Package ‘predint’

September 29, 2023

Type Package
Title Prediction Intervals
Version 2.2.0
Description An implementation of prediction intervals for overdispersed count data,
for overdispersed binomial data and for linear random effects models.
License GPL (>= 2)
Encoding UTF-8
LazyData true
Imports stats, graphics, methods
RoxygenNote 7.2.3
Suggests rmarkdown, knitr, testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 3.5.0), ggplot2, lme4, MASS
URL https://github.com/MaxMenssen/predint
BugReports https://github.com/MaxMenssen/predint/issues
NeedsCompilation no
Author Max Menssen [aut, cre]
Maintainer Max Menssen <menssen@cell.uni-hannover.de>
Repository CRAN
Date/Publication 2023-09-29 11:50:05 UTC

R topics documented:

ames_HCD ... 2
as.data.frame.predint ... 3
bb_dat1 ... 4
bb_dat2 ... 4
bb_pi ... 5
beta_bin_pi .. 6
Index

ames_HCD

Historical numbers of revertant colonies in the Ames test (OECD 471)

Description

This data set contains artificial historical control data that was sampled in order to mimic the number of revertant colonies based on two or three petri dishes.

Usage

ames_HCD
as.data.frame.predint

Format

A data.frame with 2 rows and 10 columns:

- **rev_col**: no. of revertant colonies
- **no_dish**: no. of petri dishes in the control group

Description

Get the prediction intervals or limits of an object of class `predint` and save them as a data.frame.

Usage

```r
## S3 method for class 'predint'
as.data.frame(x, ...)
```

Arguments

- **x**: object of class `predint`
- **...**: additional arguments to be passed to `base::as.data.frame()`

Value

This function returns the prediction intervals or limits stored in an object of class "predint" as a data.frame

Examples

```r
### PI for quasi-Poisson data
pred_int <- quasi_pois_pi(histdat=ames_HCD,
newoffset=3,
nboot=100,
traceplot = FALSE)

# Return the prediction intervals as a data.frame
as.data.frame(pred_int)

# Please note that nboot was set to 100 in order to decrease computing time
# of the example. For a valid analysis set nboot=10000.
```
bb_dat1 Beta-binomial data (example 1)

Description
This data set contains sampled beta-binomial data from 10 clusters each of size 50. The data set was sampled with `rbbinom(n=10, size=50, prob=0.1, rho=0.06)`.

Usage
bb_dat1

Format
A data.frame with 10 rows and 2 columns:

succ number of successes
fail number of failures

bb_dat2 Beta-binomial data (example 2)

Description
This data set contains sampled beta-binomial data from 3 clusters each of different size. The data set was sampled with `rbbinom(n=3, size=c(40, 50, 60), prob=0.1, rho=0.06)`.

Usage
bb_dat2

Format
A data.frame with 3 rows and 2 columns:

succ number of successes
fail number of failures
bb_pi

Simple uncalibrated prediction intervals for beta-binomial data

Description

bb_pi() is a helper function that is internally called by beta_bin_pi(). It calculates simple uncalibrated prediction intervals for binary data with overdispersion changing between the clusters (beta-binomial).

Usage

bb_pi(
 newsize,
 histsize,
 pi,
 rho,
 q = qnorm(1 - 0.05/2),
 alternative = "both",
 newdat = NULL,
 histdat = NULL,
 algorithm = NULL
)

Arguments

newsize number of experimental units in the historical clusters
histsize number of experimental units in the future clusters
pi binomial proportion
rho intra class correlation
q quantile used for interval calculation
alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
newdat additional argument to specify the current data set
histdat additional argument to specify the historical data set
algorithm used to define the algorithm for calibration if called via beta_bin_pi(). This argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

\[[l, u]_m = n_m^* \hat{\pi} \pm q \sqrt{\frac{n_m^* \hat{\pi}(1 - \hat{\pi})(1 + (n_m^* - 1)\rho)}{\sum_h n_h} + \frac{\sum_h n_h - 1}{\sum_h \sum_h n_h n_h} n_m^* \hat{\pi}^2 (1 - \hat{\pi})\rho} \]
with n_m^* as the number of experimental units in the $m = 1, 2, ..., M$ future clusters, $\hat{\pi}$ as the estimate for the binomial proportion obtained from the historical data, $\hat{\rho}$ as the estimate for the intra class correlation and n_h as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use `beta_bin_pi()` for real life applications.

