Package ‘precisePlacement’

June 15, 2021

Title Suite of Functions to Help Get Plot Elements Exactly Where You Want Them

Version 0.1.0

Description Provides a selection of tools that make it easier to place elements onto a (base R) plot exactly where you want them. It allows users to identify points and distances on a plot in terms of inches, pixels, margin lines, data units, and proportions of the plotting space, all in a manner more simple than manipulating par().

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Suggests knitr, testthat, rmarkdown

VignetteBuilder knitr

BugReports https://github.com/rntq472/precisePlacement/issues

NeedsCompilation no

Author Jasper Watson [aut, cre]

Maintainer Jasper Watson <jasper.g.watson@gmail.com>

Repository CRAN

Date/Publication 2021-06-15 08:10:09 UTC

R topics documented:

convertUnits .. 2
getBoundaries .. 3
getDataPerInch .. 4
getDataPerLine ... 5
getDataPerPixel ... 6
getInchesPerDatum .. 6
getInchesPerLine ... 7
getInchesPerPixel .. 8
getLinesPerDatum ... 8
getLinesPerInch .. 9
convertUnits

Convert Between Different Available Units That Measure Points on a Plot

Usage

convertUnits(from, value, to, side = NULL, axis = NULL, region = "plot")

Arguments

from Units one wishes to convert from. Allowed values are "line", "data", and "proportion".

value Numeric value(s) of the coordinate(s) one wishes to convert.

to Units one wishes to convert from. Allowed values are "line", "data", and "proportion".

side Integer giving the side of the plot to count lines from.

axis One of "x" or "y", giving the axis a proportion should be calculated from.

region Required when either from or to has the value "proportion". Must be one of "device", "figure", "plot", or "data". Defaults to "plot".

Value

Numeric value(s) of the input coordinates converted into the new units.

Author(s)

Jasper Watson
getBoundaries

Examples

```r
## Not run:

## Illustrate where the lines fall when using mtext:

plot(1:10)
mtext(1:26, line = -(1:26), side = 1, col = 'blue')
x <- convertUnits('line', 0:(-26), 'data', side = 1)
abline(h = x, col = 'red', lty = 2)

## Show how proportions of a plot can be identified:

plot(seq(as.Date('2018-01-01'), as.Date('2019-01-01'), length.out = 10), 1:10,
pch = 19)

## Identify the "center" of the plot.
abline(h = convertUnits('proportion', 0.5, 'data', axis = 'y'),
col = 'red', lwd = 4)
abline(v = convertUnits('proportion', 0.5, 'data', axis = 'x'),
col = 'blue', lwd = 4)

print(convertUnits('proportion', 0.5, 'data', axis = 'y'))
## as.Date is needed because convertUnits returns a numeric value.
print(as.Date(convertUnits('proportion', 0.5, 'data', axis = 'x'),
origin = '1970-01-01'))

## Change the region we are defining the proportions from.
abline(v = convertUnits('proportion', 0.75, 'data', axis = 'x', region = 'plot'),
col = 'darkgreen', lwd = 4)
abline(v = convertUnits('proportion', 0.75, 'data', axis = 'x', region = 'device'),
col = 'orange', lwd = 4)

## End(Not run)
```

getBoundaries

Determine the Boundaries of a Plot in Terms of the Data Units

Description

Determine the Boundaries of a Plot in Terms of the Data Units

Usage

```r
getBoundaries(region, units = "data", sides = 1:4)
```
getDataPerInch

Arguments

region The region of the plot to use for defining the boundaries. Must be one of "device", "figure", "plot", or "data".

units Character string giving the units in which to define the range. Must be either "data" or "lines".

sides Numeric vector giving the four sides to uses as a reference if the requested units are "lines". Defaults to 1:4.

Value

A numeric vector of length four giving the coordinates of the plotting boundary, in the order of bottom, left, top, right.

Author(s)

Jasper Watson

Examples

Not run:

par(oma = 1:4)
plot(1:10)
print(getBoundaries('data'))
print(getBoundaries('plot'))
print(getBoundaries('figure'))
print(getBoundaries('device'))

print(getBoundaries('data', units = 'lines'))
print(getBoundaries('plot', units = 'lines'))
print(getBoundaries('figure', units = 'lines'))
print(getBoundaries('device', units = 'lines'))

End(Not run)

ggetDataPerInch

Find the Number of Data Points Per Inch in a Plot

Description

Find the Number of Data Points Per Inch in a Plot

Usage

ggetDataPerInch()
getDataPerLine

Value

Numeric vector of length two giving the number of data points per inch, for the x axis and y axis, respectively.

