Package ‘portfolio.optimization’

August 24, 2018

Type Package
Title Contemporary Portfolio Optimization
Version 1.0-0
Date 2018-08-20
Maintainer Ronald Hochreiter <ron@hochreiter.net>

Description Simplify your portfolio optimization process by applying a contemporary modeling way to model and solve your portfolio problems. While most approaches and packages are rather complicated this one tries to simplify things and is agnostic regarding risk measures as well as optimization solvers. Some of the methods implemented are described by Konno and Yamazaki (1991) <doi:10.1287/mnsc.37.5.519>, Rockafellar and Uryasev (2001) <doi:10.21314/JOR.2000.038> and Markowitz (1952) <doi:10.1111/j.1540-6261.1952.tb01525.x>.

Depends R (>= 3.5), xts, MASS, magrittr, modopt.matlab
License MIT + file LICENSE
URL http://www.finance-r.com/
RoxygenNote 6.1.0

R topics documented:

 portfolio.optimization-package 2
 active.extension 3
 alpha .. 3
 aux_portfolio.default 4
 aux_risk.alias 5
 aux_simulate.scenarios 5
 linear.constraint.eq 6
 linear.constraint.iq 6
Description

Simplify your portfolio optimization process by applying a contemporary modeling way to model and solve your portfolio problems. While most approaches and packages are rather complicated this one tries to simplify things and is agnostic regarding risk measures as well as optimization solvers. Some of the methods implemented are described by Konno and Yamazaki (1991) <doi:10.1287/mnsc.37.5.519>, Rockafellar and Uryasev (2001) <doi:10.21314/JOR.2000.038> and Markowitz (1952) <doi:10.1111/j.1540-6261.1952.tb01525.x>.

Author(s)

Ronald Hochreiter, <ronald@hochreiter.net>

References

http://www.finance-r.com/
active.extension

See Also

Useful links:

- http://www.finance-r.com/

Description

active.extension adds corresponding long/short constraints for a diverse set of active extension portfolios (e.g. 130/30 portfolios)

Usage

active.extension(model, up = 130, down = 30)

Arguments

- model: the portfolio.model to activate
- up: percentage long (e.g. 130)
- down: percentage short (e.g. 30)

Value

portfolio.model with active extension enabled

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

alpha

Set new alpha of a portfolio.model

Description

alpha sets a new alpha for VaR and Expected Shortfall

Usage

alpha(model, alpha)

Arguments

- model: the portfolio.model to be changed
- alpha: the value alpha (between 0 and 1)
Value

the adapted portfolio.model

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

Examples

data(sp100w17av30s)
model <- optimal.portfolio(scenario.set)
cvar95 <- optimal.portfolio(objective(model, "expected.shortfall"))
cvar90 <- optimal.portfolio(alpha(cvar95, 0.1))

aux_portfolio.default Set portfolio.model default values

Description

aux_portfolio.default sets portfolio.model default values

Usage

aux_portfolio.default(model)

Arguments

model the portfolio.model to be reset

Value

a portfolio.model with all default values set

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
aux_risk.alias

Convert risk alias names to internal names

Description

aux_risk.alias converts risk alias names to internal names.

Usage

```r
aux_risk.alias(risk)
```

Arguments

- `risk` the risk name to be standardized

Value

the standardized risk name (if any)

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

aux_simulate.scenarios

Simulate a multivariate-normal scenario set

Description

aux_simulate.scenarios simulates a scenario set given a mean vector and a covariance matrix using mvrnorm of the MASS package.

