Package ‘popstudy’

October 18, 2023

Type Package

Title Applied Techniques to Demographic and Time Series Analysis

Version 1.0.1

Depends R (>= 3.5.0)

Maintainer Cesar Gamboa-Sanabria <info@cesargamboasanabria.com>

Description The use of overparameterization is proposed with combinatorial analysis to test a broader spectrum of possible ARIMA models.

In the selection of ARIMA models, the most traditional methods such as correlograms or others, do not usually cover many alternatives to define the number of coefficients to be estimated in the model, which represents an estimation method that is not the best.

The popstudy package contains several tools for statistical analysis in demography and time series based in Shryock research (Shryock et. al. (1980) <https://books.google.co.cr/books?id=80o6AQAAMAAJ>).

Imports ggplot2, magrittr, lubridate, dplyr, tidyr, stats, demography, forecast, ggpubr, moments, grid, DescTools, rcompanion, utils, corr, Hmisc, corrplot, correlation, parallel, here, stringr, scales, rainbow, Rdpack

License GPL-3

Encoding UTF-8

RdMacros Rdpack

LazyData true

URL https://www.cesargamboasanabria.com

RoxygenNote 7.2.3

Suggests testthat, snow

NeedsCompilation no

Author Cesar Gamboa-Sanabria [aut, mdc, cph, cre]

(<https://orcid.org/0000-0001-6733-4759>)

Repository CRAN

Date/Publication 2023-10-17 23:50:02 UTC
R topics documented:

anonymous .. 3
Beers ... 4
births_deaths .. 5
CEB ... 5
correlate_df .. 6
CR_births ... 7
CR_deaths ... 8
CR_fertility_rates_1950_2011 8
CR_mortality_rates_1950_2011 9
CR_mortality_rates_2010_2015 10
CR_populations_1950_2011 10
CR_populations_1950_2015 11
CR_women_childbearing_age_1950_2011 12
descriptive_plot ... 12
Ecuador1990 .. 13
El_Badry ... 14
grouped_age_CR_pop ... 15
growth_exp ... 16
growth_linear .. 17
growth_logistic ... 19
karup_king ... 20
karup_king_factors ... 21
Lexis .. 21
Lifetable ... 23
mortality_projection .. 24
Moultrie ... 26
Myers .. 27
netmigration_projection 28
op.arima ... 30
Panama1990 .. 32
popstudy ... 32
population_projection .. 33
project_structure .. 34
read_from_dir .. 35
required_packages .. 36
Sprague ... 37
TFR_projection ... 38

Index 40
Description

Anonymizing a data frame by avoiding vulnerability to a rainbow table attack.

Usage

```r
anonymous(data, ID, string_length = 15, SEED = NULL)
```

Arguments

- **data**: data.frame. A dataset with the variable to change its values.
- **ID**: character. A string with the variable name to change its values.
- **string_length**: numeric. It defines the string length of the new identification variable.
- **SEED**: to be passed to `set.seed` to keep the same new id's.

Value

`anonymous` function returns a list with two data frames:

- **data**: original data with the new variable
- **dictionary**: data frame with the original variable and the new one

Author(s)

Cesar Gamboa-Sanabria

References

Examples

```r
library(dplyr)
df <- select(mutate(mtcars, id=rownames(mtcars)), id, !contains("id"))
anonymous(df, ID="id", string_length = 5, SEED=160589)
```
Beers

Description
Method to open five-year grouped ages into specific ages.

Usage
Beers(data, ...)

Arguments
- **data**
 - data.frame. It contains at least two variables: five-year grouped ages and population.
- **...**
 - Arguments to be passed to dplyr::select, i.e., age and population, respectively.

Value
Beers returns a data.frame with specific ages and populations.

Author(s)
Cesar Gamboa-Sanabria

References

See Also
Sprague

Examples
Beers(Ecuador1990, age, population)
births_deaths

Births and deaths data

Description

Simulated data for Lexis Diagram examples.

Usage

```r
data("births_deaths")
```

Format

The format is: List of 2 $ births: tibble [32 x 3] (S3: tbl_df.tbl.data.frame) ..$ sex : chr [1:32] "male" "male" "male" "male"$ date_reg: Date[1:32], format:$ births : num [1:32] 121558 126446 130839 130911 127524 ... $ deaths: tibble [112 x 4] (S3: tbl_df.tbl.data.frame) ..$ sex : chr [1:112] "male" "male" "male" "male"$ date_reg: Date[1:112], format:$ age : num [1:112] 0 0 0 0 0 0 0 0 0 0$ deaths : num [1:112] 11411 10494 10814 9872 9457 ...

