Package ‘predict3d’

September 3, 2019

Type Package
Title Draw Three Dimensional Predict Plot Using Package 'rgl'
Version 0.1.3.3
URL https://github.com/cardiomoon/predict3d
BugReports https://github.com/cardiomoon/predict3d/issues
Description Draw 2 dimensional and three dimensional plot for multiple regression models using package 'ggplot2' and 'rgl'. Supports linear models (lm), generalized linear models (glm) and local polynomial regression fittings (loess).
Depends R (>= 2.10)
License GPL-2
Encoding UTF-8
LazyData true
Imports ggplot2(>= 3.1.0), rgl(>= 0.99.16), dplyr, ggiraphExtra, modelr, prediction, purrr, rlang, stringr, magrittr, moonBook, stats, TH.data, reshape2, plyr, tidyr
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Keon-Woong Moon [aut, cre]
Maintainer Keon-Woong Moon <cardiomoon@gmail.com>
Repository CRAN
Date/Publication 2019-09-03 13:00:02 UTC

R topics documented:

add_lines ... 2
beNumeric ... 3
add_lines

Add lines with labels to pre-existing ggplot

Description
Add lines with labels to pre-existing ggplot

Usage
add_lines(p, df, xpos = 0.3, add.coord.fixed = TRUE, lty = NULL, color = NULL, size = 0.5, add_theme_bw2 = TRUE, ...)

Arguments
p
An object of class ggplot

df
A data.frame. Required columns are slope, intercept and label

xpos
A numeric. Relative horizontal position

add.coord.fixed
Logical. Whether or not add coord_fixed() function

lty
line type

color
line color
beNumeric

 size line size
add_theme_bw2 logical Whether or not add theme_bw2()
... Further arguments to be passed to geom_text

Examples

require(ggplot2)
fit=lm(mpg~wt*hp,data=mtcars)
df=calEquation(fit)
p=ggplot(data=mtcars,aes(x=wt,y=mpg))
add_lines(p,df)
add_lines(p,df,lty=1:3,color=1:3,size=1)
fit=lm(mpg~wt*vs,data=mtcars)
df=calEquation(fit)
p=ggplot(data=mtcars)+geom_point(aes(x=wt,y=mpg))
add_lines(p,df)
add_lines(p,df,lty=1:2,color=1:2,size=1)+theme_bw()

beNumeric Whether a string vector can be converted to numeric

Description

Whether a string vector can be converted to numeric

Usage

beNumeric(x)

Arguments

x A string vector

Examples

x=c("age","22.5","11/2")
beNumeric(x)
calEquation calculated slope and intercept from object of class lm

Description

calculated slope and intercept from object of class lm

Usage

calEquation(fit, mode = 1, pred = NULL, modx = NULL,modx.values = NULL, label = NULL, maxylev = 6, digits = 2)

Arguments

- fit: An object of class lm
- mode: A numeric
- pred: name of predictor variable
- modx: name of modifier variable
- modx.values: Numeric. Values of modifier variable
- label: A character string
- maxylev: maximum length of unique value of variable to be treated as a categorical variable
- digits: Integer indicating the number of decimal places

Examples

```r
fit=lm(mpg~wt*hp+carb,data=mtcars)
calEquation(fit)
calEquation(fit,pred="hp")
```

expand.grid2 expand.grid with two data.frames

Description

expand.grid with two data.frames

Usage

expand.grid2(df1, df2)

Arguments

- df1: A data.frame
- df2: A data.frame
Description

Make a new data set for prediction

Usage

```
fit2newdata(fit, predictors, mode = 1, pred.values = NULL,
           modx.values = NULL, mod2.values = NULL, colorn = 3, maxylev = 6,
           summarymode = 1)
```

Arguments

- **fit**: An object of class "lm", "glm" or "loess"
- **predictors**: Names of predictor variables in string
- **mode**: A numeric. Useful when the variables are numeric. If 1, \((-1,0,1) \times \text{sd} + \text{mean}\) is used. If 2, the 16th, 50th, 84th percentile values used. If 3 sequence over a range of a vector used
- **pred.values**: For which values of the predictors should be used? Default is NULL. If NULL, 20 \text{seq.range} is used.
- **modx.values**: For which values of the moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.
- **mod2.values**: For which values of the second moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.
- **colorn**: The number of regression lines when the modifier variable(s) are numeric.
- **maxylev**: An integer indicating the maximum number of levels of numeric variable be treated as a categorical variable
- **summarymode**: An integer indicating method of extracting typical value of variables. If 1, \text{typical()} is used. If 2, \text{mean()} is used.