Usage

```r
aux_simulate.scenarios(mu, Sigma, n = 1000, seed = 280277)
```

Arguments

- `mu` mean vector of asset returns
- `Sigma` covariance matrix of asset returns
- `n` number of scenarios to simulate (default 1000)
- `seed` random number seed (default 280277)

Value

A scenario set ‘simulation’ with mean ‘mu’ and covariance ‘Sigma’
linear.constraint.eq
Create or update a vector-based linear equality constraint set

Description

linear.constraint.eq creates a vector-based linear equality constraint: $Aeq(range) * factors == beq$

Usage

linear.constraint.eq(constraints.linear, range, beq, factors = NULL)

Arguments

- constraints.linear
 the current set of equality constraints
- range
 the range of the variables to set (default 1 if factors is NULL)
- beq
 right-hand side scalar
- factors
 values to set for each variable in the given range

Value

the new (updated) set of equality constraints

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

linear.constraint.iq
Create or update a vector-based linear inequality constraint set

Description

linear.constraint.iq creates a vector-based linear inequality constraint: $Aeq(range) * factors <= beq$

Usage

linear.constraint.iq(constraints.linear, range, b, factors = NULL, leq = TRUE)

Arguments

- constraints.linear
 the current set of equality constraints
- range
 the range of the variables to set (default 1 if factors is NULL)
- b
 right-hand side scalar
- factors
 values to set for each variable in the given range
- leq
 whether to use a less than or equal to constraint

Value

the new (updated) set of inequality constraints

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
Arguments

- constraints.linear: the current set of inequality constraints
- range: the range of the variables to set (default 1 if factors is NULL)
- b: right-hand side scalar
- factors: values to set for each variable in the given range
- leq: if false then the sign of the constraint will be inverted

Value

the new (updated) set of inequality constraints

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

long.only

Disable active extension portfolios

Description

long.only switches a portfolio.model back to long-only by disabling the active extension

Usage

long.only(model)

Arguments

- model: the portfolio.model to deactivate active extensions

Value

portfolio.model with active extension disabled

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
lower bound
Set lower bounds on assets

Description
lower bound sets lower bounds on assets within a portfolio.model

Usage
lower_bound(model, v1 = NULL, v2 = NULL)

Arguments
- **model**
 the portfolio.model to adapt the lower bounds
- **v1**
 either one lower bound or lower bounds for all assets
- **v2**
 if not empty then v1 contains the positions (or names) and v2 the bounds

Value
portfolio.model with new lower bounds

Author(s)
Ronald Hochreiter, <ronald@algorithmic.finance>

momentum
Set momentum parameters for a portfolio.model

Description
momentum sets a new alpha for VaR and Expected Shortfall

Usage
momentum(model, n_momentum, n_momentum.short = NULL)

Arguments
- **model**
 the portfolio.model to be changed
- **n_momentum**
 amount of momentum assets long
- **n_momentum.short**
 amount of momentum assets short

Value
the adapted portfolio.model
Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

objective
Set new objective of a portfolio.model

Description

objective sets a new objective for VaR and Expected Shortfall

Usage

```r
objective(model, objective = "markowitz")
```

Arguments

- `model`: the portfolio.model to be changed
- `objective`: the new objective

Value

the adapted portfolio.model

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

Examples

```r
data(sp100w17av30s)
model <- portfolio.model(scenario.set)
mad <- optimal.portfolio(objective(model, "mad"))
```

optimal.portfolio
Meta-function to optimize portfolios given a portfolio.model instance

Description

optimal.portfolio optimizes the portfolio of a model given the current specification
Usage

optimal.portfolio(input = NULL, ...)
p.opt(input = NULL, ...)
opt.p(input = NULL, ...)

Arguments

input either a portfolio.model or something to convert to a new model
... other parameters to be passed on to the optimization sub-functions.

Value

an S3 object of class portfolio.model with the optimized portfolio.

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

Examples

data(sp100w17av30s)
model <- optimal.portfolio(scenario.set)

optimal.portfolio.1overn

1 over N portfolio

Description

optimal.portfolio.1overn adds a 1 over N portfolio to the portfolio.model

Usage

optimal.portfolio.1overn(model)

Arguments

model the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
optimal.portfolio.expected.shortfall

Portfolio Optimization minimizing Conditional Value at Risk (CVaR)

Description

`optimal.portfolio.expected.shortfall` conducts a Portfolio Optimization minimizing Conditional Value at Risk (CVaR) based on Rockafellar and Uryasev (2001).