Examples

```r
data(births_deaths)
summary(births_deaths)
```

CEB

Children Ever Born Data

Description

Children Ever Born Data from Bolivia’s 2001 Census data.

Usage

```r
data("CEB")
```

Format

A data frame with 27 observations on 8 variables for each five-year grouped age.

Source

https://www.ine.gob.bo/

Examples

```r
data(CEB)
summary(CEB)
```
correlate_df

Description

Compute correlations in a data frames.

Usage

correlate_df(data, keep_class = NULL)

Arguments

data
data.frame. A dataset with the variables to correlate.
keep_class
list. A list that contains desire classes for specific variables.

Details

correlate_df takes data.frame class objects and works only with numeric, factor, and ordered class variables, so a previous data cleaning is needed for optimal results. A variable is considered nominal when it is a factor variable with more than two levels, and it is no ordered. When a numeric variable has only two different values, it is considered a binary variable. Also, when a factor variable has only two levels, it is regarded as a binary variable. The computed correlation will depend on the paired-variables class: Pearson method when both variables are numeric, Kendall correlation with a numeric and an ordinal variable, point-biserial with a numeric and a binary variable, Polychoric correlation with two ordinal variables, Tetrachoric correlation when both are binary, Rank-Biserial when one is ordinal, and the other is binary; and Kruskal’s Lambda with one binary and one nominal, or both nominal variables. A Gaussian linear model is fitted to estimate the multiple correlation coefficient in the specific cases of one nominal variable and another numerical or ordered, so the user should take it carefully.

Value

correlate_df function returns a list with three objects: A data-frame with the correlation matrix and two correlation plots.

Author(s)

Cesar Gamboa-Sanabria

References

Examples

```r
df <- data.frame(cont1=rnorm(100),
cont2=rnorm(100),
ordi1=factor(sample(1:5, 100, replace = TRUE), ordered = TRUE),
ordi2=factor(sample(1:7, 100, replace = TRUE), ordered = TRUE),
bin1=rbinom(100, 1, .4),
bin2=rbinom(100, 1, .6),
nomi1=factor(sample(letters[1:8], 100, replace = TRUE)),
nomi2=factor(sample(LETTERS[1:8], 100, replace = TRUE)))

corr_df(df)
```

Description

Births registers in Costa Rica.

Usage

```r
data("CR_births")
```

Format

A data frame with 8434 observations on the following 2 variables.

- `date_reg` a Date
- `births` a numeric vector

Source

https://inec.cr/

Examples

```r
data(CR_births)
summary(CR_births)
```
CR_deaths

Description
Deaths registers in Costa Rica.

Usage
```
data("CR_deaths")
```

Format
A data frame with 229462 observations on the following 3 variables.

<table>
<thead>
<tr>
<th>Date</th>
<th>Age</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>date_reg</td>
<td>age</td>
<td>deaths</td>
</tr>
</tbody>
</table>

Source
https://inec.cr/

Examples
```
data(CR_deaths)
summary(CR_deaths)
```

CR_fertility_rates_1950_2011

Description

Usage
```
data("CR_fertility_rates_1950_2011")
```

Format
A data frame with 2170 observations on the following 3 variables.

<table>
<thead>
<tr>
<th>Year</th>
<th>Age</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Age</td>
<td>Female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Age</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Age</td>
<td>Female</td>
</tr>
</tbody>
</table>

CR_mortality_rates_1950_2011

Source

https://inec.cr/

Examples

data(CR_fertility_rates_1950_2011)
summary(CR_fertility_rates_1950_2011)

CR_mortality_rates_1950_2011

Costa Rica mortality rates

Description

Usage

data("CR_mortality_rates_1950_2011")

Format

A data frame with 2170 observations on the following 4 variables.

Year a numeric vector
Age a numeric vector
Female a numeric vector with female mortality rates
Male a numeric vector with male mortality rates
Total a numeric vector with total mortality rates

Source

https://inec.cr/

Examples

data(CR_mortality_rates_1950_2011)
summary(CR_mortality_rates_1950_2011)
CR_mortality_rates_2010_2015

Costa Rica Mortality Rates

Description
Mortality rates for Costa Rica in 2010-2015

Usage
data("CR_mortality_rates_2010_2015")

Format
A data frame with 7656 observations on the following 4 variables.