Author(s)

Jasper Watson

Examples

```r
## Not run:
plot(1:10)
print(getDataPerInch())

## End(Not run)
```

getDataPerLine
Find the Number of Data Points Per Margin Line in a Plot

Description

Find the Number of Data Points Per Margin Line in a Plot

Usage

`getDataPerLine()`

Value

Numeric vector of length two giving the number of data points per line, for the x axis and y axis, respectively.

Author(s)

Jasper Watson

Examples

```r
## Not run:
plot(1:10)
print(getDataPerLine())

## End(Not run)
```
getDataPerPixel Find the Number of Data Points Per Pixel in a Plot

Description
Find the Number of Data Points Per Pixel in a Plot

Usage
getDataPerPixel()

Value
Numeric vector of length two giving the number of data points per pixel, for the x axis and y axis, respectively.

Author(s)
Jasper Watson

Examples
```r
## Not run:
plot(1:10)
print(getDataPerPixel())
## End(Not run)
```

getInchesPerDatum Find the Number of Inches Per Data Point in a Plot

Description
Find the Number of Inches Per Data Point in a Plot

Usage
gInchesPerDatum()

Value
Numeric vector of length two giving the number of inches per data point, for the x axis and y axis, respectively.
getInchesPerLine

Author(s)

Jasper Watson

Examples

Not run:

```r
plot(1:10)
print(getInchesPerDatum())
```

End(Not run)

getInchesPerLine
Find the Number of Inches Per Margin Line in a Plot

Description

Find the Number of Inches Per Margin Line in a Plot

Usage

getInchesPerLine()

Value

Numeric vector of length two giving the number of inches per line, for the x axis and y axis, respectively.

Note

The number of lines per inch is the same for both the x and y axes but we return a vector of length two to maintain consistency with all of the other getXperY style functions.

Author(s)

Jasper Watson

Examples

Not run:

```r
plot(1:10)
print(getInchesPerLine())
```

End(Not run)
getInchesPerPixel
Find the Number of Inches Per Pixel in a Plot

Description
Find the Number of Inches Per Pixel in a Plot

Usage
getInchesPerPixel()

Value
Numeric vector of length two giving the number of inches per pixel, for the x axis and y axis, respectively.

Author(s)
Jasper Watson

Examples
```r
## Not run:
plot(1:10)
piclip(getInchesPerPixel())
## End(Not run)
```

getLinesPerDatum
Find the Number of Margin Lines Per Data Point in a Plot

Description
Find the Number of Margin Lines Per Data Point in a Plot

Usage
getLinesPerDatum()

Value
Numeric vector of length two giving the number of lines per data point, for the x axis and y axis, respectively.
getLinesPerInch

Author(s)
Jasper Watson

Examples

Not run:

plot(1:10)
print(getLinesPerDatum())

End(Not run)

getLinesPerInch Find the Number of Margin Lines Per Inch in a Plot

Description
Find the Number of Margin Lines Per Inch in a Plot

Usage
getLinesPerInch()

Value
Numeric vector of length two giving the number of lines per inch, for the x axis and y axis, respectively.

Note
The number of lines per inch is the same for both the x and y axes but we return a vector of length two to maintain consistency with all of the other getXperY style functions.

Author(s)
Jasper Watson

Examples

Not run:

plot(1:10)
print(getLinesPerInch())

End(Not run)
getLinesPerPixel
Find the Number of Margin Lines Per Pixel in a Plot

Description
Find the Number of Margin Lines Per Pixel in a Plot

Usage
```r
getLinesPerPixel()
```

Value
Numeric vector of length two giving the number of lines per pixel, for the x axis and y axis, respectively.

Author(s)
Jasper Watson

Examples
```r
## Not run:
plot(1:10)
print(getLinesPerPixel())
## End(Not run)
```

getPixelsPerDatum
Find the Number of Pixels Per Data Point in a Plot

Description
Find the Number of Pixels Per Data Point in a Plot

Usage
```r
getPixelsPerDatum()
```

Value
Numeric vector of length two giving the number of pixels per data point, for the x axis and y axis, respectively.
getPixelsPerInch

Author(s)
 Jasper Watson

Examples
 ## Not run:
 plot(1:10)
 print(getPixelsPerDatum())

 ## End(Not run)

getPixelsPerInch Find the Number of Pixels Per Inch in a Plot

Description
 Find the Number of Pixels Per Inch in a Plot

Usage
 getPixelsPerInch()

Value
 Numeric vector of length two giving the number of pixels per inch, for the x axis and y axis, respectively.

