross_fit_g_models = TRUE,
 save_cross_fit_models = FALSE,
 future_args = list(future.seed = TRUE),
 name = type
)
```

```r
S3 method for class 'policy_learn' print(x, ...)
```

```r
S3 method for class 'policy_object' print(x, ...)
```

**Arguments**

- **type** Type of policy learner method:
  - "ql": Quality/Q-learning.
  - "drql": Doubly Robust Q-learning.
  - "blip": Doubly Robust blip-learning (only for dichotomous actions).
  - "ptl": Policy Tree Learning.
  - "owl": Outcome Weighted Learning.
  - "earl": Efficient Augmentation and Relaxation Learning (only single stage).
  - "rwl": Residual Weighted Learning (only single stage).

- **control** List of control arguments. Values (and default values) are set using `control_{type}()`.
  Key arguments include:
  - `control_drql()`:
    - `qv_models`: Single element or list of V-restricted Q-models created by `q_glm()`, `q_rf()`, `q_sl()` or similar functions.

  ```r
 control_blip():
  ```
  - `blip_models`: Single element or list of V-restricted blip-models created by `q_glm()`, `q_rf()`, `q_sl()` or similar functions.
control_ptl():

- policy_vars: Character vector/string or list of character vectors/strings. Variable names used to construct the V-restricted policy tree. The names must be a subset of the history names, see get_history_names().
- hybrid: If TRUE, policytree::hybrid_policy_tree() is used to fit a policy tree.
- depth: Integer or integer vector. The depth of the fitted policy tree for each stage.

cancel_owl():

- policy_vars: As in control_ptl().
- loss: Loss function. The options are "hinge", "ramp", "logit", "logit.lasso", "l2", "l2.lasso".
- kernel: Type of kernel used by the support vector machine. The options are "linear", "rbf".
- augment: If TRUE the outcomes are augmented.

cancel_earl()/control_rwl():

- moPropen: Propensity model of class "ModelObj", see modelObj::modelObj.
- moMain: Main effects outcome model of class "ModelObj".
- moCont: Contrast outcome model of class "ModelObj".
- regime: An object of class formula specifying the design of the policy.
- surrogate: The surrogate 0-1 loss function. The options are "logit", "exp", "hinge", "sqhinge", "huber".
- kernel: The options are "linear", "poly", "radial".

alpha Probability threshold for determining realistic actions.
full_history If TRUE, the full history is used to fit each policy function (e.g. QV-model, policy tree). If FALSE, the single stage/"Markov type" history is used to fit each policy function.
L Number of folds for cross-fitting nuisance models.
cross_fit_g_models If TRUE, the g-models will not be cross-fitted even if L > 1.
save_cross_fit_models If TRUE, the cross-fitted models will be saved.
future_args Arguments passed to future.apply::future_apply().
name Character string.
x Object of class "policy_object" or "policy_learn".
... Additional arguments passed to print.
Value

Function of inherited class "policy_learn". Evaluating the function on a policy_data object returns an object of class policy_object. A policy object is a list containing all or some of the following elements:

- **q_functions** Fitted Q-functions. Object of class "nuisance_functions".
- **g_functions** Fitted g-functions. Object of class "nuisance_functions".
- **action_set** Sorted character vector describing the action set, i.e., the possible actions at each stage.
- **alpha** Numeric. Probability threshold to determine realistic actions.
- **K** Integer. Maximal number of stages.
- **qv_functions** (only if type = "drql") Fitted V-restricted Q-functions. Contains a fitted model for each stage and action.
- **ptl_objects** (only if type = "ptl") Fitted V-restricted policy trees. Contains a policy_tree for each stage.
- **ptl_designs** (only if type = "ptl") Specification of the V-restricted design matrix for each stage

S3 generics

The following S3 generic functions are available for an object of class "policy_object":

- **get_g_functions()** Extract the fitted g-functions.
- **get_q_functions()** Extract the fitted Q-functions.
- **get_policy()** Extract the fitted policy object.
- **get_policy_functions()** Extract the fitted policy function for a given stage.
- **get_policy_actions()** Extract the (fitted) policy actions.

References


See Also

- policy_eval()
Examples