Year a numeric vector
Age a numeric vector
Female a numeric vector with female mortality rates
Male a numeric vector with male mortality rates

Source
https://inec.cr/

Examples
data(CR_mortality_rates_2010_2015)
summary(CR_mortality_rates_2010_2015)

CR_populations_1950_2011

Costa Rica population

Description

Usage
data("CR_populations_1950_2011")
CR_populations_1950_2015

Format
A data frame with 7656 observations on the following 4 variables.

- **Year**: a numeric vector
- **Age**: a numeric vector
- **Female**: a numeric vector with female population
- **Male**: a numeric vector with male population
- **Total**: a numeric vector with total population

Source
https://inec.cr/

Examples
```r
data(CR_populations_1950_2011)
summary(CR_populations_1950_2011)
```

CR_populations_1950_2015

Costa Rica population

Description

Usage
```r
data("CR_populations_1950_2015")
```

Format
A data frame with 7656 observations on the following 4 variables.

- **Year**: a numeric vector
- **Age**: a numeric vector
- **Female**: a numeric vector with female population
- **Male**: a numeric vector with male population

Source
https://inec.cr/

Examples
```r
data(CR_populations_1950_2015)
summary(CR_populations_1950_2015)
```
CR_women_childbearing_age_1950_2011

Costa Rica population

Description

Usage

data("CR_women_childbearing_age_1950_2011")

Format

A data frame with 7656 observations on the following 4 variables.

Year a numeric vector
Age a numeric vector
Female a numeric vector with women of reproductive age population

Source

https://inec.cr/

Examples

data(CR_women_childbearing_age_1950_2011)
summary(CR_women_childbearing_age_1950_2011)

descriptive_plot descriptive_plot

descriptive_plot

Description

Plot density with descriptive statistics for numerical values.

Usage

descriptive_plot(data, ..., labels = NULL, ylab = "Density")

Arguments

data data.frame.
... additional arguments to be passed to dplyr::select().
labels A vector with x-axis labels.
ylab y-axis label.
Value

descriptive_plot function returns a plot with density and descriptive statistics.

Author(s)

Cesar Gamboa-Sanabria

Examples

```r
df <- data.frame(var1=rpois(50, 6), var2=rgamma(50, shape=5, rate=.4), var3=rnorm(50, 10))
descriptive_plot(df, var1, var3)
```

Description

Ecuador census data in 1990 by grouped ages.

Usage

```r
data("Ecuador1990")
```

Format

A data frame with 21 observations on the following 4 variables.

- **age** a factor with levels `0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 100+`
- **male** a numeric vector with males population
- **female** a numeric vector with female population
- **population** a numeric vector Ecuador population

Source

Examples

```r
data(Ecuador1990)
summary(Ecuador1990)
```
El_Badry

El-Badry method

Description

The method corrects the zero parity omission error.

Usage

```
El_Badry(data, age, CEB, childs, req_ages = NULL)
```

Arguments

- `data`: data.drame. It contains at least three variables: five-year grouped ages, number of childs and Children Ever Born (CEB).
- `age`: variable name in `data` of the five-year grouped age.
- `CEB`: variable name in `data` with number of Children Ever Born.
- `childs`: variable name in `data` with the number of childs for each five-year grouped age and number of Children Ever Born.
- `req_ages`: optional character string that specifies the five-year grouped age to estimate the intercept.

Value

`Moultrie` returns a list with two elements: a data.frame with corrected children for each number of Children Ever Born and five-year grouped ages and a data.frame with combinations of five-year grouped age to estimate intercept, slope, and R-squared. By default, the method uses the best value of R-squared to apply the El Badry correction.

Author(s)

Cesar Gamboa-Sanabria

References

See Also

`CEB Moultrie`
grouped_age_CR_pop

Examples

```r
CEB_data <- tidyr::gather(CEB, ages, childs, -Children_Ever_Born)
results <- Moultrie(CEB_data, ages, childs, Children_Ever_Born)
CEB_data <- tidyr::pivot_wider(results, names_from=age, values_from=childs)
CEB_data <- tidyr::gather(CEB_data, ages, children, -CEB)
El_Badry(CEB_data, ages, CEB, children)
```

Description

Costa Rica population by 5-year-group ages in 2011.

Usage

```r
data("grouped_age_CR_pop")
```

Format

A data frame with 16 observations on the following 2 variables.

