Package ‘ppdiag’
August 12, 2021

Type Package
Title Diagnosis and Visualizations Tools for Temporal Point Processes
Version 0.1.1
Description A suite of diagnostic tools for univariate point processes.
 This includes tools for simulating and fitting both common and more
 complex temporal point processes. We also include functions to
 visualise these point processes and collect existing diagnostic
 tools of Brown et al. (2002) <doi:10.1162/08997660252741149> and
 Wu et al. (2021) <doi:10.1002/9781119821588.ch7>,
 which can be used to assess the fit of a chosen point process
 model.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.1.1
URL https://owenward.github.io/ppdiag/
BugReports https://github.com/OwenWard/ppdiag/issues
Depends R (>= 3.5)
Imports graphics, stats
Suggests testthat (>= 2.1.0), knitr, rmarkdown, covr
VignetteBuilder knitr
NeedsCompilation no
Author Sally Sun [aut],
 Owen G. Ward [aut, cre] (<https://orcid.org/0000-0002-9678-3542>),
 Jing Wu [aut],
 Xiaoxi Zhao [aut],
 Lihao Xiao [ctb],
 Tian Zheng [aut]
Maintainer Owen G. Ward <owen.ward@columbia.edu>
Repository CRAN
Date/Publication 2021-08-12 13:50:02 UTC
R topics documented:

- `drawHPIntensity` 2
- `drawHPPIntensity` 3
- `drawUniMMHPIntensity` 4
- `drawUniMMPPIntensity` 5
- `fithp` .. 6
- `fithpp` 7
- `intensityqqplot` 7
- `pp_compensator` 8
- `pp_diag` 9
- `pp_hp` ... 10
- `pp_hpp` 11
- `pp_kspplot` 11
- `pp_mmhp` 12
- `pp_mmpp` 13
- `pp_qqexp` 13
- `pp_residual` 14
- `pp_simulate` 15

Index 16

drawHPIntensity
Draw the intensity of Hawkes Process

Description

Draw the intensity of a Hawkes Process

Usage

```r
drawHPIntensity(
  hp = NULL,
  events,
  int_title = "Hawkes Intensity",
  start = 0,
  end = max(events),
  history = NULL,
  color = 1,
  i = 1,
  add = FALSE,
  fit = FALSE,
  plot_events = TRUE,
  verbose = FALSE
)
```
drawHPPIntensity

Arguments

- **hp**: object parameters for Hawkes process.
- **events**: the event times happened in this state
- **int_title**: title of the intensity plot
- **start**: the start time of current state
- **end**: the end time of current state
- **history**: the past event times
- **color**: specify the default plotting color.
- **i**: state number, used only for drawUniMMHPIntensity
- **add**: whether to add the hawkes intensity to an existing plot, used for drawUniMMHPIntensity
- **fit**: a boolean indicating whether to fit a new HP to events
- **plot_events**: indicate whether events will be plotted
- **verbose**: whether to output informative messages as running

Value

no return value, intensity plot of Hawkes process

Examples

```r
set.seed(100)
hp_obj <- pp_hp(lambda0 = 0.5, alpha = 0.45, beta = 0.5)
events <- pp_simulate(hp_obj, start = 0, end = 20)
drawHPIntensity(hp_obj, events)
```

Description

Draw the intensity for a homogeneous Poisson process

Usage

```r
drawHPPIntensity(
  hpp = NULL,
  events,
  int_title = "Homogeneous Poisson Process",
  start = 0,
  end = max(events),
  color = "red",
  plot_events = TRUE,
  fit = FALSE,
  add = FALSE,
  verbose = FALSE
)
```
Arguments

- **hpp**: object for homogeneous Poisson process
- **events**: event times input
- **int_title**: the plot title
- **start**: start of events
- **end**: end of events
- **color**: a specification for the default plotting color.
- **plot_events**: a boolean indicating whether input events will be plotted
- **fit**: a boolean indicating whether to fit a hpp or use the passed object
- **add**: whether to add the hpp intensity to an existing plot
- **verbose**: whether to output informative messages as running