```r
library("polle")
Two stages:
d <- sim_two_stage(5e2, seed=1)
pd <- policy_data(d,
 action = c("A_1", "A_2"),
 baseline = c("BB"),
 covariates = list(L = c("L_1", "L_2"),
 C = c("C_1", "C_2")),
 utility = c("U_1", "U_2", "U_3"))
pd

V-restricted (Doubly Robust) Q-learning

specifying the learner:
pl <- policy_learn(
 type = "drql",
 control = control_drql(qv_models = list(q_glm(formula = ~ C_1 + BB),
 q_glm(formula = ~ L_1 + BB)),
 full_history = TRUE)
)

evaluating the learned policy
pe <- policy_eval(policy_data = pd,
 policy_learn = pl,
 q_models = q_glm(),
 g_models = g_glm())

getting the policy object:
po <- get_policy_object(pe)
inspecting the fitted QV-model for each action strata at stage 1:
po$qv_functions$stage_1

head(get_policy(pe)(pd))
```

predict.nuisance_functions

`predict.nuisance_functions` returns the fitted values of the g-functions and Q-functions when applied to a (new) policy data object.

Usage

```r
S3 method for class 'nuisance_functions'
predict(object, new_policy_data, ...)
```
Arguments

- **object**: Object of class "nuisance_functions". Either `g_functions` or `q_functions` as returned by `policy_eval()` or `policy_learn()`.
- **new_policy_data**: Policy data object created by `policy_data()`.
- **...**: Additional arguments.

Value

data.table with keys id and stage and variables g.a or Q.a for each action a in the actions set.

Examples

```r
library("polle")
Single stage:
d <- sim_single_stage(5e2, seed=1)
pd <- policy_data(d, action="A", covariates=list("Z", "B", "L"), utility="U")
defining a static policy (A=1):
pl <- policy_def(1, name = "A=1")

doubly robust evaluation of the policy:
pe <- policy_eval(policy_data = pd,
 policy = pl,
 g_models = g_glm(),
 q_models = q_glm())
summarizing the estimated value of the policy:
pe

getting the fitted g-function values:
head(predict(get_g_functions(pe), pd))

getting the fitted Q-function values:
head(predict(get_q_functions(pe), pd))
```

---

**q_model**

**q_model class object**

Description

Use `q_glm()`, `q_glmnet()`, `q_rf()`, and `q_sl()` to construct an outcome regression model/Q-model object. The constructors are used as input for `policy_eval()` and `policy_learn()`.

Usage