- **age**: an ordered factor with levels 0 - 4 < 5 - 9 < 10 - 14 < 15 - 19 < 20 - 24 < 25 - 29 < 30 - 34 < 35 - 39 < 40 - 44 < 45 - 49 < 50 - 54 < 55 - 59 < 60 - 64 < 65 - 69 < 70 - 74 < 75 and more
- **pop**: a numeric vector with the population

Source

https://inec.cr/

Examples

```r
data(grouped_age_CR_pop)
str(grouped_age_CR_pop)
```
\textit{growth_exp} \hspace{1cm} \textit{Exponential growth}

\textbf{Description}

Assuming an exponential behavior estimates the population size at time \(t\), the growth rate, or population at time \(0\).

\textbf{Usage}

\begin{verbatim}
growth_exp(Nt = NULL, N0 = NULL, r = NULL, t0, t, time_interval, date = FALSE)
\end{verbatim}

\textbf{Arguments}

- \texttt{Nt} numeric. The population at time \(t\). If null and date = FALSE, then estimate the population at time \(t\).
- \texttt{N0} numeric. The population at time \(0\). If null and date = FALSE, then estimate the population at time \(0\).
- \texttt{r} numeric. The growth rate. If null and date = FALSE, then estimate the growth rate for the time period \([t0,t]\).
- \texttt{t0} numeric. An object of class character with the date for the first population.
- \texttt{t} numeric. An object of class character with the date for the second population.
- \texttt{time_interval} character. A string with the time interval to calculate Delta\(_t\).
- \texttt{date} logical. If TRUE, then estimates the moment \(t\) when \(N_t\) reaches a specific value.

\textbf{Value}

\texttt{growth_exp} returns a data frame with \(N0\), \(N_tr\), \(t0\), \(t\), delta, and \texttt{time_interval} for desire parameters.

\textbf{Author(s)}

Cesar Gamboa-Sanabria

\textbf{References}

\textbf{See Also}

\texttt{growth_linear, growth_logistic}
Examples

According to the Panama census in 2000-05-14,
the population was 2,839,177. In 2010-05-16, the census
calculates 3,405,813 population.
To get r:

growth_exp(N0=2839177, Nt=3405813, t0="2000-05-14", t="2010-05-16", time_interval = "years")

To get Nt at 2000-06-30:

growth_exp(N0=2839177, r=0.0182, t0="2000-05-14", t="2000-06-30", time_interval = "years")

The time when the population will be 5,000,000.

growth_exp(N0=2839177, Nt=5000000, r=0.0182, t0="2000-05-14", date=TRUE)

growth_linear Linear growth

Description

Assuming an linear behavior, estimates the population size at time t, the growth rate, or population at time 0.

Usage

growth_linear(
 Nt = NULL,
 N0 = NULL,
 r = NULL,
 t0,
 t,
 time_interval,
 date = FALSE
)

Arguments

Nt numeric. The population at time t. If null and date = FALSE, then estimate the population at time t.

N0 numeric. The population at time 0. If null and date = FALSE, then estimate the population at time 0.

r numeric. The growth rate. If null and date = FALSE, then estimate the growth rate for the time period [t0,t].

t0 numeric. An object of class character with the date for the first population.
growth_linear

t numeric. An object of class character with the date for the second population.
time_interval character. A string with the time interval to calculate Delta_t.
date logical. If TRUE, then estimates the moment t when N_t reaches a specific value.

Value

growth_linear returns a data frame with N_0, N_t, t_0, t, delta, and time_interval for desire parameters.

Author(s)

Cesar Gamboa-Sanabria

References

See Also

growth_exp, growth_logistic

Examples

According to the Panama census at 2000-05-14, # the population was 2,839,177. In 2010-05-16, the census # calculates 3,405,813 population. # To get r:

growth_linear(N_0=2839177, N_t=3405813, t_0="2000-05-14", t="2010-05-16", time_interval = "years")

To get N_t at 2000-06-30:

growth_linear(N_0=2839177, r=0.0182, t_0="2000-05-14", t="2000-06-30", time_interval = "years")

The time when the population will be 5,000,000.

growth_linear(N_0=2839177, N_t=5000000, r=0.0182, t_0="2000-05-14", date=TRUE)
growth_logistic

Description

Given two pivots and limits, estimates the growth assuming a logistic behavior.

Usage

```r
growth_logistic(pivot_values, pivot_years, upper, lower, t)
```

Arguments

- `pivot_values`: numeric. Reference values to estimate, like TFR for two specific years.
- `pivot_years`: numeric. Reference years to estimate for both values in `pivot_values`.
- `lower`: numeric. Lower asymptotic value.
- `t`: numeric. Year to get logistic value.

Value

`growth_logistic` returns the logistic estimation for specified year.