Value

no return value, intensity plot of homogeneous Poisson process

Examples

```r
pois_y <- pp_hpp(lambda = 1)
drawHPPIntensity(pois_y, events = pp_simulate(pois_y, end = 10))
```

drawUniMMHPIntensity
Draw the intensity of the Markov-modulated Hawkes Process (MMHP)

Description

Take a mmhp object and draw its intensity accordingly

Usage

```r
drawUniMMHPIntensity(
  mmhp,
  simulation,
  int_title = "Intensity of MMHP",
  leg_location = "topright",
  color = 1,
  add = FALSE
)
```
drawUniMMPPIntensity

Arguments

- `mmhp`: a mmhp object including its state, state_time, events, lambda0, lambda1, beta and alpha.
- `int_title`: title of the plot.
- `leg_location`: location of legend, if moving needed.
- `color`: A specification for the default plotting color.
- `add`: logical; if TRUE add to an already existing plot; if NA start a new plot taking the defaults for the limits and log-scaling of the x-axis from the previous plot. Taken as FALSE (with a warning if a different value is supplied) if no graphics device is open.

Value

no return value, intensity plot of Markov-modulated Hawkes process

Examples

```r
Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
x <- pp_mmhp(Q, delta = c(1 / 3, 2 / 3), lambda0 = 0.9, lambda1 = 1.1, alpha = 0.8, beta = 1.2 )
y <- pp_simulate(x, n = 25)
drawUniMMPPIntensity(x, y)
```

Description

Take a mmpp object and draw its intensity accordingly

Usage

```r
drawUniMMPPIntensity(
  mmhp, simulation, add = FALSE, color = 1, fit = FALSE,
  int_title = "Intensity Plot of MMPP"
)
```
Arguments

mmpp a mmpp object including its transition probability matrix, lambda0, delta, and c.
simulation the simulated Markov-modulated Poisson Process (MMPP)
add logical; if TRUE add to an already existing plot; if NA start a new plot taking
the defaults for the limits and log-scaling of the x-axis from the previous plot.
Taken as FALSE (with a warning if a different value is supplied) if no graphics
device is open.
color A specification for the default plotting color.
fit a boolean indicating whether to fit the events provided
int_title title of the plot.

Value

no return value, intensity plot of Markov-modulated Poisson process

Examples

Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
x <- pp_mmpp(Q, delta = c(1 / 3, 2 / 3), lambda0 = 0.9, c = 1.2)
y <- pp_simulate(x, n = 10)
drawUniMMPPIntensity(x, y)

Description

Determine the MLE of Hawkes process numerically

Usage

fithp(events, end = max(events), vec = c(0.1, 0.2, 0.3))

Arguments

events event times
end end of observation period starting from 0 (default last event)
vec vector of initial parameter values

Value

a hp object indicating the maximum likelihood parameter values (lambda0, alpha, beta) for Hawkes
process. This is a non-convex problem and a (unique) solution is not guaranteed.
fithpp

Fit a homogeneous poisson process to event data

Description

Compute maximum likelihood estimator of the rate of a homogeneous Poisson process for the given events.

Usage

```r
fithpp(events, end = max(events))
```

Arguments

- `events`: vector containing the event times.
- `end`: end of observation period, starting from 0 (default is last event)

Value

a `hpp` object containing the events and the estimated parameter

Examples

```r
pois_y <- pp_hpp(lambda = 1)
events <- pp_simulate(pois_y, end = 10)
fithpp(events)
```

intensityqqplot

Draw intensity of fitted point process and QQ-Plot of rescaled events

Description

Draw the intensity and q-q plot for models
Usage

intensityqqplot(object, events, markov_states)

Default S3 method:
intensityqqplot(object, events, markov_states)

S3 method for class 'hp'
intensityqqplot(object, events, markov_states = NULL)

S3 method for class 'hpp'
intensityqqplot(object, events, markov_states = NULL)

S3 method for class 'mmpp'
intensityqqplot(object, events = markov_states$events, markov_states)

S3 method for class 'mmhp'
intensityqqplot(object, events = markov_states$events, markov_states)

Arguments

object parameters for the models: hp, hpp, and mmhp
events event times
markov_states only for mmhp and mmpp, markov states simulation output

