Package ‘ppcor’

December 3, 2015

Type Package
Title Partial and Semi-Partial (Part) Correlation
Version 1.1
Date 2015-11-19
Author Seongho Kim
Maintainer Seongho Kim <biostatistician.kim@gmail.com>
Depends R (>= 2.6.0), MASS
Description Calculates partial and semi-partial (part) correlations along with p-value.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-12-03 13:05:14

R topics documented:

<table>
<thead>
<tr>
<th>ppcor-package</th>
<th>pcor</th>
<th>pcor.test</th>
<th>spcor</th>
<th>spcor.test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Index

ppcor-package | Partial and Semi-partial (Part) Correlation

Description

Calculates partial and semi-partial (part) correlations along with p value.

Details
Author(s)

Seongho Kim <biostatistician.kim@gmail.com>

References

Examples

data
y.data <- data.frame(
 hl=c(7,15,19,15,21,22,57,15,20,18),
 disp=c(0.000,0.964,0.000,0.000,0.921,0.000,0.000,1.006,0.000,1.011),
 deg=c(9,2,3,4,1,3,1,3,6,1),
 BC=c(1.78e-02,1.05e-06,1.37e-05,7.18e-03,0.00e+00,0.00e+00,0.00e+00,
 4.48e-03,2.10e-06,0.00e+00)
)

partial correlation
pcor(y.data)

partial correlation between "hl" and "disp" given "deg" and "BC"
pcor.test(y.data$h1,y.data$disp,y.data[,c("deg","BC")])
pcor.test(y.data[,1],y.data[,2],y.data[,c(3:4)])
pcor.test(y.data[,1],y.data[,2],y.data[-c(1:2)])

semi-partial (part) correlation
spcor(y.data)

semi-partial (part) correlation between "hl" and "disp" given "deg" and "BC"
spcor.test(y.data$h1,y.data$disp,y.data[,c("deg","BC")])
spcor.test(y.data[,1],y.data[,2],y.data[,c(3:4)])
spcor.test(y.data[,1],y.data[,2],y.data[-c(1:2)])
Description

The function `pcor` can calculate the pairwise partial correlations for each pair of variables given others. In addition, it gives us the p value as well as statistic for each pair of variables.

Usage

```r
pcor(x, method = c("pearson", "kendall", "spearman"))
```

Arguments

- `x` a matrix or data frame.
- `method` a character string indicating which partial correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman" can be abbreviated.

Details

Partial correlation is the correlation of two variables while controlling for a third or more other variables. When the determinant of variance-covariance matrix is numerically zero, Moore-Penrose generalized matrix inverse is used. In this case, no p-value and statistic will be provided if the number of variables are greater than or equal to the sample size.

Value

- `estimate` a matrix of the partial correlation coefficient between two variables
- `p.value` a matrix of the p value of the test
- `statistic` a matrix of the value of the test statistic
- `n` the number of samples
- `gn` the number of given variables
- `method` the correlation method used

Note

Missing values are not allowed.

Author(s)

Seongho Kim <biostatistician.kim@gmail.com>

References

See Also

cor.test, spcor, spcor.test

Examples

```r
# data
y.data <- data.frame(
  hl=c(7,15,19,15,21,22,57,15,20,18),
  disp=c(0.000, 0.964, 0.000, 0.000, 0.921, 0.000, 0.000, 1.006, 0.000, 1.011),
  deg=c(9,2,3,4,1,3,1,3,6,1),
  BC=c(1.78e-02, 1.05e-06, 1.37e-05, 7.18e-03, 0.00e+00, 0.00e+00, 0.00e+00,
       4.48e-03, 2.10e-06, 0.00e+00)
)
# partial correlation
pcor(y.data)
```

pcor.test

Partial correlation for two variables given a third variable.

Description

The function `pcor.test` can calculate the pairwise partial correlations between two variables. In addition, it gives us the p value as well as statistic.

Usage

```r
pcor.test(x, y, z, method = c("pearson", "kendall", "spearman"))
```

Arguments

- `x`: a numeric vector.
- `y`: a numeric vector.
- `z`: a numeric vector.
- `method`: a character string indicating which partial correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman" can be abbreviated.

Details

Partial correlation is the correlation of two variables while controlling for a third variable. When the determinant of variance-covariance matrix is numerically zero, Moore-Penrose generalized matrix inverse is used. In this case, no p-value and statistic will be provided if the number of variables are greater than or equal to the sample size.
pcor.test

Value

- **estimate**: the partial correlation coefficient between two variables
- **p.value**: the p value of the test
- **statistic**: the value of the test statistic
- **n**: the number of samples
- **gn**: the number of given variables
- **method**: the correlation method used

Note

Missing values are not allowed

Author(s)