Author(s)

Cesar Gamboa-Sanabria

References

See Also

`growth_exp`, `growth_linear`

Examples

```r
# Given TFR values 3.32 and 2.85 for the years 1986 and 1991, respectively,
# estimate the TFR in 1987 assuming 1.5 as lower limit and 8 as upper limit.

growth_logistic(pivot_values = c(3.32, 2.85), pivot_years = c(1986, 1991),
upper = 8, lower=1.5, t=1987)
```
karup_king

Description

Separate grouped-age data to simple ages data using Karup-King separation factors.

Usage

karup_king(data)

Arguments

data data.frame. A dataset with two variables: age, the group age each 5 years; and pop, the population for that age.

Value

karup_king function returns a data frame with separated simple ages.

Author(s)

Cesar Gamboa-Sanabria

References

See Also

grouped_age_CR_pop

Examples

karup_king(grouped_age_CR_pop)
karup_king_factors

Description
Karup-King separation factors.

Usage
data("karup_king_factors")

Format
A data frame with 76 observations on the following 7 variables.

- **age**: a character vector with simple ages
- **f1**: a numeric vector, Karup-King factor
- **f2**: a numeric vector, Karup-King factor
- **f3**: a numeric vector, Karup-King factor
- **d1**: a numeric vector, used in karup_king function, do not edit by hand
- **d2**: a numeric vector, used in karup_king function, do not edit by hand
- **d3**: a numeric vector, used in karup_king function, do not edit by hand

References

Examples

data(karup_king_factors)
str(karup_king_factors)

Lexis

Lexis diagram

Description
Plot a Lexis Diagram from births and deaths data for a given year, month, and day with specific simple ages.
Usage

Lexis(
 deaths_data,
 births_data,
 first.date = NULL,
 choose_year,
 choose_month,
 choose_day,
 ages,
 factors = NULL
)

Arguments

deads_data data.frame. A dataset with three variables: date_reg, the registered death date, age, the age of decease; and deaths, the deaths number for that date. See CR_deaths.

births_data data data.frame. A dataset with two variables: date_reg, the registered birth date; and births, the births number for that date. See CR_births.

first.date character. Optional argument that specifies the first date of interest.

choose_year numeric. The year from which the countdown begins until the desired minimum age is reached.

choose_month numeric. The month from which the countdown begins until the desired minimum age is reached.

choose_day numeric. The day from which the countdown begins until the desired minimum age is reached.

ages numeric. An ages vector to plot the diagram.

factors numeric. Optional argument to set specific factors to set alpha and delta sections in Lexis Diagram.

Value

Lexis function returns a list with two objects: diagram, the Lexis diagram; and deaths, the estimated deaths number.

Author(s)

Cesar Gamboa-Sanabria

References

Examples

Lexis(CR_deaths, CR_births, choose_year=2011, choose_month=1, choose_day=1, ages=0:9)$diagram

Lexis diagram with specific factors
data("births_deaths")
Births <- dplyr::filter(births_deaths$births, sex="male")
Deaths <- dplyr::filter(births_deaths$deaths, sex="male")
Lexis(deaths_data=Deaths, births_data=Births, first.date = "1999-01-01",
choose_year=2007, choose_month=1, choose_day=1, ages=0:4,
factors = c(.2,.41,.47,.48,.48))$diagram

Description

Estimates a lifetable from mortality rates and population data.

Usage

Lifetable(
 rates,
 pops,
 sex,
 max_age = NULL,
 first_year,
 threshold,
 jump,
 element = c("mx", "qx", "lx", "dx", "Lx", "Tx", "ex", "rx"),
 ...
)

Arguments

rates character. A character string that specifies mortality data path. The dataset is a .txt file like CR_mortality_rates_2010_2015.
pops character. A character string that specifies population data path. The dataset is a .txt file like CR_populations_1950_2015.
sex character. "female" or "male".
max_age numeric. Desire omega age. If NULL, Lifetable function takes the dataset’s maximum age.
first_year numeric. First year to start estimation.
threshold numeric. Maximum forecast year.
jump character. Same purpose to jumpchoice argument in forecast function.
element

character. Wanted estimation element, one of "mx", "qx", "lx", "dx", "Lx", "Tx", "ex" or "rx".

... additional arguments to be passed to `read.demogdata`, such as label.

Value

Lifetable function returns a list with both data frames, wide and long format, for specified element in argument `element` for desire years.