```r
q_glm(
 formula = ~A * .,
 family = gaussian(),
```
Arguments

formula An object of class formula specifying the design matrix for the outcome regression model/Q-model at the given stage. The action at the given stage is always denoted 'A', see examples. Use get_history_names() to see the additional available variable names.

family A description of the error distribution and link function to be used in the model.
model (Only used by q_glm) If FALSE model frame will not be saved.
na.action (Only used by q_glm) A function which indicates what should happen when the
data contain NAs, see na.pass.
... Additional arguments passed to glm(), glmnet::glmnet, ranger::ranger or Super-
Learner::SuperLearner.
alp ha (Only used by q_glmnet) The elasticnet mixing parameter between 0 and 1.
alpha equal to 1 is the lasso penalty, and alpha equal to 0 the ridge penalty.
s (Only used by q_glmnet) Value(s) of the penalty parameter lambda at which
predictions are required, see glmnet::predict.glmnet().
num.trees (Only used by q_rf) Number of trees.
mtry (Only used by q_rf) Number of variables to possibly split at in each node.
cv_args (Only used by q_rf) Cross-validation parameters. Only used if multiple hyper-
parameters are given. K is the number of folds and rep is the number of replications.
SL.library (Only used by q_sl) Either a character vector of prediction algorithms or a list
containing character vectors, see SuperLearner::SuperLearner.
env (Only used by q_sl) Environment containing the learner functions. Defaults to
the calling environment.
onlySL (Only used by q_sl) Logical. If TRUE, only saves and computes predictions for
algorithms with non-zero coefficients in the super learner object.
discreteSL (Only used by q_sl) If TRUE, select the model with the lowest cross-validated
risk.
objective (Only used by q_xgboost) specify the learning task and the corresponding learn-
ing objective, see xgboost::xgboost.
params (Only used by q_xgboost) list of parameters.
nrounds (Only used by q_xgboost) max number of boosting iterations.
max_depth (Only used by q_xgboost) maximum depth of a tree.
eta (Only used by q_xgboost) learning rate.
nthread (Only used by q_xgboost) number of threads.

Details
q_glm() is a wrapper of glm() (generalized linear model).
q_glmnet() is a wrapper of glmnet::glmnet() (generalized linear model via penalized maximum
likelihood).
q_rf() is a wrapper of ranger::ranger() (random forest). When multiple hyper-parameters are
given, the model with the lowest cross-validation error is selected.
q_sl() is a wrapper of SuperLearner::SuperLearner (ensemble model). q_xgboost() is a wrapper
of xgboost::xgboost.

Value
q_model object: function with arguments 'AH' (combined action and history matrix) and 'V_res'
(residual value/expected utility).
See Also

get_history_names(), get_q_functions().

Examples

library("polle")
### Single stage case
d1 <- sim_single_stage(5e2, seed=1)
pd1 <- policy_data(d1,
  action="A",
  covariates=list("Z", "B", "L"),
  utility="U")
pd1

# available history variable names for the outcome regression:
get_history_names(pd1)

# evaluating the static policy a=1 using inverse
# propensity weighting based on the given Q-model:
pe1 <- policy_eval(type = "or",
  policy_data = pd1,
  policy = policy_def(1, name = "A=1"),
  q_model = q_glm(formula = ~A.*))
pe1

# getting the fitted Q-function values
head(predict(get_q_functions(pe1), pd1))

### Two stages:
d2 <- sim_two_stage(5e2, seed=1)
pd2 <- policy_data(d2,
  action = c("A_1", "A_2"),
  covariates = list(L = c("L_1", "L_2"),
                    C = c("C_1", "C_2")),
  utility = c("U_1", "U_2", "U_3"))
pd2

# available full history variable names at each stage:
get_history_names(pd2, stage = 1)
get_history_names(pd2, stage = 2)

# evaluating the static policy a=1 using outcome
# regression based on a glm model for each stage:
pe2 <- policy_eval(type = "or",
  policy_data = pd2,
  policy = policy_def(1, reuse = TRUE, name = "A=1"),
  q_model = list(q_glm(~ A * L_1),
                 q_glm(~ A * (L_1 + L_2))),
  q_full_history = TRUE)
pe2

# getting the fitted Q-function values
sim_multi_stage

Simulate Multi-Stage Data

Usage

sim_multi_stage(
  n,
  par = list(tau = 10, gamma = c(0, -0.2, 0.3),
             alpha = c(0, 0.5, 0.2, -0.5, 0.4),
             beta = c(3, -0.5, -0.5), psi = 1, xi = 0.3),
  a = function(t, x, beta, ...) {
                       (beta[3] * x))
    stats::rbinom(n = 1, size = 1, prob = prob)
  },
  seed = NULL
)

Arguments

n Number of observations.
par Named list with distributional parameters.
  • tau: τ
  • gamma: γ
  • alpha: α
  • beta: β
  • psi: ψ
  • xi: ξ
a Function used to specify the action/treatment at every stage.
seed Integer.

Details

sim_multi_stage samples n iid observation O with the following distribution:

\[ W \sim \mathcal{N}(0, 1)B \sim \text{Ber}(\xi) \]

For \( k \geq 1 \) let

\[
(T_k - T_{k-1}) | X_{k-1}, A_{k-1}, W \sim \left\{ \begin{array}{ll}
\text{Exp} \{ \exp (\gamma^T [1, X_{k-1}, W]) \} + \psi & A_{k-1} = 1 \\
\infty & A_{k-1} = 0
\end{array} \right.
\]

\[ X_k | T_k, X_{k-1}, B \sim \left\{ \begin{array}{ll}
\mathcal{N} \{ \alpha^T [1, T_k, 0] \} & T_k = \infty \\
0 & T_k < \infty
\end{array} \right. \]

Note that \( \psi \) is the minimum increment.
Simulate Single-Stage Data

**Usage**

