Package ‘predictmeans’

October 14, 2022

Type Package
Title Calculate Predicted Means for Linear Models
Version 1.0.6
Date 2021-06-09
Author Dongwen Luo, Siva Ganesh and John Koolaard
Maintainer Dongwen Luo <dongwen.luo@agresearch.co.nz>
Description Providing functions to diagnose and make inferences from various linear models, such as those obtained from 'aov', 'lm', 'glm', 'gls', 'lme', and 'lmer'. Inferences include predicted means and standard errors, contrasts, multiple comparisons, permutation tests and graphs.
License GPL (>= 2)
Depends R (>= 3.5.0), lme4, nlme, lmeInfo, parallel
Imports ggplot2, graphics, grDevices, Matrix, methods, pbkrtest, plyr, stats, utils
URL https://CRAN.R-project.org/package=predictmeans
Repository CRAN
Date/Publication 2021-06-09 10:20:02 UTC
NeedsCompilation no

R topics documented:

predictmeans-package .. 2
anovalmer ... 2
contrastmeans .. 3
CookD ... 5
covariatemmeans ... 6
Kmatrix ... 7
permanova.lmer .. 8
permindex ... 9
permmlmer .. 10
permmodels .. 11
predictmeans-package

Calculate Predicted Means for Linear Models

Description

This package provides functions to diagnose and make inferences from various linear models, such as those obtained from `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`. Inferences include predicted means and standard errors, contrasts, multiple comparisons, permutation tests and graphs.

Details

Package: predictmeans
Type: Package
Version: 1.0.1
Date: 2018-08-23
License: GPL (>= 2)

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard
Maintainer: Dongwen Luo <dongwen.luo@agresearch.co.nz>

References

anovalmer

ANOVA of a Linear Mixed Effects Model produced by lmer function

Description

This function provides ANOVA of a linear mixed effects model for `lmer` object with model terms’ denominate degree of freedom estimated by Kenward-Roger method.
contrastmeans

Usage
anovalmer(model, DDF=NULL)

Arguments
model Model object returned by lmer.
DDF Model terms’ denominate degree of freedom specified by user.

Value
ANOVA table.

Author(s)
Dongwen Luo, Siva Ganesh and John Koolaard

Examples

Not run for simplifying process of submitting pkg to CRAN
library(predictmeans)
Oats$nitro <- factor(Oats$nitro)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
anovalmer(fm)

contrastmeans

Linear Contrast Tests for a Linear Model

Description
Performs t-tests (or permuted t-tests) of specified contrasts for linear models obtained from functions aov, lm, glm, gls, lme, or lmer.

Usage
contrastmeans(model, modelterm, ctrmatrix, ctrnames=NULL, adj="none", Df, permlist)

Arguments
model Model object returned by aov, lm, glm, gls, lme, or lmer.
modelterm Name (in "quotes") for indicating which factor term’s contrast to be calculated. The modelterm must be given exactly as it appears in the printed model, e.g. "A" or "A:B".
ctrmatrix A specified contrast matrix. If ctrmatrix is missing, the programe will ask user to enter it.
ctrnames Names of the specified contrasts, e.g. c("A vs D", "C vs B", ...)

contrastmeans

adj Name (in "quote") for indicating a method for adjusting p-values of pairwise comparisons. The choices are "none", "tukey", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY" and "fdr". The default method is "none".

Df A denominator degree of freedom for modelterm. (For glmer models the Df needs to be specified, while for the other models, Df is obtained from the fitted model automatically).

permlist A model parameter list containing nsim parameters produced by the function permmodels. When permlist != NULL, the option Df will be non-functional. This is a key option for the permutation test.

Value

There are two components in the output which are

Table A table showing t-test results for the specified linear contrasts.
K A contrast matrix.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

References

Examples

library(predictmeans)
ftable(xtabs(yield ~ Block+Variety+nitro, data=Oats))
Oats$nitro <- factor(Oats$nitro)
fm <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
library(lme4)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
Not run:
The contrast has a contrast matrix as follows:
0:Golden Rain 0:Marvellous 0:Victory
#[1,] -1 0 1
#[2,] 0 0 1
0.2:Golden Rain 0.2:Marvellous 0.2:Victory
#[1,] 0 0 0
#[2,] 0 -1 0
0.4:Golden Rain 0.4:Marvellous 0.4:Victory
#[1,] 0 0 0
#[2,] 0 0 0
0.6:Golden Rain 0.6:Marvellous 0.6:Victory
#[1,] 0 0 0
#[2,] 0 0 0

1. Enter above contrast matrix into a pop up window, then close the window
contrastmeans(fm, "nitro:Variety")

2. Construct the contrast matrix directly
cm <- rbind(c(-1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
 c(0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0))
contrastmeans(fm, "nitro:Variety", ctrmatrix=cm)

CookD

Calculates and plots Cook’s distances for a Linear (Mixed) Model

Description

This function produces Cook’s distance plots for a linear model obtained from functions aov, lm, glm, gls, lme, or lmer.