Author(s)

Cesar Gamboa-Sanabria

References

Examples

```r
## Not run:
write.table(CR_mortality_rates_2010_2015,
file = "CR_mortality_rates_2010_2015.txt",
sep = "\t", row.names = FALSE, quote = FALSE)

write.table(CR_populations_1950_2015,
file = "CR_populations_1950_2015.txt",
sep = "\t", row.names = FALSE, quote = FALSE)

sex="female", first_year=2011, threshold=2150, jump="actual", max_age = 100,
element="ex", label="CR")

## End(Not run)
```

Description

Forecasting mortality rates.
mortality_projection

Usage

mortality_projection(
 mortality_rates_path,
 total_population_path,
 omega_age,
 horizon,
 first_year_projection,
 ...
)

Arguments

mortality_rates_path

total_population_path
 character. Path to Populations in a .txt file.

omega_age
 numeric. Maximum age.

horizon
 numeric. The forecast horizon.

first_year_projection
 numeric. Year for the base population.

... additional arguments to be passed to forecast::Arima().

Value

mortality_projection returns an object of class fmforecast with with both female and male mortality projections and the components of demography::forecast.lca().

Author(s)

Cesar Gamboa-Sanabria

Examples

Not run:
library(dplyr)

data(CR_mortality_rates_1950_2011)

#CR_mortality_rates_1950_2011 %>%
#write.table(.,
#file = "CR_mortality_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
data(CR_populations_1950_2011)

#CR_populations_1950_2011 %>%
#write.table(.,
#file = "CR_populations_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

#result <- mortality_projection(mortality_rates_path = "CR_mortality_rates_1950_2011.txt",
#total_population_path = "CR_populations_1950_2011.txt",
#omega_age = 115, first_year_projection = 2011, horizon = 2150)

End(Not run)

Moultrie

Moultrie rule for Children Ever Born

Description

Moultrie’s proposal for correction of Children Ever Born in five-year grouped ages.

Usage

`Moultrie(data, ...)`

Arguments

- **data**
 data.frame. It contains at least three variables: five-year grouped ages, number of childs and Children Ever Born (CEB).

- **...**
 Arguments to be passed to `dplyr::select`, i.e., five-year grouped ages, number of childs and Children Ever Born.

Value

`Moultrie` returns a data.frame with corrected childs for each number of Children Ever Born and five-year grouped ages.

Author(s)

Cesar Gamboa-Sanabria

References

Description

An upgrade over the Whipple index allows analyzing digit’s attraction (or repulsion) from 0 to 9.

Usage

```r
Myers(data, ...)
```

Arguments

- `data` : data.frame. It contains at least two variables: specific ages and population.
- `...` : Arguments to be passed to `dplyr::select`, i.e., age and population, respectively.

Value

`Myers` returns a list with two objects:

- `Mmat` : a data.frame with specific digits index
- `MI` : the Myer's Blend Index.

Author(s)

Cesar Gamboa-Sanabria

References

Examples

```r
results <- Myers(Panama1990, age, pop)
results$Mmat
results$MI
```

Description

Forecasting net migration.

Usage

```r
netmigration_projection(
  mortality_rates_path,
  TFR_path,
  total_population_path,
  WRA_path,
  omega_age,
  horizon,
  first_year_projection
)
```

Arguments

- `TFR_path` character. Path to Fertility rates in a .txt file.
- `total_population_path` character. Path to Populations in a .txt file.
- `WRA_path` character. Path to Women of Reproductive Age in a .txt file.
- `horizon` numeric. The forecast horizon.
- `first_year_projection` numeric. Year for the base population.

Value

`netmigration_projection` returns an object of class `fmforecast` with the forecast netmigration models and the components of `demography::forecast.fdmpr()`.
Author(s)

Cesar Gamboa-Sanabria

Examples

```r
## Not run:
library(dplyr)

data(CR_mortality_rates_1950_2011)
#CR_mortality_rates_1950_2011 %>%
#write.table(.,
#file = "CR_mortality_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

data(CR_populations_1950_2011)
#CR_populations_1950_2011 %>%
#write.table(.,
#file = "CR_populations_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

data(CR_fertility_rates_1950_2011)
#CR_fertility_rates_1950_2011 %>%
#write.table(.,
#file = "CR_fertility_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

data(CR_women_childbearing_age_1950_2011)
#CR_women_childbearing_age_1950_2011 %>%
#write.table(.,
#file = "CR_women_childbearing_age_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)
```
op.arima

Description

Estimates the best predictive ARIMA model using overparameterization.

