Package ‘ppsr’

March 2, 2021

Type Package
Title Predictive Power Score
Version 0.0.2
Description The PPS is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships between two columns. The score ranges from 0 (no predictive power) to 1 (perfect predictive power). It can be useful for data exploration purposes, in the same way correlation analysis is. For more information on PPS, see Wetschoreck (2020) <https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598> or github <https://github.com/paulvanderlaken/ppsr>.
License GPL (>= 3)
Encoding UTF-8
LazyData true
Suggests testthat (>= 2.0.0)
Config/testthat.edition 3
Config/testthat/parallel true
RoxygenNote 7.1.1
Imports ggplot2 (>= 3.3.3), parsnip (>= 0.1.5), rpart (>= 4.1.15), withr (>= 2.4.1), gridExtra (>= 2.3), parallel (>= 4.0.3)
NeedsCompilation no
Author Paul van der Laken [aut, cre]
Maintainer Paul van der Laken <paulvanderlaken@gmail.com>
Repository CRAN
Date/Publication 2021-03-02 10:10:02 UTC

R topics documented:

available_algorithms ... 2
available_evaluation_metrics .. 2
normalize_score ... 3
available_evaluation_metrics

Description

Lists all evaluation metrics currently supported

Usage

available_evaluation_metrics()

Value

a list of all available evaluation metrics and their implementation in functional form
normalize_score

Examples

```r
available_evaluation_metrics()
```

<table>
<thead>
<tr>
<th>normalize_score</th>
<th>Normalizes the original score compared to a naive baseline score The calculation that’s being performed depends on the type of model</th>
</tr>
</thead>
</table>

Description

Normalizes the original score compared to a naive baseline score The calculation that’s being performed depends on the type of model

Usage

```r
normalize_score(baseline_score, model_score, type)
```

Arguments

- `baseline_score` float, the evaluation metric score for a naive baseline (model)
- `model_score` float, the evaluation metric score for a statistical model
- `type` character, type of model

Value

numeric vector of length one, normalized score

ppsr

ppsr: An R implementation of the Predictive Power Score (PPS)

Description

The PPS is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships between two columns. The score ranges from 0 (no predictive power) to 1 (perfect predictive power). It can be used as an alternative to the correlation (matrix).
Calculate predictive power score for x on y

Usage

score(
 df,
 x,
 y,
 algorithm = "tree",
 metrics = list(regression = "MAE", classification = "F1_weighted"),
 cv_folds = 5,
 seed = 1,
 verbose = TRUE
)

Arguments

df data.frame containing columns for x and y
x string, column name of predictor variable
y string, column name of target variable
algorithm string, see available_algorithms()
metrics named list of eval_* functions used for regression and classification problems, see available_evaluation_metrics()
cv_folds float, number of cross-validation folds
seed float, seed to ensure reproducibility/stability
verbose boolean, whether to print notifications

Value

a named list, potentially containing
x the name of the predictor variable
y the name of the target variable
result_type text showing how to interpret the resulting score
pps the predictive power score
metric the evaluation metric used to compute the PPS
baseline_score the score of a naive model on the evaluation metric
model_score the score of the predictive model on the evaluation metric
cv_folds how many cross-validation folds were used
seed the seed that was set
algorithm text showing what algorithm was used
model_type text showing whether classification or regression was used

Examples
score(iris, x = 'Petal.Length', y = 'Species')

score_correlations
Calculate correlation coefficients for whole dataframe

Description
Calculate correlation coefficients for whole dataframe

Usage
score_correlations(df, ...)

Arguments
df data.frame containing columns for x and y
...
arguments to pass to stats::cor()

Value
a data.frame with x-y correlation coefficients

Examples
score_correlations(iris)
score_df

`Calculate predictive power scores for whole dataframe. Iterates through the columns of the dataframe, calculating the predictive power score for every possible combination of x and y.`

Description

Calculate predictive power scores for whole dataframe. Iterates through the columns of the dataframe, calculating the predictive power score for every possible combination of x and y.