Usage

CookD(model, group=NULL, plot=TRUE, idn=3, newwd=TRUE)

Arguments

- **model**: Model object returned by aov, lm, glm, gls, lme, and lmer.
- **group**: Name (in “quotes”) for indicating how observations are deleted for Cook’s distance calculation. If group!="NULL" then deletions will be along levels of group variable, otherwise, will be along individual observations.
- **plot**: A logical variable; if it is true, a plot of Cook’s distance will be presented. The default is TRUE.
- **idn**: An integer indicating the number of top Cook’s distances to be labelled in the plot. The default value is 3.
- **newwd**: A logical variable to indicate whether to print graph in a new window. The default value is TRUE.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

Examples

library(predictmeans)
Oats$nitro <- factor(Oats$nitro)
fm <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
library(lme4)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
CookD(fm)
covariatemans

Predicted Means of a Linear Model with Covariate Variable(s)

description

This function obtains predicted means with graph for a new set of covariate values.

Usage

```r
covariatemans(model, modelterm=NULL, covariate, as.is=FALSE, covariateV=NULL, level=0.05, Df=NULL, trans=NULL, transOff=0, responsen=NULL, trellis=TRUE, plotord=NULL, mtitle=NULL, ci=TRUE, point=TRUE, jitterv=0, newwd=TRUE)
```

Arguments

- **model**: Model object returned by `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.
- **modelterm**: Name (in "quotes") for indicating which factor term’s predicted mean to be calculated. The `modelterm` must be given exactly as it appears in the printed model, e.g. "A" or "A:B".
- **covariate**: Name (in "quotes") of one the covariate variables in the model.
- **as.is**: A logic value to specify whether or not using original covariate values’ rage for graph, the default is FALSE.
- **covariateV**: A numeric vector when as.is is FALSE, then covariatemans will produce the result for covariate at value of covariateV.
- **level**: A significant level for calculating confident interval. The default value is 0.05.
- **Df**: A degree of freedom for calculating CI of predicted means (you can manually specified Df here). For the above models, Df is obtained from the function automatically.
- **trans**: A function object for calculating the back transformed means, e.g. `trans=exp`.
- **transOff**: When you use `trans=exp(x+1)`, then `transOff=1`, the default is 0.
- **responsen**: Name (in "quotes") of the back transformed response variable in the model.
- **trellis**: A logical variable. If set to TRUE (default), a trellis plots of predicted means with CI will be drawn.
- **plotord**: A numeric vector specifying the order of plotting for two or three way interaction (e.g. `plotord=c(2, 1, 3)` will put the second variable in `modelterm` on the X axis, the first variable as the grouping variable, and the third one as the panel variable). The defaults are `c(1, 2)` and `c(1, 2, 3)` for two and three way interactions.
- **mtitle**: The main title in the graph.
- **ci**: A logical variable to indicate whether to print confidence interval. The default value is TRUE.
- **point**: A logical variable to indicate whether to print raw data points. The default value is TRUE.
Kmatrix

A degree of jitter in x and y direction in the graph. The default is zero.

newwd

A logical variable to indicate whether to print graph in a new window. The default value is TRUE.

Value

Predicted Means

A table of predicted means.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

Examples

```r
library(predictmeans)
data(Oats, package="nlme")
fm <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
# library(lme4)
# fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
covariatemmeans(fm, "Variety", covariate="nitro")
covariatemmeans(fm, "Variety", covariate="nitro", covariateV=seq(0, 0.6, 0.1))$data
```

Kmatrix

Matrix of Coefficients in a Linear Model

Description

This function obtains a matrix of coefficients for parametric models such as `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.