Value

`bb_pi()` returns an object of class `c("predint", "betaBinomialPI")` with prediction intervals or limits in the first entry (`$prediction`).

Examples

```r
# Pointwise uncalibrated PI
bb_pred <- beta_bin_pi(newsize=c(50), pi=0.3, rho=0.05, histsize=rep(50, 20), q=qnorm(1-0.05/2))
summary(bb_pred)
```

beta_bin_pi

Prediction intervals for beta-binomial data

Description

`beta_bin_pi()` calculates bootstrap calibrated prediction intervals for beta-binomial data

Usage

```r
beta_bin_pi(
  histdat,
  newdat = NULL,
  newsize = NULL,
  alternative = "both",
  alpha = 0.05,
  nboot = 10000,
  delta_min = 0.01,
  delta_max = 10,
  tolerance = 0.001,
  traceplot = TRUE,
  n_bisec = 30,
  algorithm = "MS22mod"
)
```
Arguments

- `histdat`: A data.frame with two columns (number of successes and number of failures) containing the historical data.
- `newdat`: A data.frame with two columns (number of successes and number of failures) containing the future data.
- `newsize`: A vector containing the future cluster sizes.
- `alternative`: Either "both", "upper" or "lower". `alternative` specifies if a prediction interval or an upper or a lower prediction limit should be computed.
- `alpha`: Defines the level of confidence (1-`alpha`).
- `nboot`: Number of bootstraps.
- `delta_min`: Lower start value for bisection.
- `delta_max`: Upper start value for bisection.
- `tolerance`: Tolerance for the coverage probability in the bisection.
- `traceplot`: If TRUE: Plot for visualization of the bisection process.
- `n_bisec`: Maximal number of bisection steps.
- `algorithm`: Either "MS22" or "MS22mod" (see details).

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If `algorithm` is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

\[[l, u]_m = n^*_m \hat{\pi} \pm q^{calib} \hat{s}(Y_m - y^*_m) \]

where

\[\hat{s}(Y_m - y^*_m) = \sqrt{n^*_m \hat{\pi}(1 - \hat{\pi})[1 + (n^*_m - 1)\hat{\rho}]} + \frac{n^*_m \hat{\pi}^2 (1 - \hat{\pi})}{\sum n_h} + \frac{\sum n_h - 1}{\sum n_h} n^*_m \hat{\pi}(1 - \hat{\pi})\hat{\rho} \]

with \(n^*_m\) as the number of experimental units in the future clusters, \(\hat{\pi}\) as the estimate for the binomial proportion obtained from the historical data, \(q^{calib}\) as the bootstrap-calibrated coefficient, \(\hat{\rho}\) as the estimate for the intra class correlation (Lui et al. 2000) and \(n_h\) as the number of experimental units per historical cluster.

If `algorithm` is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

\[[l, u]_m = [n^*_m \hat{\pi} - q^*_l \hat{s}(Y_m - y^*_m), \quad n^*_m \hat{\pi} + q^*_u \hat{s}(Y_m - y^*_m)] \]

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.
Value

beta_bin_pi returns an object of class c("predint", "betaBinomialPI") with prediction intervals or limits in the first entry ($prediction).

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on linear random effects models. Statistica Neerlandica. doi:10.1111/stan.12260

Examples

Prediction interval
pred_int <- beta_bin_pi(histdat=mortality_HCD, newsize=40, nboot=100)
summary(pred_int)

Upper prediction bound
pred_u <- beta_bin_pi(histdat=mortality_HCD, newsize=40, alternative="upper", nboot=100)
summary(pred_u)

Please note that nboot was set to 100 in order to decrease computing time
of the example. For a valid analysis set nboot=10000.
traceplot = TRUE
}

Arguments

- `y_star_hat`: a list of length B that contains the expected future observations. Each entry in this list has to be a numeric vector of length M.
- `pred_se`: a list of length B that contains the standard errors of the prediction. Each entry in this list has to be a numeric vector of length M.
- `y_star`: a list of length B that contains the future observations. Each entry in this list has to be a numeric vector of length M.
- `alternative`: either "both", "upper" or "lower". `alternative` specifies if a prediction interval or an upper or a lower prediction limit should be computed.
- `quant_min`: lower start value for bisection.
- `quant_max`: upper start value for bisection.
- `n_bisec`: maximal number of bisection steps.
- `tol`: tolerance for the coverage probability in the bisection.
- `alpha`: defines the level of confidence ($1 - \alpha$).
- `traceplot`: if TRUE: Plot for visualization of the bisection process.