Author(s)
 Jasper Watson

Examples
 ## Not run:
 plot(1:10)
 print(getPixelsPerInch())

 ## End(Not run)
getPixelsPerLine

Find the Number of Pixels Per Margin Line in a Plot

Description

Find the Number of Pixels Per Margin Line in a Plot

Usage

getPixelsPerLine()

Value

Numeric vector of length two giving the number of pixels per line, for the x axis and y axis, respectively.

Author(s)

Jasper Watson

Examples

```r
## Not run:
plot(1:10)
print(getPixelsPerLine())

## End(Not run)
```

getRange

Determine the Width and Height of a Plot

Description

Determine the Width and Height of a Plot

Usage

getRange(region, units)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>region</td>
<td>The region of the plot to use for defining the boundaries. Must be one of "device", "figure", "plot", or "data".</td>
</tr>
<tr>
<td>units</td>
<td>Character string giving the units in which to define the range. Must be one of "in", "px", "data", or "lines".</td>
</tr>
</tbody>
</table>
Value

Numeric vector of length two giving the range of the plotting region, in the order of x-axis, y-axis.

Author(s)

Jasper Watson

Examples

```r
## Not run:

plot(1:10)
print(getRange('data', 'in'))
print(getRange('plot', 'px'))
print(getRange('figure', 'data'))
print(getRange('device', 'lines'))

## End(Not run)
```

highlightDataRegion Highlight the Data Region of a Plot

Description

Highlight the Data Region of a Plot

Usage

`highlightDataRegion(border = "green", col = adjustcolor(border, 0.1))`

Arguments

- `border` Parameter to be passed to graphics::rect. Defaults to "green".
- `col` Parameter to be passed to graphics::rect. Defaults to adjustcolor(border, 0.1).

Author(s)

Jasper Watson
highlightDeviceRegion

Highlight the Device Region of a Plot

Description

Highlight the Device Region of a Plot

Usage

highlightDeviceRegion(border = "skyblue", col = adjustcolor(border, 0.1))

Arguments

border Parameter to be passed to graphics::rect. Defaults to "green".

col Parameter to be passed to graphics::rect. Defaults to adjustcolor(border, 0.1).

Author(s)

Jasper Watson

Examples

Not run:

plot(1:10)
highlightDataRegion()

End(Not run)
highlightFigureRegion Highlight the Figure Region of a Plot

Description
Highlight the Figure Region of a Plot

Usage
highlightFigureRegion(border = "orange", col = adjustcolor(border, 0.1))

Arguments
border Parameter to be passed to graphics::rect. Defaults to "green".
col Parameter to be passed to graphics::rect. Defaults to adjustcolor(border, 0.1).

Author(s)
Jasper Watson

Examples
Not run:
plot(1:10)
par(xpd = NA)
highlightFigureRegion()

End(Not run)

highlightPlotRegion Highlight the Plotting Region of a Plot

Description
Highlight the Plotting Region of a Plot

Usage
highlightPlotRegion(border = "red", col = adjustcolor(border, 0.1))

Arguments
border Parameter to be passed to graphics::rect. Defaults to "green".
col Parameter to be passed to graphics::rect. Defaults to adjustcolor(border, 0.1).
Author(s)
Jasper Watson

Examples

Not run:

```r
plot(1:10)
highlightPlotRegion()
```

End(Not run)

lineLocations

Wrapper Function for convertUnits Focused on Identifying the Locations of the Margin Lines of a Plot

Description

Wrapper Function for convertUnits Focused on Identifying the Locations of the Margin Lines of a Plot

Usage

```r
lineLocations(side, line)
```

Arguments

- `side`: Integer giving the side of the plot to count lines from.
- `line`: Numeric vector giving margin lines one wishes to find the data coordinates of.

Note

No attempt is made to limit the returned values to the device region.

Author(s)
Jasper Watson

Examples

Not run:

```r
## Illustrate where the lines fall when using mtext:
plot(1:10)
mtext(1:26, line = -(1:26), side = 1, col = 'blue')
x <- lineLocations(1, 0:(-26))
```
Generate Values for par("omi") That Will Place a New Plot in a Sub-Region of an Existing One

Usage

omiForSubFigure(
 bottom,
 left,
 top,
 right,
 units = "proportion",
 region = "device"
)

Arguments

- `bottom`: Boundary value for the bottom edge.
- `left`: Boundary value for the left edge.
- `top`: Boundary value for the top edge.
- `right`: Boundary value for the right edge.
- `units`: The units in which the boundary parameters are defined. Must be one of "proportion" or "data". Defaults to "proportion".
- `region`: The region of the plot to use for defining the boundaries. Must be one of "device", "figure", "plot", or "data". Only necessary when using units of "proportion".