Usage

```r
Kmatrix(model, modelterm, covariate=NULL, covariateV=NULL, prtnum=FALSE)
```

Arguments

- **model**: Model object returned by `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.
- **modelterm**: Name (in "quotes") for indicating which model term's predicted mean to be calculated. The `modelterm` must be given exactly as it appears in the printed model, e.g. "A" or "A:B".
- **covariate**: A numerical vector to specify values of covariates for calculating predicted means, default values are the means of the associated covariates. It also can be the name of one covariate in the model.
- **covariateV**: A numeric vector when `as.is` is FALSE and `covariate` is name of one covariate in the model, then `covariatemmeans` will produce the result for `covariate` at value of `covariateV`.
- **prtnum**: An option for printing covariate info on the screen or not. The default is FALSE.
Value

<table>
<thead>
<tr>
<th>K</th>
<th>Coefficients matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>fctnames</td>
<td>A model frame contains factor(s) info in the model.</td>
</tr>
<tr>
<td>response</td>
<td>The name of response variable in the model.</td>
</tr>
</tbody>
</table>

Author(s)

This function heavily depends on the codes from package "lsmeans".

References

Examples

```r
library(predictmeans)
data(Oats, package="nlme")
# fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
f有针对性 fm <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
Kmatrix(fm, "Variety", prtnum=TRUE)$K
Kmatrix(fm, "Variety", 0.5, prtnum=TRUE)$K
# Kmatrix(fm, "Variety", "nitro")$K
Kmatrix(fm, "Variety", "nitro", covariateV=seq(0, 0.6, 0.1))$K
```

permanova.lmer

Permutation ANOVA for lmer Model

Description

This function provides permutation ANOVA for lmer model.

Usage

```r
permanova.lmer(model, nperm = 999, ncore=3, drop=TRUE, ...)
```

Arguments

<table>
<thead>
<tr>
<th>model</th>
<th>Model object returned by lmer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nperm</td>
<td>Number of permutation, the default value is 999.</td>
</tr>
<tr>
<td>ncore</td>
<td>Number of core for parallel computing, the default value is 3.</td>
</tr>
<tr>
<td>drop</td>
<td>Drop or add model term sequentially, the default value is TRUE.</td>
</tr>
<tr>
<td>...</td>
<td>Use to setup option: seed – Specify a random number generator seed, for reproducible results.</td>
</tr>
</tbody>
</table>
permindex

Value

Permutation ANOVA table.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

Examples

library(predictmeans)
Oats$nitro <- factor(Oats$nitro)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)

Permutation Test for model terms
permanova.lmer(fm)
permanova.lmer(fm, drop=FALSE)
Compare to F test
fm0 <- lme(yield ~ nitro*Variety, random=-1|Block/Variety, data=Oats)
anova(fm0)

<table>
<thead>
<tr>
<th>permindex</th>
<th>Permutation Index</th>
</tr>
</thead>
</table>

Description

This function obtains permutation index for a dataset.

Usage

permindex(data, block=NULL, group=NULL, nsim=4999, seed)

Arguments

data Data object used in the model fitting.
block Name (in "quotes") for the blocking factor in the data.
group Name (in "quotes") for the group factor in the data.
nsim The number of permutations. The default is 4999.
seed Specify a random number generator seed, for reproducible results.

Value

A matrix has 'nsim' columns of permuted index.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard
Examples

```r
library(predictmeans)
block <- rep(1:3, each=12)
group <- rep(rep(1:3, each=4), 3)
data <- data.frame(block, group)
cbind(data, permindex(data, block="block", group="group", nsim=5))
  # Permute group as a whole within each block first,
  # then permute obs within each group.

cbind(data, permindex(data, block="block", nsim=5))
  # Permute obs within each block only.

cbind(data, permindex(data, group="group", nsim=5))
  # Permute groups as a whole block first,
  # then permute obs within each group.

cbind(data, permindex(data, nsim=5)) # Free permutation.
```

permlmer

Permutation Test of random or fixed effects for lmer model.

Description

This function provides permutation tests for the terms in a linear mixed model of lmer.

Usage

```r
permlmer(lmer0, lmer1, nperm = 999, ncore=3, plot=FALSE, seed)
```

Arguments

- **lmer0**: lmer model under H0, note that lmer0 model must nest within lmer1 model.
- **lmer1**: lmer model under H1, note that lmer0 model must nest within lmer1 model.
- **nperm**: Number of permutation, the default value is 999.
- **ncore**: Number of core for parallel computing, the default value is 3.
- **plot**: Plot permutation distribution or not, the default value is FALSE.
- **seed**: Specify a random number generator seed, for reproducible results.