```r
sim_single_stage(
 n = 10000,
 par = c(k = 0.1, d = 0.5, a = 1, b = -2.5, c = 3, p = 0.3),
 action_model = function(Z, L, B, k, d) {
 k * (Z + L - 1) * Z^(-2) + d * (B == 1)
 },
 utility_model = function(Z, L, A, a, b, c) {
 Z + L + A * (c * Z + a * L + b)
 },
 seed = NULL,
 return_model = FALSE,
 ...
)
```

**Arguments**

- **n** Number of observations.
- **par** Named vector with distributional parameters.
  - `k`: $\kappa$
  - `d`: $\delta$
  - `a`: $\alpha$
  - `b`: $\beta$
  - `c`: $\gamma$
  - `p`: $\pi$
- **action_model** Function used to specify the action/treatment probability (logit link).
- **utility_model** Function used to specify the conditional mean utility.
- **seed** Integer.
- **return_model** If TRUE, the lava::lvm model is returned.
- **...** Additional arguments passed to lava::lvm().

**Value**

list with elements `stage_data` (data.table) and `baseline_data` (data.table).
Details

`sim_single_stage_multi_actions` samples \( n \) iid observation \( O = (B, Z, L, A, U) \) with the following distribution:

\[
B \sim \text{Bernoulli}(\pi) \quad Z, L \sim \text{Uniform}([0, 1]) \quad A \mid Z, L, B \sim \text{Bernoulli}(\expit(\kappa Z^{-2}(Z+L-1)+\delta B)) \quad U \mid Z, L, A \sim \mathcal{N}(Z+L+A) \]

Value
data.frame with \( n \) rows and columns \( Z, L, B, A, \) and \( U \).

---

### Description

Simulate Single-Stage Multi-Action Data

### Usage

```r
sim_single_stage_multi_actions(n = 1000, seed = NULL)
```

### Arguments

- **n**: Number of observations.
- **seed**: Integer.

### Details

`sim_single_stage_multi_actions` samples \( n \) iid observation \( O = (z, x, a, u) \) with the following distribution:

\[
z, x \sim \text{Uniform}([0, 1]) \quad \tilde{a} \sim \mathcal{N}(0, 1) \quad a \mid \tilde{a} \sim \begin{cases} 
0 & \text{if } \tilde{a} < -1 \\
1 & \text{if } \tilde{a} - 1 \leq a < 0.5 \\
2 & \text{otherwise}
\end{cases} \quad u \mid z, x \sim \mathcal{N}(x+z+I\{a = 2\}(x-0.5)+I\{a =
```

Value
data.frame with \(n \) rows and columns \(z, x, a, \) and \(u \).
sim_two_stage

Simulate Two-Stage Data

Usage

```r
sim_two_stage(
  n = 10000,
  par = c(gamma = 0.5, beta = 1),
  seed = NULL,
  action_model_1 = function(C_1, beta, ...) stats::rbinom(n = NROW(C_1), size = 1, prob = lava::expit(beta * C_1)),
  action_model_2 = function(C_2, beta, ...) stats::rbinom(n = NROW(C_1), size = 1, prob = lava::expit(beta * C_2)),
  deterministic_rewards = FALSE
)
```

Arguments

- **n**: Number of observations.
- **par**: Named vector with distributional parameters.
 - **gamma**: γ
 - **beta**: β
- **seed**: Integer.
- **action_model_1**: Function used to specify the action/treatment at stage 1.
- **action_model_2**: Function used to specify the action/treatment at stage 2.
- **deterministic_rewards**: Logical. If TRUE, the deterministic reward contributions are returned as well (columns U_1_A0, U_1_A1, U_2_A0, U_2_A1).