Usage

```r
score_df(df, ..., do_parallel = FALSE, n_cores = -1)
```

Arguments

- `df` data.frame containing columns for x and y
- `...` any arguments passed to `score`
- `do_parallel` bool, whether to perform `score` calls in parallel
- `n_cores` numeric, number of cores to use, defaults to maximum minus 1

Value

- a data.frame containing
 - `x` the name of the predictor variable
 - `y` the name of the target variable
 - `result_type` text showing how to interpret the resulting score
 - `pps` the predictive power score
 - `metric` the evaluation metric used to compute the PPS
 - `baseline_score` the score of a naive model on the evaluation metric
 - `model_score` the score of the predictive model on the evaluation metric
 - `cv_folds` how many cross-validation folds were used
 - `seed` the seed that was set
 - `algorithm` text showing what algorithm was used
 - `model_type` text showing whether classification or regression was used

Examples

```r
score_df(iris)
score_df(mtcars, do_parallel = TRUE, n_cores = 2)
```
Calculate predictive power score matrix Iterates through the columns of the dataset, calculating the predictive power score for every possible combination of \(x \) and \(y \).

Description

Note that the targets are on the rows, and the features on the columns.

Usage

```r
score_matrix(df, ...)
```

Arguments

- `df` : data.frame containing columns for \(x \) and \(y \)
- `...` : any arguments passed to `score_df`, some of which will be passed on to `score`

Value

A matrix of numeric values, representing predictive power scores.

Examples

```r
score_matrix(iris)
score_matrix(mtcars, do_parallel = TRUE, n_cores=2)
```

Calculates out-of-sample model performance of a statistical model.

Description

Calculates out-of-sample model performance of a statistical model.

Usage

```r
score_model(train, test, model, x, y, metric)
```

Arguments

- `train` : df, training data, containing variable \(y \)
- `test` : df, test data, containing variable \(y \)
- `model` : parsnip model object, with mode preset
- `x` : character, column name of predictor variable
- `y` : character, column name of target variable
- `metric` : character, name of evaluation metric being used, see `available_evaluation_metrics()`
Description

Calculate out-of-sample model performance of naive baseline model. The calculation that’s being performed depends on the type of model. For regression models, the mean is used as prediction. For classification, a model predicting random values and a model predicting modal values are used and the best model is taken as baseline score.

Usage

```r
score_naive(train, test, x, y, type, metric)
```

Arguments

- `train`: df, training data, containing variable `y`
- `test`: df, test data, containing variable `y`
- `x`: character, column name of predictor variable
- `y`: character, column name of target variable
- `type`: character, type of model
- `metric`: character, evaluation metric being used

Value

numeric vector of length one, evaluation score for predictions using naive model
score_predictors

Calculate predictive power scores for y

Calculates the predictive power scores for the specified y variable using every column in the dataset as x, including itself.

Description

Calculate predictive power scores for y Calculates the predictive power scores for the specified y variable using every column in the dataset as x, including itself.

Usage

```r
score_predictors(df, y, ..., do_parallel = FALSE, n_cores = -1)
```

Arguments

- `df` data.frame containing columns for x and y
- `y` string, column name of target variable
- `...` any arguments passed to `score`
- `do_parallel` bool, whether to perform `score` calls in parallel
- `n_cores` numeric, number of cores to use, defaults to maximum minus 1

Value

a data.frame containing

- `x` the name of the predictor variable
- `y` the name of the target variable
- `result_type` text showing how to interpret the resulting score
- `pps` the predictive power score
- `metric` the evaluation metric used to compute the PPS
- `baseline_score` the score of a naive model on the evaluation metric
- `model_score` the score of the predictive model on the evaluation metric
- `cv_folds` how many cross-validation folds were used
- `seed` the seed that was set
- `algorithm` text showing what algorithm was used
- `model_type` text showing whether classification or regression was used