Value

Permutation p-value.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

References

Examples

```r
# library(predictmeans)
## Test random effects
# fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
# fm2 <- lmer(Reaction ~ Days + ( Days || Subject), sleepstudy)
# fm3 <- update(fm1, . ~ . - (Days | Subject) + (1 | Subject))
# anova(fm1, fm2, fm3)
# permlmer(fm3, fm2)
# permlmer(fm2, fm1)

## Test fixed effects
# Oats$nitro <- factor(Oats$nitro)
# fm0 <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
# fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
# permlmer(fm0, fm)
```

 permmodels

 permmodels

 Permutation Test of Linear Model

Description

This function provides permutation t-tests for coefficients of (fixed) effects and permutation F-tests for the terms in a linear model such as `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.

Usage

```r
permmodels(model, data, block=NULL, group=NULL, covariate=NULL, nsim=4999, check=FALSE, exact=FALSE, fo=NULL, prt=TRUE, seed)
```

Arguments

- `model`: Model object returned by `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.
- `data`: Data object used in the model fitting.
- `block`: Name (in "quotes") for the blocking factor in the data.
- `group`: Name (in "quotes") for the group factor in the data.
- `covariate`: Name(s) (in "quotes") for the covariate variable(s) in the model.
- `nsim`: The number of permutations. The default is 4999.
- `check`: A logical variable to indicate whether or not you want to check permutation results, the default is `FALSE`.
- `exact`: A logical variable to indicate whether or not exact no. of permutations will be used (applicable only to free the permutation case). The default is `FALSE`.
- `fo`: A model formula used in the model; `fo=NULL` when the formula is specified by function `formula`.
- `prt`: A logical variable to indicate whether or not to print output on the screen. The default is `TRUE`.
- `seed`: Specify a random number generator seed, for reproducible results.
Value

The function produces permutation t-test table for coefficients of (fixed) effects, permutation ANOVA table for model terms and a model parameter list `permlist`, a list containing `nsim=4999` times permutation refitted model parameters which are used in functions `predictmeans` and `contrastmeans`.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

Examples

```r
## Not run for simplifying process of submitting pkg to CRAN
library(predictmeans)
Oats$nitro <- factor(Oats$nitro)
fm <- lme(yield ~ nitro*Variety, random=-1|Block/Variety, data=Oats)
# library(lme4)
# fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
#
## Permutation Test for model terms
#system.time(
# permlme <- permmodels(model=fm, data=Oats, block="Block", group="Variety", nsim=999)
#)
#
## Permutation Test for multiple comparisons
#predictmeans(model=fm, modelterm="nitro:Variety", atvar="Variety", adj="BH",
# permlist=permlme, plot=FALSE)
#
## Permutation Test for specified contrasts
#cm <- rbind(c(-1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
# c(0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0))
#contrastmeans(model=fm, modelterm="nitro:Variety", ctrmatrix=cm, permlist=permlme)
```

PMplot

Level Plot of a Matrix of p-values.

Description

Creates a plot of p-values of pairwise comparisons.

Usage

```r
PMplot(pmatrix, level=0.05, mtitle=NULL, xylab=0.05, margin=5, legendx=0.73, newwd=TRUE)
```
predictmeans

Arguments

- **pmatrix**: A matrix with p-values from pairwise comparisons. (This is a lower triangle matrix.)
- **level**: The level of p-value to be highlighted. Default is 0.05.
- **mtitle**: The main title in the graph.
- **xylabel**: The x and y labels in the graph.
- **margin**: A value for specifying x and y margins in the graph. The default value is 5.
- **legendx**: A value for specifying x coordinate of legend. The default value is 0.73.
- **newwd**: A logical variable to indicate whether to print graph in a new window. The default is TRUE.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

Examples

```r
library(predictmeans)
set.seed(2013)
pvalues <- runif(28)
pmatrix <- matrix(0,8,8)
pmatrix[lower.tri(pmatrix)] <- pvalues
round(pmatrix, 4)
PMplot(pmatrix)

Oats$nitro <- factor(Oats$nitro)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
predictout <- predictmeans(fm, "nitro:Variety", atvar="Variety", adj="BH", barplot=TRUE)
PMplot(predictout$p_valueMatrix)
```

Description

This function obtains predicted means, SE of means, SED of means, LSDs and plots of means with Stder bar or LSD bar for parametric models such as aov, lm, glm, gls, lme, and lmer. The function also performs pairwise comparisons and permutation tests.