Details

sim_two_stage samples \(n \) iid observation \(O \) with the following distribution: \(BB \) is a random categorical variable with levels group1, group2, and group3. Furthermore,

\[
B \sim N(0,1) \quad L_1 \sim N(0,1) \quad C_1 \sim \text{Bernoulli}(\text{expit}(\beta C_1)) \quad L_2 \sim N(0,1) \quad A_1 \sim N(\gamma L_1 + 0,1) \quad L_3 \sim N(0,1)
\]

The rewards are calculated as

\[
U_1 = L_1 U_2 = A_1 \cdot C_1 + L_2 U_3 = A_2 \cdot C_2 + L_3.
\]

Value

`data.table` with \(n \) rows and columns \(B, BB, L_1, C_1, A_1, L_2, C_2, A_2, L_3, U_1, U_2, U_3 \) (,U_1_A0, U_1_A1, U_2_A0, U_2_A1).
sim_two_stage_multi_actions

Simulate Two-Stage Multi-Action Data

Description

Simulate Two-Stage Multi-Action Data

Usage

```r
sim_two_stage_multi_actions(
  n = 1000,
  par = list(gamma = 0.5, beta = 1, prob = c(0.2, 0.4, 0.4)),
  seed = NULL,
  action_model_1 = function(C_1, beta, ...) stats::rbinom(n = NROW(C_1), size = 1, prob = 
    lava::expit(beta * C_1))
)
```

Arguments

- `n` Number of observations.
- `par` Named vector with distributional parameters.
 - `gamma`\(\gamma\)
 - `beta`\(\beta\)
 - `prob`\(p\)
- `seed` Integer.
- `action_model_1` Function used to specify the dichotomous action/treatment at stage 1.

Details

`sim_two_stage_multi_actions` samples \(n\) iid observation \(O\) with the following distribution:

- \(BB\) is a random categorical variable with levels `group1`, `group2`, and `group3`. Furthermore,

 \[
 B \sim \mathcal{N}(0, 1) \quad L_1 \sim \mathcal{N}(0, 1) \quad C_1 \quad L_2 \sim \mathcal{N}(L_1, 1) \quad P(A_1 = 'yes' | C_1) = \text{expit}(\beta C_1) \quad P(A_1 = 'no' | C_1) = 1 - P(A_1 = 'yes')
 \]

 The rewards are calculated as

 \[
 U_1 = L_1 U_2 = A_1 \cdot C_1 + L_2 U_3 = A_2 \cdot C_2 + L_3.
 \]

Value

`data.table` with \(n\) rows and columns `B`, `BB`, `L_1`, `C_1`, `A_1`, `L_2`, `C_2`, `A_2`, `L_3`, `U_1`, `U_2`, `U_3`.
Description
subset_id returns a policy data object containing the given IDs.

Usage
subset_id(object, id, preserve_action_set = TRUE)

Arguments
object Object of class policy_data.
id character vectors of IDs.
preserve_action_set If TRUE, the action sets must be preserved.

Value
Object of class policy_data.

Examples
library("polle")
Single stage:
d <- sim_single_stage(5e2, seed=1)
constructing policy_data object:
pd <- policy_data(d, action="A", covariates=list("Z", "B", "L"), utility="U")
pd

getting the observation IDs:
get_id(pd)[1:10]

subsetting on IDs:
pdsub <- subset_id(pd, id = 250:500)
pdsub
get_id(pdsub)[1:10]
Index

