Package ‘powerNLSEM’

July 31, 2024

Type Package

Title Simulation-Based Power Estimation (MSPE) for Nonlinear SEM

Version 0.1.1

Author Julien Patrick Irmer [aut, cre, cph]

Maintainer Julien Patrick Irmer <jpirmer@gmail.com>

Description Model-implied simulation-based power estimation (MSPE) for nonlinear (and linear) SEM, path analysis and regression analysis. A theoretical framework is used to approximate the relation between power and sample size for given type I error rates and effect sizes. The package offers an adaptive search algorithm to find the optimal N for given effect sizes and type I error rates. Plots can be used to visualize the power relation to N for different parameters of interest (POI). Theoretical justifications are given in Irmer et al. (2024a) <doi:10.31219/osf.io/pe5bj> and detailed description are given in Irmer et al. (2024b).

License GPL-3

URL https://github.com/jpirmer/powerNLSEM

BugReports https://github.com/jpirmer/powerNLSEM/issues

Depends ggplot2, stats, utils

Imports crayon, lavaan (>= 0.6.16), mvtnorm, numDeriv, pbapply, rlang (>= 1.1.0), stringr

Suggests knitr, MplusAutomation (>= 0.7-2), rmarkdown, semTools, simsem

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Repository CRAN

Date/Publication 2024-07-31 10:30:29 UTC
Contents

FSR ... 2
LMS ... 3
plot.powerNLSEM ... 4
powerNLSEM .. 6
power_search ... 9
print.powerNLSEM ... 12
print.summary.powerNLSEM 12
reanalyse.powerNLSEM ... 13
simulateNLSEM .. 14
SR ... 14
summary.powerNLSEM ... 15
UPI ... 16

Index 19

FSR

Factor Score Regression approach

Description

Factor Score Regression approach

Usage

FSR(lavModel_Analysis, data, FSmethod = "SL", data_transformations = NULL)

Arguments

lavModel_Analysis

the lavModel_Analysis object
data

set to fit
FSmethod

Method to be used to extract factor scores. Default to "SL" for the Skrondal and Laake approach that uses regression ("regression") factor scores for the independent variables and "Bartlett" factor scores for the dependent variables.
data_transformations

Data transformations

Value

Returns a data.frame that includes parameter estimates estimated using FSR.
References

LMS

Latent moderated structured equations by Klein and Moosbrugger (2000), the ML approach to nonlinear SEM

Description

Latent moderated structured equations by Klein and Moosbrugger (2000), the ML approach to nonlinear SEM

Usage

```r
LMS(
  lavModel_Analysis,
  data,
  data_transformations = NULL,
  prefix = 1,
  pathLMS = tempdir(),
  algorithm = "INTEGRATION"
)
```

Arguments

- `lavModel_Analysis`: the lavModel_Analysis object
- `data`: set to fit
- `data_transformations`: Object containing info on possible data transformations.
- `prefix`: an arbitrary prefix for the data set. This prevents issues when using parallelization and Mplus.
- `pathLMS`: path where (temporal) data and scripts for running LMS using Mplus are stored (using MplusAutomation). Default to NULL, then tempdir() is used.
- `algorithm`: algorithm to use. Default to INTEGRATION.

Value

Returns a data.frame that includes parameter estimates estimated using LMS.
plot.powerNLSEM

plot.powerNLSEM object

Description

plot powerNLSEM object

Usage

S3 method for class 'powerNLSEM'
plot(
 x,
 test = NULL,
 plot = "power_model",
 power_modeling_method = NULL,
 se = FALSE,
 power_aim = NULL,
 alpha = NULL,
 alpha_power_modeling = NULL,
 min_num_bins = 10,
 defaultgg = FALSE,
 ...
)

Arguments

x object of class powerNLSEM
test Should the parameter be tested with a directed hypothesis (onesided) or with an undirected hypothesis (twosided, also equivalent to Wald-Test for single parameter). Default to NULL, then the same as in fitted powerNLSEM object in x is used.plot Character indicating what type of plot to create. Default to "power_model", referencing to the prediction of significant parameters using the model specified in power_modeling_method.power_modeling_method Character indicating the power modeling method used. This is only relevant when plot = "power_model" is used. Default to NULL, indicating to use the same power modeling method as was used in the powerNLSEM function.se Logical indicating to use confidence intervals based on normal approximation using the standard errors. Default to FALSE.