Usage

op.arima(
 arima_process = c(p = 1, d = 1, q = 1, P = 1, D = 1, Q = 1),
 seasonal_periodicity,
 time_serie,
 reg = NULL,
 horiz = 12,
 prop = 0.8,
 training_weight = 0.2,
 testing_weight = 0.8,
 parallelize = FALSE,
 clusters = detectCores(logical = FALSE),
 LAMBDA = NULL,
 ISP = 100,
 ...
)

Arguments

arima_process numeric. The ARIMA(p,d,q)(P,D,Q) process.
seasonal_periodicity numeric. The seasonal periodicity, 12 for monthly data.
time_serie ts. The univariate time series object to estimate the models.
reg Optionally, a vector or matrix of external regressors, which must have the same
 number of rows as time_serie.
horiz numeric. The forecast horizon.
prop numeric. Data proportion for training dataset.
op.arima

training_weight numeric. Importance weight for the goodness of fit and precision measures in the training dataset.

testing_weight numeric. Importance weight for the goodness of fit and precision measures in the testing dataset.

parallelize logical. If TRUE, then use parallel processing.

clusters numeric. The number of clusters for the parallel process.

LAMBDA Optionally. See `forecast::Arima()` for details.

ISP numeric. Overparameterization indicator to filter the estimated models in the (0,100] interval.

... additional arguments to be passed to `forecast::Arima()`.

Value

`op.arima` returns an object of class `list` with the following components:

arima_models all models defined by the `arima_process` argument.

final_measures goodness of fit and precision measures for each model.

bests a sorted list with the best ARIMA models.

best_model a list of "Arima", see `forecast::Arima()`

Author(s)

Cesar Gamboa-Sanabria

References

Examples

```r
op.arima(arima_process = c(2,1,2,2,1,2),
         time_serie = AirPassengers,
         seasonal_periodicity = 12, parallelize=FALSE)
```
Panama1990

Description
Panama census data in 1990 by specific ages.

Usage
data("Panama1990")

Format
A data frame with 100 observations on the following 2 variables.

age a character vector with specific ages
pop a numeric vector with population for each age

Source
https://ccp.ucr.ac.cr/

Examples
data(Panama1990)
summary(Panama1990)

popstudy

Description
Applied techniques to demographic and time series analysis.

Author(s)
Cesar Gamboa-Sanabria <info@cesargamboasanabria.com>
Description
Forecasting population using the components method.

Usage
population_projection(...)

Arguments
... required arguments for mortality_projection, TFR_projection and netmigration_projection.

Value
population_projection returns an object of class list with the following components:
mort mortality projections from mortality_projection.
fert fertility projections from TFR_projection.
mig netmigration projections from netmigration_projection.
pop the national projections by sex and year.

Author(s)
Cesar Gamboa-Sanabria

See Also
mortality_projection TFR_projection netmigration_projection

Examples

Not run:
library(dplyr)
data(CR_mortality_rates_1950_2011)

#CR_mortality_rates_1950_2011 %>%
#write.table(.,
#file = "CR_mortality_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
```r
# Quote = FALSE)

data(CR_populations_1950_2011)

# CR_populations_1950_2011 %>%
# write.table(.,
# file = "CR_populations_1950_2011.txt",
# sep = "\t",
# row.names = FALSE,
# col.names = TRUE,
# quote = FALSE)

data(CR_fertility_rates_1950_2011)

# CR_fertility_rates_1950_2011 %>%
# write.table(.,
# file = "CR_fertility_rates_1950_2011.txt",
# sep = "\t",
# row.names = FALSE,
# col.names = TRUE,
# quote = FALSE)

data(CR_women_childbearing_age_1950_2011)

# CR_women_childbearing_age_1950_2011 %>%
# write.table(.,
# file = "CR_women_childbearing_age_1950_2011.txt",
# sep = "\t",
# row.names = FALSE,
# col.names = TRUE,
# quote = FALSE)

# result <- population_projection(mortality_rates_path = "CR_mortality_rates_1950_2011.txt",
# total_population_path = "CR_populations_1950_2011.txt",
# TFR_path = "CR_fertility_rates_1950_2011.txt",
# WRA_path = "CR_women_childbearing_age_1950_2011.txt",
# omega_age = 115, first_year_projection = 2011, horizon = 2020)

## End(Not run)
```

Description

Create a basic structure for a project repo.
read_from_dir

Usage

```r
project_structure()
```

Value

`project_structure` does not return a value, it only creates basic directories and files in the current working directory/repository.

Author(s)

Cesar Gamboa-Sanabria

Examples

```r
## Not run:
project_structure()

## End(Not run)
```

read_from_dir

Description

Get full path from a file.

Usage

```r
read_from_dir(file, path = NULL)
```

Arguments

- `file`
 The file name.
- `path`
 The file location.