* package
 - polle-package, 3
 + .policy_eval (policy_eval), 40

 coef.policy_eval (policy_eval), 40
 conditional, 3
 control_blip, 4
c_control_blip(), 46
cntrol_drl, 5
cntrol_drl(), 46
cntrol_eal, 5
cntrol_eal(), 47
cntrol_owl, 6
cntrol_owl(), 47
cntrol_p, 7
cntrol_p(), 47
cntrol_rwl, 8
cntrol_rwl(), 47
copy_policy_data, 9
copy_policy_data(), 37
data.frame, 35
data.table, 9, 11, 16, 19, 20, 24, 28, 34, 37, 39, 43, 50, 55, 57, 58
data.table::copy(), 9
 DTRlearn2::owl(), 6
 DynTxRegime::earl, 5
 DynTxRegime::rwl(), 8

 estimate.policy_eval (policy_eval), 40
 fit_g_functions, 10
 formula, 6, 9, 26, 47, 51
 future.apply::future_apply(), 41, 47
 g_empir (g_model), 25
g_empir(), 10, 41
g glm (g_model), 25
g glm(), 10, 41
g glmnet (g_model), 25
g_model, 14, 25
g rf (g_model), 25
g rf(), 10, 41
g sl (g_model), 25
g sl(), 10, 41
g xgb (g_model), 25
 get_action_set, 12
 get_actions, 11
 get_actions(), 37
 get_g_functions, 13
 get_g_functions(), 27, 44, 48
 get_history, 28
 get_history(), 37, 39
 get_history_names, 14
 get_history_names(), 26, 27, 37, 39, 51, 53
 get_id, 15
 get_id_stage, 15
 get_K, 16
 get_n, 17
 get_policy, 18, 34
 get_policy(), 44, 48
 get_policy_actions, 19
 get_policy_actions(), 44, 48
 get_policy_functions
 (get_policy_functions.blip), 20
 get_policy_functions(), 44, 48
 get_policy_functions.blip, 20
 get_policy_object, 21
 get_q_functions, 22
 get_q_functions(), 44, 48, 53
 get_stage_action_sets, 23
 get_utility, 24
 get_utility(), 37
 glm(), 26, 52
 glmnet::glmnet, 26, 52
 glmnet::glmnet(), 26, 52
 glmnet::predict.glmnet(), 26, 52
 history, 15, 16, 28, 28
 IC.policy_eval (policy_eval), 40
lava::estimate.default, 3, 44
lava::IC, 44
lava::lvm, 55
lava::lvm(), 55
merge.policy_eval (policy_eval), 40
modelObj::modelObj, 6, 9, 47
na.pass, 26, 52
nuisance_functions, 13, 22, 30, 41
partial, 31
partial(), 37
plot(), 37
plot.policy_data, 32
plot.policy_eval, 33
plot.policy_eval(), 44
policy, 18, 32, 34, 38
policy_data, 9, 11, 12, 15–17, 23, 24, 28, 30–32, 35, 36, 38, 39, 48, 59
policy_data(), 3, 10, 14, 41, 50
policy_def, 34, 38
policy_def(), 41
policy_eval, 13, 18–20, 22, 33, 34, 40
policy_eval(), 3, 25, 35, 37, 48, 50
policy_learn, 20, 34, 43, 45
policy_learn(), 25, 35, 37, 41, 50
policy_object, 13, 18, 22, 34, 48
policy_object (policy_learn), 45
policy_tree, 48
policytree::hybrid_policy_tree(), 7, 8, 47
policytree::policy_tree(), 7
polle (polle-package), 3
polle-package, 3
predict.nuisance_functions, 13, 22, 49
print.policy_data (policy_data), 35
print.policy_eval (policy_eval), 40
print.policy_learn (policy_learn), 45
print.policy_object (policy_learn), 45
q_glm (q_model), 50
q_glm(), 4, 5, 41, 46
q_glmnet (q_model), 50
q_model, 14, 50
q_rf (q_model), 50
q_rf(), 4, 5, 41, 46
q_sl (q_model), 50
q_sl(), 4, 5, 41, 46
q_xgboost (q_model), 50
ranger::ranger, 26, 52
ranger::ranger(), 26, 52
scale(), 7
sim_multi_stage, 54
sim_single_stage, 55
sim_single_stage_multi_actions, 56
sim_two_stage, 57
sim_two_stage_multi_actions, 58
subset_id, 59
subset_id(), 37
summary.policy_data (policy_data), 35
summary.policy_eval (policy_eval), 40
SuperLearner::SuperLearner, 26, 52
vcov.policy_eval (policy_eval), 40
xgboost::xgboost, 26, 52