Usage

```r
optimal.portfolio.expected.shortfall(model)
```

Arguments

- `model`: the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

optimal.portfolio.expected.shortfall.long.short

Portfolio Optimization minimizing Conditional Value at Risk (CVaR) with active extensions

Description

`optimal.portfolio.expected.shortfall.long.short` conducts a Portfolio Optimization minimizing Conditional Value at Risk (CVaR) based on Rockafellar and Uryasev (2001) with active extensions.

Usage

```r
optimal.portfolio.expected.shortfall.long.short(model)
```

Arguments

- `model`: the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio
optimal.portfolio.mad *Portfolio Optimization minimizing MAD*

Description

optimal.portfolio.mad conducts a Portfolio Optimization minimizing Mean Absolute Deviation (MAD) based on Konno and Yamazaki (1991)

Usage

```r
optimal.portfolio.mad(model)
```

Arguments

- `model` the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

optimal.portfolio.mad.long.short *Portfolio Optimization minimizing MAD (Active Extension)*

Description

optimal.portfolio.mad.long.short conducts a Portfolio Optimization minimizing Mean Absolute Deviation (MAD) based on Konno and Yamazaki (1991) including an active extension

Usage

```r
optimal.portfolio.mad.long.short(model)
```

Arguments

- `model` the portfolio.model to compute the portfolio of
Value
the portfolio.model including the newly computed optimal portfolio

Author(s)
Ronald Hochreiter, <ronald@algorithmic.finance>

optimal.portfolio.markowitz

Portfolio Optimization minimizing Standard Deviation

Description
portfolio.weights conducts a Portfolio Optimization minimizing Standard Deviation based on Markowitz (1952).

Usage
optimal.portfolio.markowitz(model)

Arguments
model the portfolio.model to compute the portfolio of

Value
the portfolio.model including the newly computed optimal portfolio

Author(s)
Ronald Hochreiter, <ronald@algorithmic.finance>

optimal.portfolio.momentum

Momentum portfolio including momentum for active extensions

Description
optimal.portfolio.momentum adds a momentum portfolio to the portfolio.model

Usage
optimal.portfolio.momentum(model)
optimal.portfolio.reward

Arguments

model the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

optimal.portfolio.reward

Compute maximum/minimum return portfolio given the constraints

Description

optimal.portfolio.reward computes a maximum/minimum return portfolio given the constraints

Usage

optimal.portfolio.reward(model)

Arguments

model the portfolio.model to compute the portfolio of

Value

the portfolio.model including the newly computed optimal portfolio

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
po.tutorial

Open a specific portfolio.optimization package tutorial

Description

po.tutorial returns the filename of a specific portfolio.optimization package tutorial. If no tutorial is given or the tutorial is misspelled, a list of available tutorials is printed.

Usage

 po.tutorial(tutorial = "")

Arguments

 tutorial name of the tutorial to open

Value

 Nothing if no tutorial specified, otherwise the path to the tutorial.

Author(s)

 Ronald Hochreiter, <ronald@algorithmic.finance>

Examples

 # Not run:
 file.edit(po.tutorial("101"))
 file.edit(po.tutorial("compare"))

 # End(Not run)

portfolio.loss

Return the loss distribution of the portfolio.model

Description

 portfolio.loss return the loss distribution of the portfolio.model

Usage

 portfolio.loss(model)

 l(model)
portfolio.model

Arguments

model the portfolio.model to display

Value

nothing

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

portfolio.model Create a portfolio.model instance (or fix an existing one)

Description

portfolio.model creates a new S3 portfolio.model instance or fixes an existing one.