Details

The choice of accepting proportions instead of data units by default is to more easily handle empty devices, otherwise there is a risk of getting confused by the fact that par("usr") defaults to c(0, 1, 0, 1).

Author(s)

Jasper Watson
Examples

Not run:

plot(1:10, pch = 19, col = 'black')
oldPar = par()
par(omi = omiForSubFigure(0.6, 0.25, 0.8, 0.45, region = 'device'))
par(mar = c(0,0,0,0))
plot(1:10, pch = 19, col = 'red')
par(oldPar)
par(omi = omiForSubFigure(2, 6, 5, 10, units = 'data'))
par(mar = c(0,0,0,0))
plot(1:10, pch = 19, col = 'blue')
par(oldPar)

Illustrates how the proportions line up:

plot(1:10, pch = 19)
par(xpd = NA)
oldPar = par()

Show where the proportions are as a reference:
abline(v = convertUnits('proportion', seq(0, 1, by = 0.1), 'data',
 region = 'device', axis = 'x'), lty = 2, col = 'red')
abline(h = convertUnits('proportion', seq(0, 1, by = 0.1), 'data',
 region = 'device', axis = 'y'), lty = 2, col = 'red')

Create a new sub-plot.
par(omi = omiForSubFigure(0.2, 0.2, 0.8, 0.8, region = 'device'))

plot(1:10, pch = 19, col = 'red')
highlightFigureRegion()
par(oldPar)

End(Not run)

precisePlacement

Suite of Functions To Get Plot Elements Exactly Where You Want Them

Description

This package provides a selection of tools that make it easier to place elements onto a (base R) plot exactly where you want them. It allows users to identify points and distances on a plot in terms of inches, pixels, margin lines, data units, and proportions of the plotting space, all in a manner more simple than manipulating par(). It helps users identify where exactly the margin lines of a plot fall and to create sub-figures.
showMarginLines

Author(s)

Jasper Watson

Description

Add Lines to a Plot to Indicate Where the Margins Are

Usage

showMarginLines(sides = 1:4, lty = 2, ...)

Arguments

sides Numeric vector giving the sides of the plot to annotate. Defaults to 1:4.
lty Argument to be passed to graphics::abline. Defaults to 2.
... Other arguments to be passed to graphics::abline

Author(s)

Jasper Watson

Examples

Not run:

plot(1:10)
par(xpd = NA)
showMarginLines()

End(Not run)
showOuterMarginLines Add Lines to a Plot to Indicate Where the Outer Margins Are

Description

Add Lines to a Plot to Indicate Where the Outer Margins Are

Usage

showOuterMarginLines(sides = 1:4, lty = 3, col = "purple", ...)

Arguments

sides Numeric vector giving the sides of the plot to annotate. Defaults to 1:4.
lty Argument to be passed to graphics::abline. Defaults to 3.
col Argument to be passed to graphics::abline. Defaults to "purple".
... Other arguments to be passed to graphics::abline

Author(s)

Jasper Watson

Examples

Not run:
par(oma = 1:4, mfrow = 2:1)
plot(1:10)
plot(1:10)
par(xpd = NA)
showOuterMarginLines()

End(Not run)
Index

convertUnits, 2
getBoundaries, 3
dataPerInch, 4
dataPerLine, 5
dataPerPixel, 6
dataPerInchesPerDatum, 6
dataPerInchesPerLine, 7
dataPerInchesPerPixel, 8
dataPerInchesPerInchesPerDatum, 8
dataPerInchesPerInchesPerLine, 9
dataPerInchesPerInchesPerPixel, 10
dataPerInchesPerPixelsPerDatum, 10
dataPerInchesPerPixelsPerPixel, 11
dataPerInchesPerPixelsPerInchesPerPixel, 12
dataPerInchesPerRange, 12
highlightDataRegion, 13
highlightDeviceRegion, 14
highlightFigureRegion, 15
highlightPlotRegion, 15
lineLocations, 16
omiForSubFigure, 17
precisePlacement, 18
showMarginLines, 19
showOuterMarginLines, 20