References

plot.powerNLSEM

power_aim
- Power level to be included into the plot with respective N. If NULL the same power level as in the powerNLSEM function will be used. If set to 0 no power level and corresponding N will be plotted. Default to NULL, indicating to use the same power modeling method as was used in the powerNLSEM function.

alpha
- Alpha value used for confidence intervals, when se = TRUE. Default to NULL, indicating to use the same alpha as was used in the powerNLSEM function. This does not influence the significance decision, although same alpha is used per default.

alpha_power_modeling
- Type I-error rate for confidence band around predicted power rate. Used to ensure that the computed N keeps the desired power value (with the given Type I-error rate alpha_power_modeling divided by 2). If set to 1, no confidence band is used. Default to .05.

min_num_bins
- Minimal number of bins used for aggregating results. Default to 10.

defaultgg
- Logical to return default ggplot object. Default to FALSE, which returns theme_minimal and other changes in theme.

... Additional arguments passed on to the plot function.

Value
- Returns ggplot object of the type specified in plot.

Examples

write model in lavaan syntax
model <- "
measurement models
 X <- 1*x1 + 0.8*x2 + 0.7*x3
 Y <- 1*y1 + 0.85*y2 + 0.78*y3
 Z <- 1*z1 + 0.9*z2 + 0.6*z3

structural models
 Y ~ 0.3*X + .2*Z + .2*X:Z

residual variances
 Y~~.7975*Y
 X~~1*X
 Z~~1*Z

covariances
 X~~0.5*Z

measurement error variances
 x1~~.1*x1
 x2~~.2*x2
 x3~~.3*x3
 z1~~.2*z1
 z2~~.3*z2
 z3~~.4*z3
 y1~~.5*y1"
run model-implied simulation-based power estimation
for the effects: c("Y~X", "Y~Z", "Y~X:Z")
Result_Power <- powerNLSEM(model = model, POI = c("Y~X", "Y~Z", "Y~X:Z"),
 method = "UPI", search_method = "adaptive",
 steps = 10, power_modeling_method = "probit",
 R = 1000, power_aim = .8, alpha = .05,
 alpha_power_modeling = .05,
 CORES = 1, seed = 2024)

Result_Power
plot(Result_Power)

powerNLSEM function

Description
powerNLSEM function

Usage
powerNLSEM(
 model,
 POI,
 method,
 test = "onesided",
 power_modeling_method = "probit",
 search_method = "adaptive",
 R = 2000,
 power_aim = 0.8,
 alpha = 0.05,
 alpha_power_modeling = 0.05,
 CORES = max(c(parallel::detectCores() - 2, 1)),
 verbose = TRUE,
 seed = NULL,
...
)

Arguments
model Model in lavaan syntax. See documentation for help and examples.
POI Parameter Of Interest as a vector of strings. Must be in lavaan-syntax without any spaces. Nonlinear effects should have the same ordering as in model.
Method used to fit to the data. Implemented methods are "LMS" (Klein & Moosbrugger, 2000) (requires an installation of Mplus and the MplusAutomation package), "UPI" (Kelava & Brandt, 2009, Marsh et al., 2004) for the unconstrained product indicator approach, "FSR" (Ng and Chan, 2020) for the naïve factor score approach, and "SR", for using scale means (i.e., scale regression/path modeling).

Should the parameter be tested with a directed hypothesis (onesided) or with an undirected hypothesis (twosided, also equivalent to Wald-Test for single parameter). Default to "onesided".

Power modeling method used to model significant parameter estimates. Default to "probit" indicating glm with probit link function with sqrt(n) as predictor. Alternative is "logit".

String stating the search method. Default to "adaptive" (synonyme is "smart"). Alternative is "bruteforce".

Total number of models to be fitted. Higher number results in higher precision and longer runtime. Default to 2000.

Minimal power value to approximate. Default to .8.

Type I-error rate for significance decision. Default to .05.

Type I-error rate for confidence band around predicted power rate. Used to ensure that the computed N keeps the desired power value (with the given Type I-error rate alpha_power_modeling divided by 2). If set to 1, no confidence band is used. Default to .05.

Number of cores used for parallelization. Default to number of available cores - 2.

Logical whether progress should be printed in console. Default to TRUE.

Seed for replicability. Default to NULL, then a seed is drawn at random, which will also be saved in the output.

Additional arguments passed on to the search functions.

Returns an object of class powerNLSEM.

References

Irmer, J. P., Klein, A. G., & Schermelleh-Engel, K. (2024). *Behavior Research Methods, 0*(00), Advance Online Publication.