Details

This function is an implementation of the bisection algorithm of Menssen and Schaarschmidt 2022. It returns a calibrated coefficient q^{calib} for the calculation of pointwise and simultaneous prediction intervals:

\[
[l, u] = \hat{y}_m^* \pm q^{\text{calib}} \hat{se}(Y_m - y_m^*),
\]

lower prediction limits

\[
l = \hat{y}_m^* - q^{\text{calib}} \hat{se}(Y_m - y_m^*)
\]

or upper prediction limits

\[
u = \hat{y}_m^* + q^{\text{calib}} \hat{se}(Y_m - y_m^*)
\]

that cover all of $m = 1, \ldots, M$ future observations.

In this notation, \hat{y}_m^* are the expected future observations for each of the m future clusters, q^{calib} is the calibrated coefficient and $\hat{se}(Y_m - y_m^*)$ are the standard errors of the prediction.

Value

This function returns q^{calib} in the equation above.

References

Menssen and Schaarschmidt (2022): Prediction intervals for all of M future observations based on linear random effects models. Statistica Neerlandica.
doi:10.1111/stan.12260
boot_predint

Bootstrap new data from uncalibrated prediction intervals

Description

boot_predint() is a helper function to bootstrap new data from the simple uncalibrated prediction intervals implemented in predint.

Usage

boot_predint(pred_int, nboot)

Arguments

pred_int object of class c("quasiPoissonPI", "betaBinomialPI", "quasiBinomialPI", negativeBinomialPI)
nboot number of bootstraps

Details

This function only works for binomial and Poisson type data. For the sampling of new data from random effects models see lmer_bs.

Value

boot_predint returns an object of class c("predint", "bootstrap") which is a list with two entries: One for bootstrapped historical observations and one for bootstrapped future observations.

Examples

Simple quasi-Poisson PI
test_pi <- qp_pi(histoffset=c(3,3,4,5), newoffset=3, lambda=10, phi=3, q=1.96)

Draw 5 bootstrap samples
test_boot <- boot_predint(pred_int = test_pi, nboot=50)
str(test_boot)
summary(test_boot)

Please note that the low number of bootstrap samples was chosen in order to
decrease computing time. For valid analysis draw at least 10000 bootstrap samples.
c2_dat1

Cross-classified data (example 1)

Description

c2_dat1 contains data that is sampled from a balanced cross-classified design. This data set is used in order to demonstrate the functionality of the `lmer_p1_...()` functions.

Usage

c2_dat1

Format

A data.frame with 27 rows and 3 columns:

- **y_ijk** observations
- a treatment a
- b treatment b

c2_dat2

Cross-classified data (example 2)

Description

c2_dat2 contains data that was sampled from an unbalanced cross-classified design. This data set is used in order to demonstrate the functionality of the `lmer_p1_...()` functions.

Usage

c2_dat2

Format

A data.frame with 21 rows and 3 columns:

- **y_ijk** observations
- a treatment a
- b treatment b
c2_dat3

Cross-classified data (example 3)

Description

c2_dat3 contains data that was sampled from a balanced cross-classified design. This data set is used in order to demonstrate the functionality of the \texttt{lmer_pi()} functions.

Usage

c2_dat3

Format

A \texttt{data.frame} with 8 rows and 3 columns:

- \texttt{y_ijk} observations
- \texttt{a} treatment a
- \texttt{b} treatment b

c2_dat4

Cross-classified data (example 4)

Description

c2_dat4 contains data that was sampled from an unbalanced cross-classified design. This data set is used in order to demonstrate the functionality of the \texttt{lmer_pi()} functions.

Usage

c2_dat4

Format

A \texttt{data.frame} with 6 rows and 3 columns:

- \texttt{y_ijk} observations
- \texttt{a} treatment a
- \texttt{b} treatment b
lmer_bs

Sampling of bootstrap data from a given random effects model

Description

`lmer_bs()` draws bootstrap samples based on the estimates for the mean and the variance components drawn from a random effects model fit with `lme4::lmer()`. Contrary to `lme4::bootMer()`, the number of observations for each random factor can vary between the original data set and the bootstrapped data. Random effects in `model` have to be specified as `(1|random effect)`.