Examples

```r
score_predictors(df = iris, y = 'Species')
score_predictors(df = mtcars, y = 'mpg', do_parallel = TRUE, n_cores = 2)
```
visualize_both

Visualize the PPS & correlation matrices

Description

Visualize the PPS & correlation matrices

Usage

visualize_both(
 df,
 color_value_positive = "#08306B",
 color_value_negative = "#8b0000",
 color_text = "#FFFFFF",
 include_missings = TRUE,
 nrow = 1,
 ...
)

Arguments

df data.frame containing columns for x and y

color_value_positive color used for upper limit of gradient (high positive correlation)

color_value_negative color used for lower limit of gradient (high negative correlation)

color_text string, hex value or color name used for text, best to pick high contrast with
color_value_high

include_missings bool, whether to include the variables without correlation values in the plot

nrow numeric, number of rows, either 1 or 2

... any arguments passed to score

Value

a grob object, a grid with two ggplot2 heatmap visualizations

Examples

visualize_both(iris)

visualize_both(mtcars, do_parallel = TRUE, n_cores = 2)
Visualize the correlation matrix

Description

Visualize the correlation matrix

Usage

```r
visualize_correlations(
  df,
  color_value_positive = "#08306B",
  color_value_negative = "#8b0000",
  color_text = "#FFFFFF",
  include_missings = FALSE,
  ...
)
```

Arguments

- `df` : data.frame containing columns for x and y
- `color_value_positive` : color used for upper limit of gradient (high positive correlation)
- `color_value_negative` : color used for lower limit of gradient (high negative correlation)
- `color_text` : color used for text, best to pick high contrast with `color_value_high`
- `include_missings` : bool, whether to include the variables without correlation values in the plot
- `...` : arguments to pass to stats::cor()

Value

a ggplot object, a heatmap visualization

Examples

```r
visualize_correlations(iris)
```
visualize_pps

Visualize the Predictive Power scores of the entire dataframe, or given a target

Description

If \(y \) is specified, \texttt{visualize_pps} returns a barplot of the PPS of every predictor on the specified target variable. If \(y \) is not specified, \texttt{visualize_pps} returns a heatmap visualization of the PPS for all X-Y combinations in a dataframe.

Usage

\begin{verbatim}
visualize_pps(
 df,
 y = NULL,
 color_value_high = "#08306B",
 color_value_low = "#FFFFFF",
 color_text = "#FFFFFF",
 include_target = TRUE,
 ...
)
\end{verbatim}

Arguments

- \texttt{df}
data.frame containing columns for x and y
- \texttt{y}
string, column name of target variable, can be left \texttt{NULL} to visualize all X-Y PPS
- \texttt{color_value_high}
string, hex value or color name used for upper limit of PPS gradient (high PPS)
- \texttt{color_value_low}
string, hex value or color name used for lower limit of PPS gradient (low PPS)
- \texttt{color_text}
string, hex value or color name used for text, best to pick high contrast with \texttt{color_value_high}
- \texttt{include_target}
boolean, whether to include the target variable in the barplot
- \texttt{...}
any arguments passed to \texttt{score}

Value

a \texttt{ggplot} object, a vertical barplot or heatmap visualization

Examples

\begin{verbatim}
visualize_pps(iris, y = 'Species')
visualize_pps(iris)
visualize_pps(mtcars, do_parallel = TRUE, n_cores = 2)
\end{verbatim}
Index

available_algorithms, 2
available_evaluation_metrics, 2

normalize_score, 3

ppsr, 3

score, 4, 6, 7, 9, 10, 12
score_correlations, 5
score_df, 6, 7
score_matrix, 7
score_model, 7
score_naive, 8
score_predictors, 9

visualize_both, 10
visualize_correlations, 11
visualize_pps, 12