See Also

For further details for specific uses see corresponding functions: `power_search()` for all inputs possible, `UPI()` for specifics for the unconstrained product indicator approach, `LMS()` for the latent moderated structured equations approach, `FSR()` for factor score approaches, `SR()` for scale regression approaches.

Examples

```r
# write model in lavaan syntax
model <- 
  # measurement models
  X =~ 1*x1 + 0.8*x2 + 0.7*x3
  Y =~ 1*y1 + 0.85*y2 + 0.78*y3
  Z =~ 1*z1 + 0.9*z2 + 0.6*z3
  
  # structural models
  Y ~ 0.3*X + .2*Z + .2*X:Z
  
  # residual variances
  Y~~.7975*Y
  X~~1*X
  Z~~1*Z
  
  # covariances
  X~~0.5*Z
  
  # measurement error variances
  x1~~.1*x1
  x2~~.2*x2
  x3~~.3*x3
  z1~~.2*z1
  z2~~.3*z2
  z3~~.4*z3
  y1~~.5*y1
  y2~~.4*y2
  y3~~.3*y3

# run model-implied simulation-based power estimation
# for the effects: c("Y~X", "Y~Z", "Y~X:Z")
```

Result_Power <- powerNLSEM(model = model, POI = c("Y~X", "Y~Z", "Y~X:Z"),
 method = "UPI", search_method = "adaptive",
 steps = 10, power_modeling_method = "probit",
 R = 1000, power_aim = .8, alpha = .05,
 alpha_power_modeling = .05,
 CORES = 1, seed = 2024)

Result_Power

power_search Search function to find N for desired power

Description

The function that initializes the search process. The powerNLSEM function actually is a wrapper function for power_search.

Usage

power_search(
 POI,
 method,
 lavModel,
 lavModel_Analysis,
 data_transformations,
 search_method,
 power_modeling_method,
 R = 1000,
 power_aim = 0.8,
 alpha = 0.05,
 alpha_power_modeling = 0.05,
 CORES,
 verbose,
 Ns = NULL,
 N_start = nrow(lavModel[lavModel$op != "~1",]) * 10,
 distRj = "increasing",
 steps = 10,
 nlb = nrow(lavModel[lavModel$op != "~1",]) * 5,
 switchStep = round(steps/2),
 FMethod = "SL",
 test = "onesided",
 matchPI = TRUE,
 PICentering = "doubleMC",
 liberalInspection = FALSE,
 constrainRelChange = TRUE,
 seeds,
pathLMS = tempdir()
)

Arguments

POI Parameter Of Interest as a vector of strings. Must be in lavaan-syntax without any spaces. Nonlinear effects should have the same ordering as in model.

method Method used to fit to the data. Can be LMS or UPI.

lavModel lavModel object describing the model.

lavModel_Analysis lavModel object containing the parameters to be estimated.

data_transformations Object containing info on data transformations.

search_method String stating the search method. Default to "adaptive" (synonyme is "smart"). Alternative is "bruteforce".

power_modeling_method Power modeling method used to model significant parameter estimates. Default to "probit" indicating glm with probit link function with sqrt(n) as predictor. Alternative is "logit".

R Total number of models to be fitted. Higher number results in higher precision and longer runtime.

power_aim Minimal power value to approximate. Default to .8.

alpha Type I-error rate for significance decision. Default to .05.

alpha_power_modeling Type I-error rate for confidence band around predicted power rate. Used to ensure that the computed N keeps the desired power value (with the given Type I-error rate alpha_power_modeling divided by 2). If set to 1, no confidence band is used. Default to .05.

CORES Number of cores used for parallelization. Default to number of available cores - 2.

verbose Logical whether progress should be printed in console. Default to TRUE.

Ns Sample sizes used in power estimation process. Default to NULL.

N_start Starting sample size for smart algorithm. Default to 10*nrow(lavModel[lavModel$op != "~1",])) (10 times the number of parameters, excluding the mean structure, without the generation of e.g., factor scores or product indicators).

distRj Indicator how the samples sizes should be used in the steps of the smart algorithm: "u" for many to few to many, "increasing" for increasing replications and "even" for evenly distributed replications across steps. Default to "u".

steps Steps used in search_method = "smart", i.e., the smart algorithm. This is ignored if bruteforce is used. Default to 10.