Value

no return value, intensity and qq-plot in a single plot

Description

Computes the compensator for included point processes

Usage

pp_compensator(object, events)

Default S3 method:
pp_compensator(object, events)

S3 method for class 'mmpp'
pp_compensator(object, events)

S3 method for class 'hp'

pp_compensator
Compensators for point processes
pp_compensator(object, events)

S3 method for class 'mmhp'
pp_compensator(object, events)

S3 method for class 'hpp'
pp_compensator(object, events)

Arguments

object a point process model
events event times, which can have first value as 0

Value

compensator vector of rescaled interevent times

Examples

hpp_obj <- pp_hpp(lambda = 1)
events <- pp_simulate(hpp_obj, end = 10)
comp <- pp_compensator(hpp_obj, events)

pp_diag

pp_diag(object, events)

Default S3 method:
pp_diag(object, events)

S3 method for class 'hp'
pp_diag(object, events)

S3 method for class 'mmhp'
pp_diag(object, events)

S3 method for class 'mmpp'
pp_diag(object, events)

S3 method for class 'hpp'
pp_diag(object, events)

Description

Summarise diagnostics for point process models

Generate diagnostic tools for different point process models, including quantile-quantile plot, ks plot, raw residual and pearson residual.

Usage

pp.diag(object, events)

Default S3 method:
pp.diag(object, events)

S3 method for class 'hp'
pp.diag(object, events)

S3 method for class 'mmhp'
pp.diag(object, events)

S3 method for class 'mmpp'
pp.diag(object, events)

S3 method for class 'hpp'
pp.diag(object, events)
pp_hp

Arguments

object a point process model
events event times

Value

Invisibly returns NULL. Outputs plots and summary of diagnostics to console

Examples

hpp_obj <- pp_hpp(lambda = 1)
events <- pp_simulate(hpp_obj, end = 50)
pp_diag(hpp_obj, events)

Description

Create a Hawkes Process with an exponential kernel according to the given parameters: lambda0, alpha, beta and events. If events are missing, then it means that data will be added later(simulated from this process)

Usage

pp_hp(lambda0, alpha, beta, events = NULL)

Arguments

lambda0 initial intensity at the start time
alpha jump size in increase of intensity
beta exponential decay of intensity
events vector containing the event times. Note that the first event is at time zero. Alternatively, events could be specified as NULL, meaning that the data will be added later (e.g. simulated).

Value

hp object

Examples

pp_hp(lambda0 = 0.1, alpha = 0.45, beta = 0.5)
pp_hpp

Create a homogeneous Poisson process object

Description

Create a homogeneous Poisson object according to given parameters: lambda, and events. If events are missing, then it means that data will be added later (simulated from this process).

Usage

```r
pp_hpp(lambda, events = NULL)
```

Arguments

- `lambda`: rate of the Poisson process
- `events`: event times, optional

Value

hpp object

Examples

```r
pp_hpp(lambda = 1)
```

pp_kspplot

KS plot of empirical and theoretical cdf curve of fitted point process

Description

Plot empirical cdf plot for rescaled-inter-event-times and exponential cdf as a reference curve

Usage

```r
pp_kspplot(r, ...)
```

Arguments

- `r`: rescaled-inter-event-times
- `...`: other arguments for plots

Value

no return value, KS plot for rescaled-inter-event-times and exponential cdf curve
Create a Markov-modulated Hawkes Process (MMHP) object

Description

Create a Markov-modulated Hawkes Process (MMHP) model according to the given parameters: \(\lambda_0, \lambda_1, \alpha, \beta, \) event times and transition probability matrix. If event time events is missing, then it means that data will be added later (e.g. simulated).

Usage

\[
\text{pp_mmhp}(\lambda_0, \lambda_1, \alpha, \beta, Q = \text{NULL}, \delta = \text{NULL}, \text{events} = \text{NULL})
\]

Arguments

- \(\lambda_0 \) intensity for homogeneous Poisson process.
- \(\lambda_1 \) base intensity for Hawkes process.
- \(\alpha \) jump size of the increase in intensity in the hawkes process.
- \(\beta \) exponential decrease of intensity in the hawkes process.
- \(Q \) transition probability matrix.
- \(\delta \) initial state probability.
- \(\text{events} \) vector containing the event times. Note that the first event is at time zero. Alternatively, events could be specified as NULL, meaning that the data will be added later (e.g. simulated).