Examples

```
fit=lm(mpg~hp*wt*cyl+carb+am,data=mtcars)
fit2newdata(fit, predictors=c("hp","wt","cyl","am"))
fit2newdata(fit, predictors=c("hp","wt","cyl"))
fit2newdata(fit, predictors=c("hp"))
fit2newdata(fit, predictors=c("hp","wt"))
fit=loess(mpg~hp*wt*am,data=mtcars)
fit2newdata(fit, predictors=c("hp"))
```
mtcars$engine = ifelse(mtcars$vs == 0, "V-shaped", "straight")
fit = lm(mpg ~ wt*engine, data = mtcars)
fit2newdata(fit, predictors = c("wt", "engine"))
fit = lm(mpg ~ wt*factor(vs), data = mtcars)
fit2newdata(fit, predictors = c("wt", "vs"))
fit = lm(mpg ~ hp*wt, data = mtcars), predictors = c("hp", "wt"), mode = 3, colorn = 30)
fit2newdata(fit, predictors = c("hp", "log(wt)"))
fit = lm(mpg ~ hp*wt*factor(vs), data = mtcars)
fit2newdata(fit, predictors = c("hp"))
require(moonBook)
fit = lm(log(NTAV) ~ I(age^2)*sex, data = radial)
fit2newdata(fit, predictors = c("I(age^2)", "sex"))

getaRatio

Get aspect information of a ggplot

Description

Get aspect information of a ggplot

Usage

getaRatio(p)

Arguments

- p A ggplot object

getMeans

calculate mean values of two consecutive number

Description

calculate mean values of two consecutive number

Usage

getMeans(x)

Arguments

- x A numeric vector

Examples

```r
x = c(50, 60, 70)
getMeans(x)
```
getNewFormula

Make new formula

Usage

```r
getNewFormula(fit, predictors = NULL)
```

Arguments

- `fit`: An object of class `lm` or `glm`
- `predictors`: Names of variables to exclude

Examples

```r
fit = lm(mpg ~ factor(cyl) * factor(am) + wt + carb, data = mtcars)
getNewFormula(fit, predictors = c("cyl", "wt"))

fit = lm(Sepal.Length ~ Sepal.Width * Petal.Length + Species, data = iris)
getNewFormula(fit, predictors = c("Petal.Length"))

fit = lm(mpg ~ hp * wt * factor(cyl), data = mtcars)
getNewFormula(fit, predictors = c("hp", "cyl"))

fit = loess(mpg ~ hp * wt, data = mtcars)
getNewFormula(fit, predictors = c("hp", "wt"))
```

ggPredict

Visualize predictions from the multiple regression models.

Description

Visualize predictions from the multiple regression models.

Usage

```r
ggPredict(fit, pred = NULL, modx = NULL, mod2 = NULL,
modx.values = NULL, mod2.values = NULL, dep = NULL, mode = 1,
colorn = 3, maxylev = 6,
show.point =getOption("ggPredict.show.point", TRUE),
show.error = FALSE, error.color = "red", jitter = NULL,
se = FALSE, alpha = 0.1, show.text = TRUE,
add.modx.values = TRUE, add.loess = FALSE, labels = NULL,
angle = NULL, xpos = NULL, vjust = NULL, digits = 2,
facet.modx = FALSE, facetbycol = TRUE, plot = TRUE,
summarymode = 1, ...)
```
Arguments