Value

`read_from_dir` returns an object of class character with the normalized path for a file.

Author(s)

Cesar Gamboa-Sanabria
Examples

```r
## Not run:
file.create("test_file.txt")
read_from_dir("test_file.txt")
## End(Not run)
```

Description

Install/load the required packages from CRAN.

Usage

```r
required_packages(...)  
```

Arguments

```r
...  packages names.
```

Value

required_packages does not return a value, it only install and load the desired packages.

Author(s)

Cesar Gamboa-Sanabria

Examples

```r
## Not run:
#If you need to install and load the tidyr, dplyr and ggplot2 packages, run the following line:
#required_packages(tidyr, dplyr, ggplot2)
## End(Not run)
```
Sprague

Sprague multipliers

Description

Method to open five-year grouped ages into specific ages.

Usage

Sprague(data, ...)

Arguments

- **data**: data.frame. It contains at least two variables: five-year grouped ages and population.
- **...**: Arguments to be passed to dplyr::select, i.e., age and population, respectively.

Value

Sprague returns an object of class data.frame with population for specific ages.

Author(s)

Cesar Gamboa-Sanabria

References

See Also

Beers

Examples

Sprague(Ecuador1990, age, population)
Description
Forecasting total fertility rates.

Usage
TFR_projection(TFR_path, WRA_path, horizon, first_year_projection, ...)

Arguments
- TFR_path character. Path to Fertility rates in a .txt file.
- WRA_path character. Path to Women of Reproductive Age in a .txt file.
- horizon numeric. The forecast horizon.
- first_year_projection numeric. Year for the base population.
- ... additional arguments to be passed to forecast::Arima().

Value
TFR_projection returns an object of class fmforecast with the forecast fertility rates and the components of demography::forecast.fdm().

Author(s)
Cesar Gamboa-Sanabria

Examples

library(dplyr)

data(CR_fertility_rates_1950_2011)

#CR_fertility_rates_1950_2011 %>%
#write.table(.,
#file = "CR_fertility_rates_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

data(CR_women_childbearing_age_1950_2011)
#CR_women_childbearing_age_1950_2011 %>%
#write.table(.,
#file = "CR_women_childbearing_age_1950_2011.txt",
#sep = "\t",
#row.names = FALSE,
#col.names = TRUE,
#quote = FALSE)

#result <- TFR_projection(TFR_path = "CR_fertility_rates_1950_2011.txt",
#WRA_path = "CR_women_childbearing_age_1950_2011.txt",
#omega_age = 115, first_year_projection = 2011, horizon = 2150)
Index

* datasets
 births_deaths, 5
 CEB, 5
 CR_births, 7
 CR_deaths, 8
 CR_fertility_rates_1950_2011, 8
 CR_mortality_rates_1950_2011, 9
 CR_mortality_rates_2010_2015, 10
 CR_populations_1950_2011, 10
 CR_populations_1950_2015, 11
 CR_women_childbearing_age_1950_2011, 12
 Ecuador1990, 13
 grouped_age_CR_pop, 15
 karup_king_factors, 21
 Panama1990, 32

anonymous, 3

Beers, 4, 37
births_deaths, 5

CEB, 5, 14, 27
correlate_df, 6
CR_births, 7, 22
CR_deaths, 8, 22
CR_fertility_rates_1950_2011, 8
CR_mortality_rates_1950_2011, 9
CR_mortality_rates_2010_2015, 10, 23
CR_populations_1950_2011, 10
CR_populations_1950_2015, 11, 23
CR_women_childbearing_age_1950_2011, 12

demography::forecast.fdm(), 38
demography::forecast.fdmpr(), 28
demography::forecast.lca(), 25
descriptive_plot, 12
dplyr::select(), 12

Ecuador1990, 13

El_Badry, 14, 27
forecast, 23
forecast::Arima(), 25, 31, 38
grouped_age_CR_pop, 15, 20
growth_exp, 16, 18, 19
growth_linear, 16, 17, 19
growth_logistic, 16, 18, 19
karup_king, 20, 21
karup_king_factors, 21
Lexis, 21
Lifetable, 23
mortality_projection, 24, 33
Moultrie, 14, 26
Myers, 27

netmigration_projection, 28, 33
op.arima, 30
Panama1990, 32
popstudy, 32
popstudy-package (popstudy), 32
population_projection, 33
project_structure, 34
read.demogdata, 24
read_from_dir, 35
required_packages, 36
set.seed, 3
Sprague, 4, 37
TFR_projection, 33, 38