Usage

```
lmer_bs(model, newdat = NULL, futmat_list = NULL, nboot)
```

Arguments

- `model`: a random effects model of class `lmerMod`
- `newdat`: a `data.frame` with the same column names as the historical data on which `model` depends
- `futmat_list`: a list that contains design matrices for each random factor
- `nboot`: number of bootstrap samples

Details

The data sampling is based on a list of design matrices (one for each random factor) that can be obtained if `newdat` and the model formula are provided to `lme4::lFormula()`. Hence, each random factor that is part of the initial model must have at least two replicates in `newdat`. If a random factor in the future data set does not have any replicate, a list that contains design matrices (one for each random factor) can be provided via `futmat_list`.

Value

A list of length `nboot` containing the bootstrapped observations.

Examples

```r
# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

#---------------------------------------------------------

### Using c2_dat2 as newdat
```
c2_dat2

lmer_bs(model=fit, newdat=c2_dat2, nboot=100)

#---

Using futmat_list

c2_dat4 has no replication for b. Hence the list of design matrices can not be
generated by lme4::lFormula() and have to be provided by hand via futmat_list.

c2_dat4

Build a list containing the design matrices

fml <- vector(length=4, "list")

names(fml) <- c("a:b", "b", "a", "Residual")

fml["a:b"] <- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))

fml["b"] <- matrix(nrow=6, ncol=1, data=c(1,1,1,1,1,1))

fml["a"] <- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))

fml["Residual"] <- diag(6)

fml

lmer_bs(model=fit, futmat_list=fml, nboot=100)

lmer_pi
Prediction intervals for future observations based on linear random effects models (DEPRECATED)

Description

This function is deprecated. Please use `lmer_pi_unstruc()`, `lmer_pi_futvec()` or `lmer_pi_futmat()`.

Usage

```r
lmer_pi(
  model,
  newdat = NULL,
  m = NULL,
  alternative = "both",
  alpha = 0.05,
  nboot = 10000,
```
\[lmer_pi \]

\[
\begin{align*}
\lambda_{\text{min}} &= 0.01, \\
\lambda_{\text{max}} &= 10, \\
\text{traceplot} &= \text{TRUE}, \\
n_{\text{bisec}} &= 30 \\
\end{align*}
\]

Arguments

- model: a random effects model of class "lmerMod"
- newdat: a data.frame with the same column names as the historical data on which the model depends
- m: number of future observations
- alternative: either "both", "upper" or "lower". alternative specifies if a prediction interval or an upper or a lower prediction limit should be computed
- alpha: defines the level of confidence \((1-\alpha)\)
- nboot: number of bootstraps
- lambda_min: lower start value for bisection
- lambda_max: upper start value for bisection
- traceplot: if TRUE: plot for visualization of the bisection process
- n_bisec: maximal number of bisection steps

Details

This function returns a bootstrap calibrated prediction interval

\[
[l, u] = \hat{y} \pm q \sqrt{\hat{\text{var}}(\hat{y} - y)}
\]

with \(\hat{y}\) as the predicted future observation, \(y\) as the observed future observations, \(\sqrt{\hat{\text{var}}(\hat{y} - y)}\) as the prediction standard error and \(q\) as the bootstrap calibrated coefficient that approximates a quantile of the multivariate t-distribution.

Please note that this function relies on linear random effects models that are fitted with \texttt{lmer()} from the \texttt{lme4} package. Random effects have to be specified as \((1|\text{random_effect})\).

Value

If newdat is specified: A data.frame that contains the future data, the historical mean (hist_mean), the calibrated coefficient (quant_calib), the prediction standard error (pred_se), the prediction interval (lower and upper) and a statement if the prediction interval covers the future observation (cover).

If m is specified: A data.frame that contains the number of future observations (m) the historical mean (hist_mean), the calibrated coefficient (quant_calib), the prediction standard error (pred_se) and the prediction interval (lower and upper).

If alternative is set to "lower": Lower prediction limits are computed instead of a prediction interval.

If alternative is set to "upper": Upper prediction limits are computed instead of a prediction interval.