- **fit**: An object of class "lm" or "glm"
- **pred**: The name of predictor variable
- **modx**: Optional. The name of moderator variable
- **mod2**: Optional. The name of second moderator variable
- **modx.values**: For which values of the moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.
- **mod2.values**: For which values of the second moderator should lines be plotted? Default is NULL. If NULL, then the customary +/- 1 standard deviation from the mean as well as the mean itself are used for continuous moderators. If the moderator is a factor variable and modx.values is NULL, each level of the factor is included.
- **dep**: Optional. The name of dependent variable
- **mode**: A numeric. Useful when the variables are numeric. If 1, c(-1,0,1)*sd + mean is used. If 2, the 14th, 50th, 86th percentile values used. If 3 sequence over a the range of a vector used
- **colorn**: The number of regression lines when the modifier variable(s) are numeric.
- **maxylev**: An integer indicating the maximum number of levels of numeric variable be treated as a categorical variable
- **show.point**: Logical. Whether or not add points
- **show.error**: Logical. Whether or not show error
- **error.color**: color of error. Default value is "red"
- **jitter**: logical. Whether or not use geom_jitter
- **se**: Logical. Whether or not add confidence interval
- **alpha**: A numeric. Transparency
- **show.text**: Logical. Whether or not add regression equation as label
- **add.modx.values**: Logical. Whether or not add moderator values to regression equation
- **add.loess**: Logical. Whether or not add loess line
- **labels**: labels on regression lines
- **angle**: angle of text
- **xpos**: x axis position of label
- **vjust**: vertical alignment of labels
- **digits**: integer indicating the number of decimal places
- **facet.modx**: Create separate panels for each level of the moderator? Default is FALSE
- **facetbycol**: Logical.
- **plot**: Logical. Should a plot of the results be printed? Default is TRUE.
- **summarymode**: An integer indicating method of extracting typical value of variables. If 1, typical() is used. If 2, mean() is used.
- **...**: additional arguments to be passed to geom_text
Examples

```r
fit=lm(mpg~hp*wt*am,data=mtcars)
ggPredict(fit)
ggPredict(fit,hp)

fit=lm(mpg~hp*wt,data=mtcars)
ggPredict(fit)
ggPredict(fit,labels=paste0("label",1:3),xpos=c(0.3,0.6,0.4))
ggPredict(fit,se=TRUE)
ggPredict(fit,mode=3,colorn=40,show.text=FALSE)
fit=lm(log(mpg)~hp*wt,data=mtcars)
ggPredict(fit,dep=mpg)
fit=lm(mpg~hp*wt,cyl,data=mtcars)
ggPredict(fit,modx=wt,modx.values=c(2,3,4,5),mod2=cyl,show.text=FALSE)
ggPredict(fit,hp,wt,show.point=FALSE,se=TRUE,xpos=0.5)

mtcars$engine=ifelse(mtcars$vs==0,"V-shaped","straight")
fit=lm(mpg~wt*engine,data=mtcars)
ggPredict(fit)

require(TH.data)
fit=glm(cens~pnodes*horTh,data=GBSG2,family=binomial)
ggPredict(fit,pnodes,horTh,se=TRUE,xpos=c(0.6,0.3),angle=c(40,60),vjust=c(2,-0.5))
fit1=glm(cens~pnodes,data=GBSG2,family=binomial)
ggPredict(fit1,vjust=1.5,angle=45)
fit3=glm(cens~pnodes*age,data=GBSG2,family=binomial)
ggPredict(fit3,pred=pnodes,modx=age,mode=3,colorn=10,show.text=FALSE)
fit2=glm(cens~pnodes*age*horTh,data=GBSG2,family=binomial)
ggPredict(fit2,pred=pnodes,modx=age,mod2=horTh,mode=3,colorn=10,show.text=FALSE)
fit=lm(mpg~log(hp)*wt,data=mtcars)
ggPredict(fit,hp,wt)
fit=lm(mpg~hp*wt+disp+gear+carb+am,data=mtcars)
ggPredict(fit,disp,gear,am)
fit=lm(weight~I(height^3)+I(height^2)+height+sex,data=radial)
ggPredict(fit)
predict3d(fit)
```

gg_color_hue

Pick default color

Description

Pick default color

Usage

```r
gg_color_hue(n)
```
Arguments
n	An integer

is.mynumeric	Decide whether a vector can be treated as a numeric variable

Description
Decide whether a vector can be treated as a numeric variable

Usage
is.mynumeric(x, maxylev = 6)

Arguments
x	A vector
maxylev	An integer indicating the maximum number of levels of numeric variable be
treated as a categorical variable

myseq	Generate regular sequences of desired length between minimum and
maximal values

Description
Generate regular sequences of desired length between minimum and maximal values

Usage
myseq(x, length = 20)

Arguments
x	a numeric vector
length
desired length of the sequence
number2group

Convert a numeric vector into groups

Description

Convert a numeric vector into groups

Usage

```r
number2group(x, mode = 1, values = NULL, silent = FALSE, 
label = "label", digits = 2, colorn = 3)
```