Usage

```r
predictmeans(model, modelterm, pairwise=FALSE, atvar=NULL, adj="none", Df= NULL, level=0.05, covariate=NULL, letterdecr=TRUE, trans = NULL, transOff = 0, responsen=NULL, count=FALSE, plotord=NULL, plottitle=NULL, plotxlab=NULL, plotylab=NULL, mplot=TRUE, barplot=FALSE, pplot=TRUE, bkplot=TRUE, plot=TRUE, jitterv=0, basesz=12, prtnum=TRUE, newwd=TRUE, permlist=NULL, ndecimal=4)
```
predictmeans

Arguments

- **model**: Model object returned by `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.
- **modelterm**: Name (in "quotes") for indicating which factor term's predicted mean to be calculated. The `modelterm` must be given exactly as it appears in the printed model, e.g. "A" or "A:B".
- **pairwise**: An option for showing pair-wise LSDs and p-values, or not. The default is `FALSE`.
- **atvar**: When `pairwise = TRUE`, a quoted name indicating within levels of which variable in `modelterm` the multiple comparison will be performed.
- **adj**: Name (in "quote") for indicating a method for adjusting p-values of pairwise comparisons. The choices are "none", "tukey", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY" and "fdr". The default method is "none". Note that LSD can't be adjusted except for "bonferroni" method.
- **Df**: A degree of freedom for calculating LSD. For the above models, Df is obtained from the function automatically.
- **level**: A significant level for calculating LSD. The default value is 0.05.
- **covariate**: A numerical vector to specify values of covariates for calculating predicted means. The default values are the means of the associated covariates.
- **letterdecr**: A logical variable to indicate whether to print letters for multiple comparisons by decreasing order. The default is `TRUE`.
- **trans**: A function object for calculating the back transformed means, e.g. `trans=exp`.
- **transOff**: When you use `trans=exp(x+1)`, then `transOff=1`, the default is 0.
- **responser**: Name (in "quotes") of the back transformed response variable in the model.
- **count**: An option for indicating the back transformed mean values are counts or not. The default is `FALSE`.
- **plotord**: A numeric vector specifying the order of plotting for two or three way interaction (e.g. `plotord = c(2, 1, 3)` will put the second variable in `modelterm` on the X axis, the first variable as the grouping variable, and the third one as the panel variable). The defaults are `c(1, 2)` and `c(1, 2, 3)` for two and three way interactions.
- **plottitle**: A character vector specifying the main title for plot(s). The default is NULL.
- **plotxlab**: A character vector specifying the x label for plot(s). The default is NULL.
- **plotylab**: A character vector specifying the y label for plot(s). The default is NULL.
- **mplot**: An option for drawing a means plot, or not. The default is `TRUE`.
- **barplot**: An option for drawing a bar chart, or not. The default is `FALSE`.
- **pplot**: An option for drawing a p-values plot, or not when there are more than six p-values. The default is `TRUE`.
- **bkplot**: An option for drawing back transformed plot, or not. The default is TRUE.
- **plot**: An option for drawing plots, or not. The default is `TRUE`.
- **jitterv**: A degree of jitter in x and y direction in the back transformed means graph. The default is zero.
predictmeans

basesz The base font size. The default is 12.
prtnum An option for printing covariate information on the screen, or not. The default is TRUE.
newwd A logical variable to indicate whether to print graph in a new window. The default is TRUE.
permlist A model parameter list produced by the function permmodels. When permlist != NULL, the option Df will be non-functional. This is a key option for pairwise comparisons via permutation tests.
ndecimal An option for specifying number of decimal point to be print at predicted means table. The default is 4.

Value

Predicted Means
A table of predicted means.
Standard Error of Means
A table of standard errors of predicted means.
Standard Error of Differences
Standard errors of differences between predicted means.
LSD
Least significant differences between predicted means.
Back Transformed Means
When trans!=NULL, a table of back transformed means with CIs are shown.
Pairwise p-value
A matrix with t-values above the diagonal and p-values below the diagonal, or matrix of pairwise comparison p-values for each level of atvar.
predictmeansPlot
ggplot of predicted means.
predictmeansBKPlot
ggplot of back transformed means.
predictmeansBarPlot
gg bar plot of predicted means.
p_valueMatrix p_value matrix for pairwise comparison.