Usage

portfolio.model(input = NULL)

p.mo(input = NULL)

Arguments

input model, scenario.set or mean.covariance list

Value

an S3 object of class portfolio.model

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
portfolio.weights

Return the portfolio weights of a portfolio.model

Description

portfolio.weights return the portfolio weights of a portfolio.model

Usage

portfolio.weights(model)
portfolio(model)
w(model)
weights(model)
x(model)

Arguments

model the portfolio.model to return the portfolio weights from

Value

a vector of portfolio weights or NULL if no weights are available yet.

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

Examples

data(sp100w17avS0s)
portfolio.weights(optimal.portfolio(scenario.set))

print.portfolio.model

Overload print() for portfolio.model

Description

print.portfolio.model overloads print() and outputs some information about the portfolio.model object
Usage

```r
## S3 method for class 'portfolio.model'
print(x, ...)
```

Arguments

- `x` : the portfolio.model to display
- `...` : further parameters

Value

nothing

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>

sp100w17

S&P 100 weekly stock returns 2017

Description

A dataset sp100w17 containing the (crude) weekly returns of (almost) all S&P 100 stocks of 2017, daily basis (101 stocks, 251 returns).

Usage

```r
data(sp100w17)
```

Format

One xts time series object with 251 rows and 101 columns.

Details

Furthermore contains a vector sp100w17av with the average trading volume of all stocks in 2017 - to be used for a subselection.
sp100w17av

S&P 100 average trading volume over the whole year 2017

Description
A vector sp100w17av with the average trading volume of all stocks in 2017 - to be used e.g. for a subselection.

Usage
data(sp100w17)

Format
One named numeric vector of length 101.

sp100w17av30s

S&P 100 weekly stock returns 2017 of 30 stocks with the highest average trading volume over the whole year

Description
A scenario sp100w17 containing the (crude) weekly returns of (almost) all S&P 100 stocks of 2017, daily basis (101 stocks, 251 returns).

Usage
data(sp100w17av30s)

Format
A named matrix scenario.set with 251 rows and 30 columns.
upper.bound

Set upper bounds on assets

Description

upper.bound sets lower bounds on assets within a *portfolio.model*.

Usage

`upper.bound(model, v1 = NULL, v2 = NULL)`

Arguments

- *model*
 The *portfolio.model* to adapt the upper bounds.
- *v1*
 Either one upper bound or lower bounds for all assets.
- *v2*
 If not empty then *v1* contains the positions (or names) and *v2* the bounds.

Value

portfolio.model with new upper bounds.

Author(s)

Ronald Hochreiter, <ronald@algorithmic.finance>
Index

*Topic datasets
 sp100w17, 18
 sp100w17av, 19
 sp100w17avS0s, 19

active.extension, 3
alpha, 3
aux.portfolio.default, 4
aux.risk.alias, 5
aux.simulate.scenarios, 5

l(portfolio.loss), 15
linear.constraint.eq, 6
linear.constraint.iq, 6
long.only, 7
lower.bound, 8

momentum, 8

objective, 9
opt.p(optimal.portfolio), 9
optimal.portfolio, 9
optimal.portfolio.lowerN, 10
optimal.portfolio.expected.shortfall,
 11
optimal.portfolio.expected.shortfall.long.short,
 11
optimal.portfolio.mad, 12
optimal.portfolio.mad.long.short, 12
optimal.portfolio.markowitz, 13
optimal.portfolio.momentum, 13
optimal.portfolio.reward, 14

p.mo(portfolio.model), 16
p.opt(optimal.portfolio), 9
po.tutorial, 15
portfolio(portfolio.weights), 17
portfolio.loss, 15
portfolio.model, 16

portfolio.optimization
 (portfolio.optimization-package), 2
portfolio.optimization-package, 2
portfolio.weights, 17
print.portfolio.model, 17
scenario.set(sp100w17avS0s), 19
sp100w17, 18
sp100w17av, 19
sp100w17avS0s, 19
upper.bound, 20
w(portfolio.weights), 17
weights(portfolio.weights), 17
x(portfolio.weights), 17

21