Arguments

- `x`
 A numeric vector
- `mode`
 A numeric. If 1, `mean(x) + c(-1,0,1)*sd(x)` are used. If 2, `quantile(x,probs=c(0.14,0.5,0.86),type=6)` are used. If 3, values are used
- `values`
 A numeric vector
- `silent`
 A logical. Whether table of result will be shown
- `label`
 A character string
- `digits`
 integer indicating the number of decimal places
- `colorn`
 The number of regression lines when the modifier variable(s) are numeric

Examples

```r
number2group(iris$Sepal.Length,label="Sepal.Length")
x=number2group(mtcars$wt,label="wt")
x
```

predict3d

Draw 3d predict plot using package `rgl`

Description

Draw 3d predict plot using package `rgl`

Usage

```r
predict3d(fit, pred = NULL, modx = NULL, mod2 = NULL, dep = NULL, 
xlab = NULL, ylab = NULL, zlab = NULL, width = 640, 
colorn = 20, maxylev = 6, se = FALSE, show.summary = FALSE, 
overlay = NULL, show.error = FALSE, show.legend = FALSE, 
bg = NULL, type = "s", radius = 2, palette = NULL, 
palette.reverse = TRUE, color = "red", show.subtitle = TRUE, 
show.plane = TRUE, plane.color = "steelblue", plane.alpha = 0.5, 
summarymode = 1, ...)
```
Arguments

- **fit**: A model object for which prediction is desired.
- **pred**: The name of predictor variable
- **modx**: Optional. The name of moderator variable
- **mod2**: Optional. The name of second moderator variable
- **dep**: Optional. The name of dependent variable
- **xlab**: x-axis label.
- **ylab**: y-axis label.
- **zlab**: z-axis label.
- **width**: the width of device
- **colorn**: An integer giving the desired number of intervals. Non-integer values are rounded down.
- **maxylev**: Maximal length of unique values of y axis variable to be treated as a categorical variable.
- **se**: Logical. Whether or not show se. Only effective when the y-axis variable is a categorical one.
- **show.summary**: Logical. Whether or not show statistical summary
- **overlay**: Logical. Whether or not overlay plots
- **show.error**: Logical. Whether or not show error
- **show.legend**: Logical. Whether or not show legend
- **bg**: Character. Background color of plot
- **type**: For the default method, a single character indicating the type of item to plot. Supported types are: 'p' for points, 's' for spheres, 'l' for lines, 'h' for line segments from z = 0, and 'n' for nothing. For the mesh3d method, one of 'shade', 'wire', or 'dots'. Partial matching is used.
- **radius**: The size of sphere
- **palette**: Name of color palette
- **palette.reverse**: Logical. Whether or not reverse the palette order
- **color**: Default color. Color is used when the palette is NULL
- **show.subtitle**: Logical. If true, show regression call as subtitle
- **show.plane**: Logical. If true, show regression plane
- **plane.color**: Name of color of regression plane
- **plane.alpha**: Transparency scale of regression plane
- **summarymode**: An integer indicating method of extracting typical value of variables. If 1, typical() is used. If 2, mean() is used.

... additional parameters which will be passed to plot3d
Examples

```r
fit = lm(mpg ~ hp * wt, data = mtcars)
predict3d(fit, show.error = TRUE)
fit = lm(log(mpg) ~ hp * wt, data = mtcars)
predict3d(fit, dep = mpg)

fit = lm(Sepal.Length ~ Sepal.Width * Species, data = iris)
predict3d(fit, radius = 0.05)
require(TH.data)
fit = glm(cens ~ pnodes + age + horTh, data = GBSG2, family = binomial)
predict3d(fit)
mtcars$engine = ifelse(mtcars$vs == 0, "V-shaped", "straight")
fit = lm(mpg ~ wt + engine, data = mtcars)
predict3d(fit, radius = 0.5)
fit = loess(mpg ~ hp * wt, data = mtcars)
predict3d(fit, radius = 4)
```

`rank2colors`
Rank a numeric vector using proportional table and returns character vector of names of color using palette

Description

Rank a numeric vector using proportional table and returns character vector of names of color using palette

Usage

```r
rank2colors(x, palette = "Blues", reverse = TRUE, color = "red")
```

Arguments

- `x`
 A numeric vector
- `palette`
 Name of the color palette
- `reverse`
 Logical. Whether or not reverse the order of the color palette
- `color`
 Default color when palette is NULL