If \texttt{traceplot}=\text{TRUE}, a graphical overview about the bisection process is given.
Examples

This function is deprecated.
Please use lmer_pi_unstruc() if you want exactly the same functionality.
Please use lmer_pi_futmat() or lmer_pi_futvec() if you want to take care
of the future experimental design

lmer_pi_futmat
Prediction intervals for future observations based on linear random
effects models

Description

lmer_pi_futmat() calculates a bootstrap calibrated prediction interval for one or more future ob-
servation(s) based on linear random effects models. With this approach, the experimental design of
the future data is taken into account (see below).

Usage

lmer_pi_futmat(
 model,
 newdat = NULL,
 futmat_list = NULL,
 alternative = "both",
 alpha = 0.05,
 nboot = 10000,
 delta_min = 0.01,
 delta_max = 10,
 tolerance = 0.001,
 traceplot = TRUE,
 n_bisec = 30,
 algorithm = "MS22"
)

Arguments

model
a random effects model of class "lmerMod"
newdat
either 1 or a data.frame with the same column names as the historical data on
which model depends
futmat_list
a list that contains design matrices for each random factor
alternative
either "both", "upper" or "lower". alternative specifies if a prediction interval
or an upper or a lower prediction limit should be computed
alpha
defines the level of confidence (1-alpha)
nboot
number of bootstraps
Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If `algorithm` is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

$$ [l, u] = \hat{\mu} \pm q_{\text{calib}} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}_c^2} $$

with $\hat{\mu}$ as the expected future observation (historical mean) and $\hat{\sigma}_c^2$ as the $c = 1, 2, ..., C$ variance components and $\hat{\sigma}_{C+1}^2$ as the residual variance obtained from the random effects model fitted with `lme4::lmer()` and q_{calib} as the bootstrap-calibrated coefficient used for interval calculation.

If `algorithm` is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

$$ [l, u] = \left[\hat{\mu} - q_{\text{calib}} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C} \hat{\sigma}_c^2}, \hat{\mu} + q_{\text{calib}} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C} \hat{\sigma}_c^2} \right]. $$

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.

If `newdat` is defined, the bootstrapped future observations used for the calibration process mimic the structure of the data set provided via `newdat`. The data sampling is based on a list of design matrices (one for each random factor) that can be obtained if `newdat` and the model formula are provided to `lme4::lFormula()`. Hence, each random factor that is part of the initial model must have at least two replicates in `newdat`. If a random factor in the future data set does not have any replicate, a list that contains design matrices (one for each random factor) can be provided via `futmat_list`.

This function is an implementation of the PI given in Menssen and Schaarschmidt 2022 section 3.2.4, except, that the bootstrap calibration values are drawn from bootstrap samples that mimic the future data as described above.
Value

`lmer_pi_futmat()` returns an object of class `c("predint", "normalPI")` with prediction intervals or limits in the first entry (`$prediction`).

References

Examples

```r
# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

#----------------------------------------------------------------------------------------
### Using newdat

# Prediction interval using c2_dat2 as future data
pred_int <- lmer_pi_futmat(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
summary(pred_int)

# Upper prediction limit for m=1 future observations
pred_u <- lmer_pi_futmat(model=fit, newdat=1, alternative="upper", nboot=100)
summary(pred_u)

#----------------------------------------------------------------------------------------
### Using futmat_list

# c2_dat4 has no replication for b. Hence the list of design matrices can not be
# generated by lme4::lFormula() and have to be provided by hand via futmat_list.

c2_dat4

# Build a list containing the design matrices
fml <- vector(length=4, "list")
names(fml) <- c("a:b", "b", "a", "Residual")
fml[["a:b"]]<- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))
fml[["b"]]<- matrix(nrow=6, ncol=1, data=c(1,1,1,1,1,1))
fml[["a"]]<- matrix(nrow=6, ncol=2, data=c(1,1,0,0,0,0, 0,0,1,1,1,1))
fml[["Residual"]]<- diag(6)
```
Please note, that the design matrix for the interaction term a:b is also
provided even there is no replication for b, since it is assumed that
both, the historical and the future data descent from the same data generating
process.

Calculate the PI
pred_fml <- lmer_pi_futmat(model=fit, futmat_list=fml, alternative="both", nboot=100)
summary(pred_fml)

Please note that nboot was set to 100 in order to decrease computing time
of the example. For a valid analysis set nboot=10000.

lmer_pi_futvec

Prediction intervals for future observations based on linear random effects models

Description

`lmer_pi_futvec()` calculates a bootstrap calibrated prediction interval for one or more future observation(s) based on linear random effects models. With this approach, the experimental design of the future data is taken into account (see below).