nlb Lower bound of N used in search. Default to 5*nrow(lavModel[lavModel$op != "~1",])) (5 times the number of parameters, excluding the mean structure, in the model without the generation of e.g., factor scores or product indicators), however, some methods can deal with much smaller sample sizes so this can be adjusted. The rule of thumb of 5 times number of parameters is motivated by Wolf et al. (2013)
switchStep
Steps after which smart search method changes from exploration to exploitation. Default to \(\text{round}(\text{steps}/2) \). Exploration phase searches for the interval for \(N \) so that the resulting power is within \([.15, .85]\) since the power curve is steepest at .5 and becomes less steep towards plus/minus Inf. Exploitation phase searches for an interval for \(N \) around the \(\text{power}_{\text{aim}} \) argument which shrinks from plus/minus .1 to .01. If \(\text{switchStep} = \text{Inf} \), then only exploration is used. If \(\text{switchStep} \) is used then the search process is reset at that point, which results in a new estimation in the bounds of the interval of \(N \) independent of the previous ones which might be restricted in change (see also argument \(\text{constrainRelChange} \)).

FSmethod
Method to be used to extract factor scores. Default to "SL" for the Skrondal and Laake approach that uses regression ("regression") factor scores for the independent variables and "Bartlett" factor scores for the dependent variables.

test
Should the parameter be tested with a directed hypothesis (onesided) or with an undirected hypothesis (twosided, also equivalent to Wald-Test for single parameter). Default to "onesided".

matchPI
Logical passed to \texttt{semTools::indProd} in order to compute the product indicators: Specify \texttt{TRUE} to use match-paired approach (Marsh, Wen, & Hau, 2004). If \texttt{FALSE}, the resulting products are all possible products. Default to \texttt{TRUE}. The observations are matched by order given when specifying the measurement model.

PIcentering
String indicating which method of centering should be used when constructing product indicators. String is converted to the arguments \texttt{meanC}, \texttt{doubleMC}, and \texttt{residualMC}, of the \texttt{semTools::indProd} function. Default to "doubleMC" for double mean centering the resulting products (Lin et. al., 2010). Use "meanC" for mean centering the main effect indicator before making the products or "residualC" for residual centering the products by the main effect indicators (Little, Bovaird, & Widaman, 2006). "none" or any other input than the previously described results in no centering (use with caution!).

liberalInspection
Logical whether the inspection of estimation truthworthiness should be very liberal (i.e., allowing for non-positive definite Hessians in standard error estimation or non-positive residual covariance matrices or latent covariance matrices). Default to \texttt{FALSE}. Being liberal is not advised and should be checked for a single data set!

constrainRelChange
Logical whether the change in the bounds of the interval for \(N \) using the smart algorithm should be constrained. This prevents divergence (which is especially an issue for small effect sizes and small \(R \)) but results in biased estimates if the number of steps is too small. Default to \texttt{TRUE}.

seeds
Seeds for reproducibility.

pathLMS
path where (temporal) data and scripts for running LMS using Mplus are stored (using \texttt{MplusAutomation}). Default to \texttt{NULL}, then \texttt{tempdir()} is used.

\textbf{Value}

Returns a list that includes the results on model-implied simulation-based power estimation.
References

Irmer, J. P., Klein, A. G., & Schermelleh-Engel, K. (2024). *Behavior Research Methods, 0*(00), Advance Online Publication.
Value

Prints output of summary of `powerNLSEM` object into the console (objects of class `summary.powerNLSEM`), but does not change object itself.

reanalyse.powerNLSEM
Reanalyse powerNLSEM object

Description

Reanalyse powerNLSEM object

Usage

```
reanalyse.powerNLSEM(
  out,
  test = NULL,
  powerLevels = NULL,
  power_modeling_method = NULL,
  alpha = NULL,
  alpha_power_modeling = NULL
)
```

Arguments

- **out** object of class `powerNLSEM`
- **test** Should the parameter be tested with a directed hypothesis (onesided) or with an undirected hypothesis (twosided, also equivalent to Wald-Test for single parameter). Default to `NULL`, then the same as in fitted `powerNLSEM` object is used.
- **powerLevels** Power levels for which the desired sample sizes should be computed. Needs to be a vector. Default to `NULL` indicating to use same power rate used in `powerNLSEM` object.
- **power_modeling_method** Character indicating the power modeling method used. Default to `NULL`, indicating to use the same power modeling method as was used in the `powerNLSEM` object.
- **alpha** Type I-error rate for significance decision. Default to `.05`.
- **alpha_power_modeling** Type I-error rate for confidence band around predicted power rate. Used to ensure that the computed `N` keeps the desired power value (with the given Type I-error rate `alpha_power_modeling` divided by 2). If set to 1, no confidence band is used. Default to `.05`.

