Package ‘ppgmmga’

July 8, 2019

Version 1.2
Date 2019-08-06
Title Projection Pursuit Based on Gaussian Mixtures and Evolutionary Algorithms
Description Projection Pursuit (PP) algorithm for dimension reduction based on Gaussian Mixture Models (GMMs) for density estimation using Genetic Algorithms (GAs) to maximise an approximated negentropy index. For more details see Scrucca and Serafini (2019) <doi:10.1080/10618600.2019.1598871>.
Depends R (>= 3.4)
Imports Rcpp (>= 1.0.0), mclust (>= 5.4), GA (>= 3.1), ggplot2 (>= 2.2.1), ggthemes (>= 3.4.0), cli, crayon, utils, stats
LinkingTo Rcpp, RcppArmadillo (>= 0.7)
Suggests knitr (>= 1.8)
VignetteBuilder knitr
License GPL (>= 2)
Repository CRAN
URL https://github.com/luca-scr/ppgmmga
BugReports https://github.com/luca-scr/ppgmmga/issues
ByteCompile true
NeedsCompilation yes
LazyData yes
Encoding UTF-8
RoxygenNote 6.1.1
Author Alessio Serafini [aut, cre] (<https://orcid.org/0000-0002-8579-5695>), Luca Scrucca [aut] (<https://orcid.org/0000-0003-3826-0484>)
Maintainer Alessio Serafini <srf.alessio@gmail.com>
Date/Publication 2019-07-08 09:10:03 UTC
Description

An R package implementing a Projection Pursuit (PP) algorithm based on finite Gaussian Mixture Models (GMMs) for density estimation using Genetic Algorithms (GAs) to maximise an approximated negentropy index. The *ppgmmga* algorithm provides a method to visualise high-dimensional data in a lower-dimensional space.

Details

An introduction to *ppgmmga* package is provided in the accompanying vignette *A quick tour of ppgmmga*.

Author(s)

Serafini A. <srf.alessio@gmail.com>
Scrucci L. <luca.scruccia@unipg.it>

References

See Also

ppgmmga, plot.ppgmmga, ppgmmga-class, ppgmmga.options, summary.ppgmmga
plot.ppgmmga

| **plot.ppgmmga** | Plots the data onto the projection subspace estimated by the ppgmmga algorithm |

Description

Plot method for objects of class 'ppgmmga'.

Usage

```r
## S3 method for class 'ppgmmga'
plot(x, 
  class = NULL, 
  dim = seq(x$d), 
  drawAxis = TRUE, 
  bins = nclass.Sturges, 
  ...)
```

Arguments

- `x`: An object of class 'ppgmmga' obtained from a call to `ppgmmga` function.
- `class`: A numeric or character vector indicating the classification of the observations/cases to be plotted.
- `dim`: A numeric vector indicating the dimensions to use for plotting. By default, all the dimensions of the projection subspace (i.e. `x$d`) are used. Subsets of all the available dimensions can also be provided (see example below.)
- `drawAxis`: A logical value specifying whether or not the axes should be included in the 2D scatterplot. By default is to TRUE.
- `bins`: An R function to be used for computing the number of classes for the histogram. By default `nclass.Sturges` is used; see `nclass.Sturges` for more details. Users may provide a different function. This argument only applies to 1D graphs.
- `...`: further arguments.

Details

Plots the cloud of points onto a subspace after applying the Projection Pursuit algorithm based on Gaussian mixtures and Genetic algorithm implemented in `ppgmmga` function.

Value

Returns a object of class `ggplot`.
Author(s)

Serafini A. <srf.alessio@gmail.com>
Scrucca L. <luca.scrucca@unipg.it>

References

See Also

ppgmmga

Examples

```r
## Not run:
data(iris)
X <- iris[, -5]
Class <- iris$Species

# 1D
pp1 <- ppgmmga(data = X, d = 1, approx = "UT")
summary(pp1, check = TRUE)
plot(pp1)
plot(pp1, Class)

# 2D
pp2 <- ppgmmga(data = X, d = 2, approx = "UT")
summary(pp2, check = TRUE)
plot(pp2)
plot(pp2, Class)

# 3D
pp3 <- ppgmmga(data = X, d = 3)
summary(pp3, check = TRUE)
plot(pp3)
plot(pp3, Class)
plot(pp3, Class, dim = c(1, 3))
plot(pp3, Class, dim = c(2, 3))

## End(Not run)
```

ppgmmga
Projection pursuit based on Gaussian mixtures and evolutionary algorithms for data visualisation
Description

A Projection Pursuit (PP) method for dimension reduction seeking "interesting" data structures in low-dimensional projections. An approximated negentropy index is computed from the density estimated using Gaussian Mixture Models (GMMs). Then, the PP index is maximised by Genetic Algorithms (GAs) to find the optimal projection basis.