Note

The predictmeans function becomes confused if a factor or covariate is changed to the other in a model formula. Consequently, formulae that include calls as.factor, factor, or numeric (e.g. as.factor(income)) will cause errors. Instead, create the modified variables outside of the model formula (e.g., fincome <- as.factor(income)) and then use them in the model formula.
Factors cannot have colons in level names (e.g., "level:A"); the predictmeans function will confuse the colons with interactions; rename levels to avoid colons.
For predictmeans function, it is assumed that methods coef, vcov, model.matrix, model.frame and terms are available for model.

Author(s)
Dongwen Luo, Siva Ganesh and John Koolaard
References

Examples

```r
library(predictmeans)
ftable(xtabs(yield ~ Block+Variety+nitro, data=Oats))
Oats$nitro <- factor(Oats$nitro)
fm <- lme(yield ~ nitro*Variety, random=-1|Block/Variety, data=Oats)
# library(lme4)
# fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
predictmeans(fm, "nitro", adj="BH")
predictmeans(fm, "nitro:Variety", atvar="Variety", adj="BH")
predictout <- predictmeans(fm, "nitro:Variety", atvar="Variety", adj="BH", barplot=TRUE)
names(predictout)
print(predictout$predictmeansPlot)
print(predictout$predictmeansBarPlot)
```

residplot

Diagnostic Plots for a Linear (Mixed) Model

Description

This function produces diagnostic plots for linear models including 'aov', 'lm', 'glm', 'gls', 'lme' and 'lmer'.

Usage

```r
residplot(model, group = "none", level = 1, slope = FALSE, id = FALSE, newwd=TRUE,
ask=FALSE)
```

Arguments

- `model`: Model object returned by `aov`, `lm`, `glm`, `gls`, `lme`, and `lmer`.
- `group`: Name (in "quotes") for indicating the variable used to show grouping in the residual vs predicted plot. If variable is a term in the model, then group will be a name of the variable such as `group="A"`, otherwise group will be the actual variable such as `group=data$A`.
- `level`: An integer 1, 2, etc. used to specify a level of the random effect for plotting. The default value is 1.
- `slope`: A logical variable. If set to TRUE, a Q-Q plot of random slope will be drawn.
- `id`: A logical variable. If set to TRUE, outliers in the residual vs fitted plot can be identified interactively.
newwd

A logical variable to indicate whether to print graph in a new window. The default is TRUE.

ask

logical. If TRUE (and the R session is interactive) the user is asked for input, before a new figure is drawn.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard

Examples

Note that the order of levels of nested random effects is opposite
between lme and lmer objects.

library(predictmeans)
Oats$nitro <- factor(Oats$nitro)
fm <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
residplot(fm, level=2) # lme: level=2 for random effect "Block:Variety"

Not Run
library(lme4)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
residplot(fm) # lmer: By default level=1 for random effect "Block:Variety"

varcomp

Calculate std err and CI of variance components for lmer or lme model

Description

This function calculates std err and CI of variance components for lmer or lme model.

Usage

varcomp(model, ci=TRUE, level=0.95)

Arguments

model Model object returned by lmer or lme.
ci a logical value to indicates wheather or not to simulate a confidence interval for lmer model, the default value is TRUE.
level level of confidence of CI, the default value is 0.95.

Value

Variance components table.

Author(s)

Dongwen Luo, Siva Ganesh and John Koolaard
Examples

library(predictmeans)
Oats$nitro <- factor(Oats$nitro)
fm <- lmer(yield ~ nitro*Variety+(1|Block/Variety), data=Oats)
Not run: varcomp(fm)
fm1 <- lme(yield ~ nitro*Variety, random=~1|Block/Variety, data=Oats)
varcomp(fm1)

data(Orthodont, package="nlme")
mod <- lmer(distance ~ age + (age|Subject), data=Orthodont)
Not run: varcomp(mod)
mod1 <- lme(distance ~ age, random=~age|Subject, data=Orthodont)
varcomp(mod1)
Index

* package
 predictmeans-package, 2

anova.lmer, 2

contrastmeans, 3
CookD, 5
covariatemean, 6
Kmatrix, 7
permanova.lmer, 8
perminindex, 9
permlmer, 10
permmodels, 11
PMplot, 12
predictmeans, 13
predictmeans-package, 2

residplot, 16
varcomp, 17