Examples

```r
rank2colors(mtcars$wt, palette = "Blues")
```
rank2group2

Rank a numeric vector using proportional table and returns a new ordinal vector

Description

Rank a numeric vector using proportional table and returns a new ordinal vector

Usage

```r
rank2group2(x, k = 4)
```

Arguments

- `x` a numeric vector
- `k` a integer specifies how many groups you want to classify. default value is 4

restoreData

Restore factors in data.frame as numeric

Description

Restore factors in data.frame as numeric

Usage

```r
restoreData(data)
```

Arguments

- `data` A data.frame

Examples

```r
fit=lm(mpg~factor(cyl)*factor(am),data=mtcars)
fity=lm(mpg~wt*factor(am),data=mtcars)
fiz=lm(mpg~wt*hp,data=mtcars)
restoreData(fit$model)
```
restoreData2

restore data column with I() function

Description

restore data column with I() function

Usage

```r
restoreData2(df)
```

Arguments

- `df` A data.frame

Examples

```r
fit = lm(mpg ~ I(cyl^(1/2)) * am, data = mtcars)
restoreData2(fit$model)
fit = lm(mpg ~ sqrt(hp) * log(wt) * am, data = mtcars)
restoreData2(fit$model)
```

restoreData3

Restore data from arithmetic operator

Description

Restore data from arithmetic operator

Usage

```r
restoreData3(df, changeLabel = FALSE)
```

Arguments

- `df` A data.frame
- `changeLabel` logical

Examples

```r
fit = lm(2^mpg ~ hp * wt, data = mtcars)
summary(fit)
restoreData3(fit$model)
```
restoreNames
Restore factors in variable name as numeric

Description

Restore factors in variable name as numeric

Usage

```r
restoreNames(x)
```

Arguments

- **x** character vector

Examples

```r
restoreNames(c("factor(cyl)","am"))
restoreNames(c("I(age^2)","am","100/mpg","cyl^1/2","mpg2","sex + 0.5"))
```

revOperator
get opposite arithmetic operator

Description

get opposite arithmetic operator

Usage

```r
revOperator(operator)
```

Arguments

- **operator** A character
seekNamesDf Find variable names in data.frame

Description
Find variable names in data.frame

Usage
seekNamesDf(vars, df)

Arguments

vars variable names to find
df A data.frame

Value
A character vector

slope2angle Make angle data with slope data

Description
Make angle data with slope data

Usage
slope2angle(df, fit, ytransform = 0, predc, temppredc, modxc, yvar, p, method = "lm", xpos = NULL, vjust = NULL, digits = 3, facetno = NULL, add.modx.values = TRUE)

Arguments
df A data.frame
fit An object of class "lm" or "glm"
ytransform Numeric. If 1, log transformation of dependent variable. If -1, exponential transformation
predc Name of predictor variable
temppredc Name of predictor variable in regression equation
modxc Name of moderator variable
yvar Name of dependent variable
method
xpos
vjust
digits
facetno
add.modx.values

\texttt{p}
An object of class ggplot

\texttt{method}
String. Choices are one of "lm" and "glm".

\texttt{xpos}
The relative x-axis position of labels. Should be within 0 to 1

\texttt{vjust}
vjust

\texttt{digits}
integer indicating the number of decimal places

\texttt{facetno}
The number of facets

\texttt{add.modx.values}
Whether add name of moderator variable

\begin{verbatim}
string2pattern
\end{verbatim}

\textit{change string to pattern}

\textbf{Description}
change string to pattern

\textbf{Usage}
\texttt{string2pattern(string)}

\textbf{Arguments}
\texttt{string}
A character vector

\textbf{Examples}
\texttt{string=c("I(age^2)","factor(cyl)","log(mpg)")}
\texttt{string2pattern(string)}

\begin{verbatim}
theme_bw2
\end{verbatim}

\textit{theme_bw with no grid}

\textbf{Description}
theme_bw with no grid

\textbf{Usage}
\texttt{theme_bw2()}
Index

add_lines, 2
beNumeric, 3
calEquation, 4
expand.grid2, 4
fit2newdata, 5
getAspectRatio, 6
getMeans, 6
getNewFormula, 7
gg_color_hue, 9
ggPredict, 7
is.mynumeric, 10
myseq, 10
number2group, 11
predict3d, 11
rank2colors, 13
rank2group2, 14
restoreData, 14
restoreData2, 15
restoreData3, 15
restoreNames, 16
revOperator, 16
seekNamesDf, 17
slope2angle, 17
string2pattern, 18
theme_bw2, 18