Seongho Kim <biostatistician.kim@gmail.com>

References

See Also

- pcor
- spcor
- spcor.test

Examples

```r
# data
y.data <- data.frame(hl=c(7,15,19,15,21,22,57,15,20,18),
                     disp=c(0.000,0.964,0.000,0.000,0.921,0.000,0.000,1.006,0.000,1.011),
                     deg=c(9,2,3,4,1,3,1,3,6,1),
                     bc=c(1.78e-02,1.05e-06,1.37e-05,7.18e-03,0.00e+00,0.00e+00,0.00e+00,0.00e+00,
                         4.48e-03,2.10e-06,0.00e+00)
)

# partial correlation between "hl" and "disp" given "deg" and "BC"
pcor.test(y.data$h1,y.data$disp,y.data[,c("deg","BC")])
pcor.test(y.data[,1],y.data[,2],y.data[,c(3:4)])
pcor.test(y.data[,1],y.data[,2],y.data[,-c(1:2)])
```
spcor

Semi-partial (part) correlation

Description

The function `spcor` can calculate the pairwise semi-partial (part) correlations for each pair of variables given others. In addition, it gives us the p value as well as statistic for each pair of variables.

Usage

`spcor(x, method = c("pearson", "kendall", "spearman"))`

Arguments

- `x`: a matrix or data frame.
- `method`: a character string indicating which semi-partial (part) correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman" can be abbreviated.

Details

Semi-partial correlation is the correlation of two variables with variation from a third or more other variables removed only from the second variable. When the determinant of variance-covariance matrix is numerically zero, Moore-Penrose generalized matrix inverse is used. In this case, no p-value and statistic will be provided if the number of variables are greater than or equal to the sample size.

Value

- `estimate`: a matrix of the semi-partial (part) correlation coefficient between two variables
- `p.value`: a matrix of the p value of the test
- `statistic`: a matrix of the value of the test statistic
- `n`: the number of samples
- `gn`: the number of given variables
- `method`: the correlation method used

Note

Missing values are not allowed.

Author(s)

Seongho Kim <<biostatistician.kim@gmail.com>>
spcor.test

References

See Also

spcor.test, pcor, pcor.test

Examples

data
y.data <- data.frame(
 hl=c(7,15,15,21,22,57,15,20,18),
 disp=c(0.000,0.964,0.000,0.000,0.921,0.000,0.000,1.006,0.000,1.011),
 deg=c(9,2,3,4,1,3,1,3,6,1),
 BC=c(1.78e-02,1.05e-06,1.37e-05,7.18e-03,0.00e+00,0.00e+00,0.00e+00,
 4.48e-03,2.10e-06,0.00e+00)
)

semi-partial (part) correlation
spcor(y.data)

spcor.test Semi-partial (part) correlation for two variables given a third variable.

Description

The function spcor.test can calculate the pairwise semi-partial (part) correlations between two variables. In addition, it gives us the p value as well as statistic.

Usage

spcor.test(x, y, z, method = c("pearson", "kendall", "spearman"))

Arguments

x a numeric vector.
y a numeric vector.
z a numeric vector.
method a character string indicating which partial correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman" can be abbreviated.

Details

Semi-partial correlation is the correlation of two variables with variation from a third variable removed only from the second variable. When the determinant of variance-covariance matrix is numerically zero, Moore-Penrose generalized matrix inverse is used. In this case, no p-value and statistic will be provided if the number of variables are greater than or equal to the sample size.
Value

- **estimate**: the semi-partial (part) correlation coefficient between two variables
- **p.value**: the p value of the test
- **statistic**: the value of the test statistic
- **n**: the number of samples
- **gn**: the number of given variables
- **method**: the correlation method used

Note

Missing values are not allowed

Author(s)

Seongho Kim <<biostatistician.kim@gmail.com>>

References

See Also

- `spcor`
- `pcor`
- `pcor.test`

Examples

```r
# data
y.data <- data.frame(
  hl=c(7,15,19,21,22,57,15,20,18),
  disp=c(0.000,0.964,0.000,0.000,0.921,0.000,0.000,1.006,0.000,1.011),
  deg=c(9,2,3,4,1,3,1,3,6,1),
  bc=c(1.78e-02,1.05e-06,1.37e-05,7.18e-03,0.00e+00,0.00e+00,0.00e+00,
      4.48e-03,2.10e-06,0.00e+00)
)

# semi-partial (part) correlation between "hl" and "disp" given "deg" and "BC"
spcor.test(y.data$hl,y.data$disp,y.data[,c("deg","BC")])
spcor.test(y.data[,1],y.data[,2],y.data[,c(3:4)])
spcor.test(y.data[,1],y.data[,2],y.data[,c(-1:2)])
```
Index

*Topic htest
 pcor, 3
 pcor.test, 4
 ppcor-package, 1
 spcor, 6
 spcor.test, 7

pcor, 3, 5, 7, 8
pcor.test, 4, 4, 7, 8
ppcor (ppcor-package), 1
ppcor-package, 1

spcor, 4, 5, 6, 8
spcor.test, 4, 5, 7, 7