Usage

```r
ppgmmga(data, 
  d, 
  approx = c("UT", "VAR", "SOTE"),
  center = TRUE,
  scale = TRUE,
  gmm = NULL,
  gatype = c("ga", "gaIsland"),
  options = ppgmmga.options(),
  seed = NULL,
  verbose = interactive(), ...)
```

Arguments

data A \(n \times p\) matrix containing the data with rows corresponding to observations and columns corresponding to variables.

d An integer specifying the dimension of the subspace onto which the data are projected and visualised.

approx A string specifying the type of approximation to use for computing the negentropy for GMMs. Possible values are:

- "UT" for Unscented Trasformation approximation.
- "VAR" for VARiational approximation.
- "SOTE" for Second Order Taylor Expansion approximation.

center A logical value indicating whether or not the data are centred. By default is set to TRUE.

scale A logical value indicating whether or not the data are scaled. By default is set to TRUE.

gmm An object of class 'densityMclust' specifying a Gaussian mixture density estimate as returned by `densityMclust`.

gatype A string specifying the type of genetic algorithm to be used to maximised the negentropy. Possible values are:

- "ga" for simple genetic algorithm (`ga`).
- "gaIsland" for island genetic algorithm (`gaIsland`).

options A list of options containing all the important arguments to pass to `densityMclust` function of the `mclust` package, and to `ga` function of the `GA` package. See
ppgmmga.options for the available options. Note that by setting the options argument does not change the global options provided by ppgmmga.options, but only the options for a single call to ppgmmga.

seed
An integer value with the random number generator state. It may be used to replicate the results of ppgmmga algorithm.

verbose
A logical value controlling if the evolution of GA search is shown. By default is TRUE reporting the number of iteration, average and best fitness value.

...
Further arguments passed to or from other methods.

Details

Projection pursuit (PP) is a features extraction method for analysing high-dimensional data with low-dimension projections by maximising a projection index to find out the best orthogonal projections. A general PP procedure can be summarised in few steps: the data may be transformed, the PP index is chosen and the subspace dimension is fixed. Then, the PP index is optimised.

For clusters visualisation the negentropy index has been considerd. Since such index requires an estimation of the underlying data density, Gaussian mixture models (GMMs) has been used to approximate such density. GMMs do not have a closed formula for the Negentropy and different closed formula approximations have been implemented. Genetic Algorithms have been employed to maximised the approximated negentropy respect to the system of basis in the desidered subspace.

Value

Returns an object of class 'ppgmmga'. See **ppgmmga-class** for a description of the object.

Author(s)

Serafini A. <srf.alessio@gmail.com>
Scrucca L. <luca.scrucca@unipg.it>

References

See Also

`summary.ppgmmga`, `plot.ppgmmga`, `ppgmmga-class`

Examples

```r
# Not run:
data(iris)
X <- iris[, -5]
Class <- iris$Species

# 1-dimensional PPGMMGA

pp1D <- ppgmmga(data = X, d = 1)
```
ppgmga-class

Description

An S3 class object for ppgmga algorithm

Objects from the class

Object can be created by calls to the `ppgmmga` function.
Values

data The input data matrix.
d The dimension of the projection subspace.
approx The type of approximation used for computing negentropy.
GMM An object of class 'densityMclust' containing the Gaussian mixture density estimation. See densityMclust for details.
GA An object of class 'ga' containing the Genetic Algorithm search. See ga for details.
Negentropy The value of maximised negentropy.
basis The matrix basis of the projection subspace.
Z The matrix of projected data.

Author(s)

Serafini A. <srf.alessio@gmail.com>
Scrucca L. <luca.scrucca@unipg.it>

See Also

ppgmmga.plot, ppgmmga.summary, ppgmmga

ppgmmga.options

Default values for ppgmmga package

Description

Set or retrieve default values to be used by the ppgmmga package.

Usage

ppgmmga.options(...)

Arguments

... A single character vector, or a named list with components. In the one argument case, the form name = value can be used to change a single option. In the multiple arguments case, the form list(name1 = value1, name2 = value2) can be used to change several arguments. If no arguments are provided, then the function returns all the current options. For the available options see the Details section below.
Details

This function can be used to set or retrieve the values to be used by the `ppgmmga` package.

The function globally sets the arguments for the current session of R. The default options are restored with a new R session. To temporarily change the options for a single call to `ppgmmga` function, look at options argument in `ppgmmga`.