Value

Returns list of desired sample sizes per effect for each `powerLevel`. `Nall` refers to the sample size required per power level for all coefficients. `Npower` is a matrix containing the desired sample sizes per effect for every power level.
simulateNLSEM
simulate data from lavModel object

Description

simulate data from lavModel object

Usage

```r
simulateNLSEM(
  n,  
  lavModel,  
  appendLVs = FALSE,  
  lavModel_attributes = NULL,  
  matrices = NULL,  
  seed = NULL
)
```

Arguments

- **n** sample size
- **lavModel** lavModel object
- **appendLVs** logical whether latent variables should be observed. Default to FALSE. (For developmental purposes)
- **lavModel_attributes** attributes of the lavModel object. If NULL, this is computed from lavModel. Default to NULL.
- **matrices** computed matrices for simulation. If NULL, this is computed from lavModel and lavModel_attributes. Default to NULL.
- **seed** a seed for reproducability. Default to NULL.

Value

Returns a data.frame of a simulated NLSEM.

SR
Scale Regression approach

Description

Scale Regression approach

Usage

```r
SR(lavModel_Analysis, data, data_transformations = NULL)
```
`summary.powerNLSEM`

Arguments

- `lavModel_Analysis`
 the `lavModel_Analysis` object
- `data`
 set to fit
- `data_transformations`
 Data transformations

Value

Returns a `data.frame` that includes parameter estimates estimated using SR.

Description

Summary function for `powerNLSEM` objects

Usage

```r
## S3 method for class 'powerNLSEM'
summary(object, test = NULL, alpha = NULL, ...)
```

Arguments

- `object`
 Result of `powerNLSEM` function estimating the MSPE. `object` must be of class "powerNLSEM".
- `test`
 Should the parameter be tested with a directed hypothesis (onesided) or with an undirected hypothesis (twosided, also equivalent to Wald-Test for single parameter). Default to `NULL` (if `NULL`, test of the original MSPE is used).
- `alpha`
 Type I-error rate for significance decision. Default to `NULL` (if `NULL`, alpha of the original MSPE is used).
- `...`
 Further arguments to use in `summary`.

Value

Summary of `powerNLSEM` object

Examples

```r
# write model in lavaan syntax
model <- "
  # measurement models
  X =~ 1*x1 + 0.8*x2 + 0.7*x3
  Y =~ 1*y1 + 0.85*y2 + 0.78*y3
  Z =~ 1*z1 + 0.9*z2 + 0.6*z3
"```

UPI

Unconstrained Product Indicator approach by Marsh et al. (2004),
with extensions by Kelava and Brandt (2009)

Description

Unconstrained Product Indicator approach by Marsh et al. (2004), with extensions by Kelava and Brandt (2009)

Usage

UPI(
  lavModel_Analysis,
  data,
  data_transformations = NULL,
matchPI = TRUE,
PIcentering = "doubleMC",
liberalInspection = FALSE
)

Arguments

lavModel_Analysis
the lavModel_Analysis object
data
set to fit
data_transformations
Data transformations
matchPI
Logical passed to semTools::indProd in order to compute the product indicators: Specify TRUE to use match-paired approach (Marsh, Wen, & Hau, 2004). If FALSE, the resulting products are all possible products. Default to TRUE. The observations are matched by order given when specifying the measurement model.
PIcentering
String indicating which method of centering should be used when constructing product indicators. String is converted to the arguments meanC, doubleMC, and residualMC, of the semTools::indProd function. Default to "doubleMC" for double mean centering the resulting products (Lin et al., 2010). Use "meanC" for mean centering the main effect indicator before making the products or "residualC" for residual centering the products by the main effect indicators (Little, Bovaird, & Widaman, 2006). "none" or any other input than the previously described results in no centering (use with caution!).
liberalInspection
Logical whether the inspection of estimation truthworthiness should be very liberal (i.e., allowing for non-positive definite Hessians in standard error estimation or non-positive residual covariance matrices or latent covariance matrices). Default to FALSE. Being liberal is not advised and should be checked for a single data set!

Value

Returns a data.frame that includes parameter estimates estimated using UPI.

References


Index

FSR, 2
FSR(), 8

LMS, 3
LMS(), 8

plot.powerNLSEM, 4
power_search, 9
power_search(), 8
powerNLSEM, 6
print.powerNLSEM, 12
print.summary.powerNLSEM, 12

reanalyse.powerNLSEM, 13

simulateNLSEM, 14
SR, 14
SR(), 8
summary.powerNLSEM, 15

UPI, 16
UPI(), 8