Value

\text{mmhp} object

Examples

\[
Q <- \text{matrix}(c(-0.4, 0.4, 0.2, -0.2), \text{ncol} = 2, \text{byrow} = \text{TRUE})
\]

\[
\text{pp_mmhp}(Q,
\quad \text{delta} = \text{c}(1 \ / \ 3, 2 \ / \ 3), \lambda_0 = 0.9, \lambda_1 = 1.1,
\quad \alpha = 0.8, \beta = 1.2)
\]
Create a Markov-modulated Poisson Process (MMPP) model according to the given parameters: lambda0, c, q1, q2 and event times. If event time tau is missing, then it means that data will be added later (e.g. simulated)

Usage

pp_mmpp(lambda0, c, Q, events = NULL, delta = NULL)

Arguments

lambda0 parameters for Poisson process.
c the proportion of intensity 1 over intensity 2
Q transition probability matrix
events vector containing the event times. Note that the first event is often specified as zero. Alternatively, events could be specified as NULL, meaning that the data will be added later (e.g. simulated).
delta initial state probability.

Value

mmpp object

Examples

Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
pp_mmpp(Q = Q, lambda0 = 1, c = 1.5, delta = c(1 / 3, 2 / 3))

Plot QQ-plot for rescaled-inter-event-times of fitted point process

Usage

pp_qqexp(r, ...)
Arguments

- `r` : rescaled-inter-event-times
- `...` : other arguments for plots

Value

no return value, quantile-quantile plot for rescaled-inter-event-times

pp_residual
Compute raw and pearson residuals for point process models

Description

Compute raw and pearson residuals for point process models

Usage

```
pp_residual(object, events, start = 0, end = max(events), steps = 1000)
```

Arguments

- `object` : point process model containing the parameters
- `events` : vector of event times
- `start` : start of observation period (default 0)
- `end` : end of observation period (default final event)
- `steps` : number of steps for numeric integration (if needed)

Value

the raw and pearson residuals

Examples

```
Q <- matrix(c(-0.4, 0.4, 0.2, -0.2), ncol = 2, byrow = TRUE)
x <- pp_mmhp(Q,  
    delta = c(1 / 3, 2 / 3), lambda0 = 0.9,  
    lambda1 = 1.1, alpha = 0.8, beta = 1.2 )
y <- pp_simulate(x, n = 10)  
pp_residual(x, events = y$events)
```
pp_simulate

Simulate events from a temporal point process

Description

Currently available point processes are homogeneous Poisson, Hawkes with exponential kernel, MMHP and MMPP

Usage

```r
pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)
```

Default S3 method:
`pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)`

S3 method for class 'hpp'
`pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)`

S3 method for class 'hp'
`pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)`

S3 method for class 'mmpp'
`pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)`

S3 method for class 'mmhp'
`pp_simulate(object, start = 0, end = 1, n = NULL, verbose = FALSE)`

Arguments

- `object` point process model object of type hpp, hp, mmhp, or mmpp
- `start` start time of events simulated. Not used for Markov modulated models
- `end` end time of events simulated. Not used for Markov modulated models
- `n` number of events simulated. Required for Markov modulated models, optional otherwise
- `verbose` whether to output informative messages as running

Value

a vector of event times for all models. For Markov modulated models, also returns details on the underlying latent process

Examples

```r
hpp_obj <- pp_hpp(lambda = 1)
s <- pp_simulate(hpp_obj, n = 50)
```
Index

drawHPIntensity, 2
drawHPPIntensity, 3
drawUniIIMHPIntensity, 4
drawUniIMMPPIntensity, 5

fithp, 6
fithpp, 7

intensityqqplot, 7

pp_compensator, 8
pp_diag, 9
pp_hp, 10
pp_hpp, 11
pp_kspplot, 11
pp_mmhp, 12
pp_mmpp, 13
pp_qqexp, 13
pp_residual, 14
pp_simulate, 15