Available options are:

- **modelName** A string specifying the GMM to fit. See `mclustModelNames` for the available models.
- **g** An integer value or a vector of integer values specifying the number of mixture components. If more than a single value is provided, the best model is selected using the BIC criterion. By default `g = 1:9`.
- **initMclust** A string specifying the type of initialisation to be used for the EM algorithm. See `mclust.options` for more details.
- **popSize** The GA population size. By default `popSize = 100`.
- **pcrossover** The probability of crossover. By default `pcrossover = 0.8`.
- **pmutation** The probability of mutation. By default `pmutation = 0.1`.
- **maxiter** An integer value specifying the maximum number of iterations before stopping the GA. By default `maxiter = 1000`.
- **run** An integer value indicating the number of generations without improvement in the best value of fitness function. By default `run = 100`.
- **selection** An R function performing the selection genetic operator. See `ga_Selection` for details. By default `selection = gareal_lSSelection`.
- **crossover** An R function performing the crossover genetic operator. See `ga_Crossover` for details. By default `crossover = gareal_lAcrossover`.
- **mutation** An R function performing the mutation genetic operator. See `ga_Mutation` for details. By default `mutation = gareal_ramutation`.
- **parallel** A logical value specifying whether or not GA should be run in parallel. By default `parallel = FALSE`.
- **numIslands** An integer value specifying the number of islands to be used in the Island Genetic Algorithm. By default `numIslands = 4`.
- **migrationRate** A value specifying the fraction of migration between islands. By default `migrationRate = 0.1`.
- **migrationInterval** An integer values specifying the number of generations to run before each migration. By default `migrationInterval = 10`.
- **optim** A logical value specifying whether or not a local search should be performed. By default `optim = TRUE`.
- **optimPoptim** A value specifying the probability a local search is performed at each GA generation. By default `optimPoptim = 0.05`.
- **optimPressel** A value in [0, 1] specifying the pressure selection. Values close to 1 tend to assign higher selection probabilities to solutions with higher fitness, whereas values close to 0 tend to assign equal selection probability to any solution. By default `optimPressel = 0.5`.
- **optimMethod** A string specifying the general-purpose optimisation method to be used for local search. See `optim` for the available algorithms. By default `optimMethod = "L-BFGS-B"`.

```r
ppgmmga.options
```
ppgmmga.options

optimMaxit An integer value specifying the number of iterations for the local search algorithm. By default optimMaxit = 100.

orth A string specifying the method employed to orthogonalise the matrix basis. Available methods are the QR decomposition "QR", and the Singular Value Decomposition "SVD". By default orth = "QR".

For more details about options related to Gaussian mixture modelling see densityMclust, and for those related to genetic algorithms see ga and gaisl.

Author(s)
Serafini A. <srf.alessio@gmail.com>
Scrucca L. <luca.scrucca@unipg.it>

References

See Also

ppgmmga

Examples

Not run:
ppgmmga.options()

Print a single option
ppgmmga.options("popSize")

Change (globally) an option
ppgmmga.options("popSize" = 10)
 ppgmmga.options("popSize")

End(Not run)
Summary for projection pursuit based on Gaussian mixtures and evolutionary algorithms for data visualisation

Description

Summary method for objects of class 'ppgmmga'.

Usage

```r
## S3 method for class 'ppgmmga'
summary(object, check = FALSE, ...)

## S3 method for class 'summary.ppgmmga'
print(x, digits =getOption("digits"), ...)
```

Arguments

- `object`: An object of class 'ppgmmga' as returned by `ppgmmga`.
- `check`: A logical value specifying whether or not a Monte Carlo negentropy approximation check should be performed. By default is set to `FALSE`.
- `x`: An object of class `summary.ppgmmga`.
- `digits`: The number of significant digits.
- `...`: Further arguments passed to or from other methods.

Value

The summary function returns an object of class `summary.ppgmmga` which can be printed by the corresponding print method. A list with the information from the ppgmmga algorithm is returned.

If the optional argument `check = TRUE` then the value of approximated negentropy is compared to the Monte Carlo negentropy calculated for the same optimal projection basis selected by the algorithm. Since the Monte Carlo approximation is the only one guarantee to converge to the "true" negentropy, it allows to check if the value returned by the employed approximation is close to the "true" negentropy. The ratio between the approximated value returned by the algorithm and the value computed with Monte Carlo is called Relative Accuracy. Such value should be close to 1 for a good approximation.

Author(s)

Serafini A. <srf.alessio@gmail.com>
Scrucca L. <luca.scrucca@unipg.it>

See Also

`ppgmmga`
Index

*Topic **classes**
 ppgmga-class, 7

*Topic **options**
 ppgmga.options, 8

densityMclust, 5, 8, 10

ga, 5, 8, 10
 ga_Crossover, 9
 ga_Mutation, 9
 ga_Selection, 9
 gaisl, 5, 10
 ggplot, 3

 mclust.options, 9
 mclustModelNames, 9

 nclass.Sturges, 3

 optim, 9

 plot.ppgmga, 2, 3, 6, 8
 ppgmga, 2–4, 4, 7–11
 ppgmga-class, 7
 ppgmga-package, 2
 ppgmga.options, 2, 6, 8
 print.ppgmga(ppgmga), 4
 print.summary.ppgmga
 (summary.ppgmga), 11

 summary.ppgmga, 2, 6, 8, 11