Package ‘polyaAeppli’

April 21, 2022

Type Package
Title Implementation of the Polya-Aeppli Distribution
Version 2.0.2
Depends R (>= 3.0.0)
Date 2022-04-21
Author Conrad Burden
Maintainer Conrad Burden <conrad.burden@anu.edu.au>
Description Functions for evaluating the mass density, cumulative distribution function, quantile function and random variate generation for the Polya-Aeppli distribution, also known as the geometric compound Poisson distribution. More information on the implementation can be found at Conrad J. Burden (2014) <arXiv:1406.2780>.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-21 11:10:04 UTC

R topics documented:

- polyaAeppli-package
- PolyaAeppli

Description

Functions for evaluating the mass density, cumulative distribution function, quantile function and random variate generation for the Polya-Aeppli distribution, also known as the geometric compound Poisson distribution.
More information on the implementation of `polyaAeppli` can be found at Conrad J. Burden (2014) <arXiv:1406.2780>.
Details

Package: polyaAeppli
Type: Package
Version: 2.0.2
Depends: R (>= 3.0.0)
Date: 2020-04-21
License: GPL(>=2)

Consistent with the conventions used in R package stats, this implementation of the Polya-Aeppli distribution comprises the four functions

dPolyaAeppli(x, lambda, prob, log = FALSE)
pPolyaAeppli(q, lambda, prob, lower.tail = TRUE, log.p = FALSE)
qPolyaAeppli(p, lambda, prob, lower.tail = TRUE, log.p = FALSE)
rPolyaAeppli(n, lambda, prob)

Author(s)

Conrad Burden
Maintainer: conrad.burden@anu.edu.au

References

Examples

```r
lambda <- 8
prob <- 0.2
## Plot histogram of random sample
PAsample <- rPolyaAeppli(10000, lambda, prob)
maxPA <- max(PAsample)
hist(PAsample, breaks=(0:(maxPA + 1)) - 0.5, freq=FALSE,
    xlab = "x", ylab = expression(P[X](x)), main="", border="blue")
## Add plot of density function
x <- 0:maxPA
points(x, dPolyaAeppli(x, lambda, prob), type="h", lwd=2)

lambda <- 4000
prob <- 0.005
qq <- 0:10000
## Plot log of the extreme lower tail p-value
log.pp <- pPolyaAeppli(qq, lambda, prob, log.p=TRUE)
plot(qq, log.pp, type = "l", ylim=c(-lambda,0),
```

Plot log of the extreme upper tail p-value

```r
log.1minuspp <- pPolyaAeppli(qq, lambda, prob, log.p=TRUE, lower.tail=FALSE)
points(qq, log.1minuspp, type = "l", col = "red")
legend("topright", c("lower tail", "upper tail"),
col=c("black", "red"), lty=1, bg="white")
```

Description

Density, distribution function, quantile function and random generation for the Polya-Aeppli distribution with parameters lambda and prob.

Usage

```r
dPolyaAeppli(x, lambda, prob, log = FALSE)
pPolyaAeppli(q, lambda, prob, lower.tail = TRUE, log.p = FALSE)
qPolyaAeppli(p, lambda, prob, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `x` vector of quantiles
- `q` vector of quantiles
- `p` vector of probabilities
- `n` number of random variables to return
- `lambda` a vector of non-negative Poisson parameters
- `prob` a vector of geometric parameters between 0 and 1
- `log, log.p` logical; if TRUE, probabilities p are given as log(p)
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$, otherwise $P[X > x]$

Details

A Polya-Aeppli, or geometric compound Poisson, random variable is the sum of a Poisson number of identically and independently distributed shifted geometric random variables. Its distribution (with $\text{lambda} = \lambda$, $\text{prob} = p$) has density

$$
Prob(X = x) = e^{(\lambda - \lambda)}
$$

for $x = 0$;

$$
Prob(X = x) = e^{(\lambda - \lambda)} \sum_{n=1}^{y} (\lambda^n)/(n!) \text{choose}(y - 1, n - 1)p^{(y - n)}(1 - p)^n
$$
for \(x = 1, 2, \ldots \).

If an element of \(x \) is not integer, the result of \(\text{dPolyaAeppli} \) is zero, with a warning.

The quantile is right continuous: \(\text{qPolyaAeppli}(p, \lambda, \text{prob}) \) is the smallest integer \(x \) such that \(P(X \leq x) \geq p \).

Setting \(\text{lower.tail} = \text{FALSE} \) enables much more precise results when the default, \(\text{lower.tail} = \text{TRUE} \) would return 1, see the example below.

Value

\(\text{dPolyaAeppli} \) gives the (log) density, \(\text{pPolyaAeppli} \) gives the (log) distribution function, \(\text{qPolyaAeppli} \) gives the quantile function, and \(\text{rPolyaAeppli} \) generates random deviates.

Invalid \(\lambda \) or \(\text{prob} \) will terminate with an error message.

Author(s)

Conrad Burden

References

Examples

```r
lambda <- 8
prob <- 0.2
## Plot histogram of random sample
PAsample <- rPolyaAeppli(10000, lambda, prob)
maxPA <- max(PAsample)
hist(PAsample, breaks=(0:(maxPA + 1)) - 0.5, freq=FALSE,
xlab = "x", ylab = expression(P[X](x)), main="", border="blue")
## Add plot of density function
x <- 0:maxPA
points(x, dPolyaAeppli(x, lambda, prob), type="h", lwd=2)

lambda <- 4000
prob <- 0.005
qq <- 0:10000
## Plot log of the extreme lower tail p-value
log.pp <- pPolyaAeppli(qq, lambda, prob, log.p=TRUE)
plot(qq, log.pp, type = "l", ylim=c(-lambda,0),
xlab = "x", ylab = expression("log Pr(X \leq "x")))
## Plot log of the extreme upper tail p-value
log.1minuspp <- pPolyaAeppli(qq, lambda, prob, log.p=TRUE, lower.tail=FALSE)
points(qq, log.1minuspp, type = "l", col = "red")
legend("topright", c("lower tail", "upper tail"),
col=c("black", "red"), lty=1, bg="white")
```
Index

dPolyaAeppli (PolyaAeppli), 3

PolyaAeppli, 3
polyAeppli (polyAeppli-package), 1
polyAeppli-package, 1
pPolyaAeppli (PolyaAeppli), 3

qPolyaAeppli (PolyaAeppli), 3

rPolyaAeppli (PolyaAeppli), 3