Package ‘ppgam’

April 19, 2020

Type Package

Title Generalised Additive Point Process Models

Version 1.0.1

Date 2020-04-19

Author Ben Youngman [aut, cre], Theo Economou [aut]

Maintainer Ben Youngman <b.youngman@exeter.ac.uk>

License GPL-3

Depends R (>= 3.5.0)

Imports MASS, mgcv, evgam

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-19 08:20:02 UTC

R topics documented:

ppgam .. 2
USLandfall ... 4
windstorm .. 5

Index 6
ppgam

Fit a generalised additive point process model

Description

Fit a generalised additive point process model

Usage

ppgam(
 formula,
 data,
 nodes = NULL,
 weights = 1,
 nquad = 15,
 approx = c("midpoint", "exact"),
 knots = NULL,
 use.data = TRUE,
 trace = 0
)

Arguments

formula a formula for a Poisson process log intensity function (compatible with \texttt{gam})
data a data frame
nodes a list or data frame; see ‘Details’
weights a scalar, list or vector; see ‘Details’
nquad a scalar giving the number of quadrature nodes for each variable
approx a length 2 character string; see ‘Details’
knots spline knots to pass to \texttt{gam}
use.data should splines should be constructed from data (otherwise uses nodes)?
trace integers controlling what’s reported. Defaults to 0

Details

ppgam fits a Poisson process with intensity function \(\lambda(\mathbf{x}) \) for covariate \(\mathbf{x} = (x_1, \ldots, x_d) \). The likelihood for this model with events occurring at \(\mathbf{x}_i \), for \(i = 1, \ldots, n \), is approximated by quadrature with

\[
\exp \left[- \sum_{j=1}^{m} w_j \lambda(x_j^*) \prod_{i=1}^{n} \lambda(x_i) \right]
\]

where \(x_j^* \) and \(w_j \) are quadrature nodes and weights, for \(j = 1, \ldots, m \), defined with nodes and weights.
formula gives the formula for the log intensity function of a Poisson process. It is passed to \texttt{gam}. If \texttt{formula} has no response, i.e. \texttt{~ s(...)}, then \texttt{data} is assumed to give the times at which events occur. Then \texttt{nodes} is used to control integration of the intensity function. If \texttt{formula} has a response, e.g. \texttt{y \sim s(...)}, then \texttt{y} is assumed binary, comprising only zeros and ones. Then \texttt{data} is assumed to give the state space of the Poisson process, (e.g. daily time steps if occurrences of events are measured in days) and ones in \texttt{y} identify when events occur. Note that if \texttt{formula} has no response, \texttt{data} will have \texttt{n} rows, and \texttt{m} rows otherwise.

\texttt{nodes} is used to supply nodes for integrating the Poisson process intensity function by quadrature. It is supplied as a list or data frame.

If \texttt{nodes} is a list, its names must correspond to variables on the r.h.s. of \texttt{formula}. Elements of the list, \texttt{x}, say, can be a vector or 2-column matrix, where \texttt{length(x) > 1} or \texttt{nrow(x) > 1}. If a matrix, its first and second columns are taken as integration nodes and weights, respectively. If a vector of length 2, it is assumed to give the range of the \texttt{nquad} midpoints used as integration nodes. If a longer vector, it is assumed to be the integration nodes, and \texttt{nquad} is ignored.

If \texttt{nodes} is a data frame, it is assumed to give the integration nodes.

\texttt{nquad} specifies the number of integration nodes per variable, unless \texttt{nodes} are specified in \texttt{nodes}. If a single integer and \texttt{is.null(names(nquad))} it is used for all variables. Otherwise, names are matched to variables. An error is returned if any variables do not have values specified.

\texttt{weights} controls the quadrature weights. If \texttt{nodes} is a list, a scalar multiplies any weights calculated alongside \texttt{nodes}, i.e. node separations. If \texttt{nodes} is a data frame, weights can be a scalar that is repeated \texttt{nrow(nodes)}), or a vector of length \texttt{nrow(nodes)} that gives the weights for each row of \texttt{nodes}.

\texttt{approx} controls quadrature details. Its first term controls the integration method, which uses either midpoint ("midpoint", default), Simpson’s ("Simpson") or Gauss-Legendre ("Gauss") rules. The second term of \texttt{approx} controls the integration range, which is either the range of the variable ("exact"), or by calling \texttt{pretty()} ("pretty").

\texttt{trace} controls what is reported. Details of convergence are printed with \texttt{trace = 1}, of nodes with \texttt{trace = 2}, and \texttt{trace = 3} prints both.

\textbf{Value}

An object of class \texttt{gam}, as returned by \texttt{mgcv::gam}, with parameters, covariance matrices and a few other things swapped

\textbf{References}

\textbf{Examples}

```r
# Times of landfalling US hurricanes
data(USlandfall)
```
convert dates to years, as a continuous variable
tyear <- as.integer(format(USlandfall$date, "%Y"))
day <- as.integer(format(USlandfall$date, "%j"))
USlandfall$year <- year + pmin(day / 365, 1)

this creates nodes in the default way
m1 <- ppgam(~ s(year), hits)

some examples of providing nodes
nodes.year <- list(year=pretty(USlandfall$year, 20))
as 2 is in trace, nodes and weights are printed
m2 <- ppgam(~ s(year), hits, nodes = nodes.year, trace = 2)

alternatively, we might just want to specify how many nodes to use
m3 <- ppgam(~ s(year), hits, nquad = 30)

data(windstorm)
m4 <- ppgam(~ s(lon, lat, k=20), windstorm)

Storm peak locations, given the North Atlantic Oscillation (NAO) index
NAO values from https://crudata.uea.ac.uk/cru/data/nao/nao.dat
NAO midpoints and weights based on 'hist'
NAO.mids <- c(-2.75, -2.25, -1.75, -1.25, -0.75, -0.25, 0.25, 0.75, 1.25, 1.75, 2.25)
NAO.wts <- c(0.002, 0.014, 0.057, 0.145, 0.302, 0.427, 0.463, 0.364, 0.171, 0.047, 0.007)
m5 <- ppgam(~ te(lat, lon, NAO, d = 2:1, k = c(40, 8), bs = c("ts", "cr")), windstorm,
 nodes = list(NAO = cbind(NAO.mids, NAO.wts)))

USlandfall

Times of landfalling US hurricanes

Description
A data frame:

Usage
data(USlandfall)

Format
A data frame with 61129 rows and 2 variables
The variables are as follows:
\textbf{windstorm}

\textbf{date} date of landfall, as class "Date"
\textbf{landfall} an integer: did a hurricane make landfall on this day?

\textbf{References}
https://www.nhc.noaa.gov/data/

\textbf{Examples}
```
data(USlandfall)
plot(USlandfall, type="h")
```

\textit{windstorm} \quad \textit{Locations of windstorm peaks and tracks over the North Atlantic}

\textbf{Description}

\textbf{Usage}
data(windstorm)

\textbf{Format}
A data frame with 3133 rows and 4 variables
The variables are as follows:

\textbf{date} date of peak, as class "Date"
\textbf{lon} longitude, in degrees
\textbf{lat} latitude, in degrees
\textbf{NAO} North Atlantic Oscillation index

\textbf{References}

\textbf{Examples}
```
data(windstorm)
plot(windstorm[,c("lon", "lat")])
```
Index

*Topic datasets
 USlandfall, 4
 windstorm, 5

gam, 2, 3

ppgam, 2

USlandfall, 4
windstorm, 5