Usage

```r
lmer_pi_futvec(
  model,
  futvec,
  newdat = NULL,
  alternative = "both",
  alpha = 0.05,
  nboot = 10000,
  delta_min = 0.01,
  delta_max = 10,
  tolerance = 0.001,
  traceplot = TRUE,
  n_bisec = 30,
  algorithm = "MS22"
)
```

Arguments

- `model`: a random effects model of class `lmerMod`
futvec an integer vector that defines the structure of the future data based on the row numbers of the historical data. If length(futvec) is one, a PI for one future observation is computed

newdat a data.frame with the same column names as the historical data on which model depends

alternative either "both", "upper" or "lower". alternative specifies if a prediction interval or an upper or a lower prediction limit should be computed

alpha defines the level of confidence (1-alpha)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

$$[l, u] = \hat{\mu} \pm q^{calib} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}_c^2}$$

with $\hat{\mu}$ as the expected future observation (historical mean) and $\hat{\sigma}_c^2$ as the $c = 1, 2, ..., C$ variance components and $\hat{\sigma}_{C+1}^2$ as the residual variance obtained from the random effects model fitted with lme4::lmer() and q^{calib} as the as the bootstrap-calibrated coefficient used for interval calculation.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

$$[l, u] = [\hat{\mu} - q_l^{calib} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}_c^2}, \hat{\mu} + q_u^{calib} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}_c^2}]$$

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.

Be aware that the sampling structure of the historical data must contain the structure of the future data. This means that the observations per random factor must be less or equal in the future data compared to the historical data.
This function is an implementation of the PI given in Menssen and Schaarschmidt 2022 section 3.2.4 except that the bootstrap calibration values are drawn from bootstrap samples that mimic the future data.

Value

`lmer_pi_futvec()` returns an object of class `c("predint", "normalPI")` with prediction intervals or limits in the first entry (prediction).

References

Examples

```r
# loading lme4
library(lme4)

# Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

#-------------------------------------------------------------
### Prediction interval using c2_dat3 as future data
# without printing c2_dat3 in the output
# Row numbers of the historical data c2_dat1 that define the structure of # the future data c2_dat3
futvec <- c(1, 2, 4, 5, 10, 11, 13, 14)

# Calculating the PI
pred_int <- lmer_pi_futvec(model=fit, futvec=futvec, nboot=100)
summary(pred_int)

#-------------------------------------------------------------
### Calculating the PI with c2_dat3 printed in the output
pred_int_new <- lmer_pi_futvec(model=fit, futvec=futvec, newdat=c2_dat3, nboot=100)
summary(pred_int_new)

#-------------------------------------------------------------
### Upper prediction limit for m=1 future observation
pred_u <- lmer_pi_futvec(model=fit, futvec=1, alternative="upper", nboot=100)
summary(pred_u)

#-------------------------------------------------------------
# Please note that nboot was set to 100 in order to decrease computing time
```
lmer_pi_unstruc

Prediction intervals for future observations based on linear random effects models

Description

`lmer_pi_unstruc()` calculates a bootstrap calibrated prediction interval for one or more future observation(s) based on linear random effects models as described in section 3.2.4. of Menssen and Schaarschmidt (2022). Please note, that the bootstrap calibration used here does not consider the sampling structure of the future data, since the calibration values are drawn randomly from bootstrap data sets that have the same structure as the historical data.

Usage

```r
lmer_pi_unstruc(
  model,  
  newdat = NULL,  
  m = NULL,  
  alternative = "both",  
  alpha = 0.05,  
  nboot = 10000,  
  delta_min = 0.01,  
  delta_max = 10,  
  tolerance = 0.001,  
  traceplot = TRUE,  
  n_bisec = 30,  
  algorithm = "MS22"
)
```

Arguments

- **model**: a random effects model of class `lmerMod`
- **newdat**: a `data.frame` with the same column names as the historical data on which the model depends
- **m**: number of future observations
- **alternative**: either "both", "upper" or "lower". `alternative` specifies if a prediction interval or an upper or a lower prediction limit should be computed
- **alpha**: defines the level of confidence (1-alpha)
- **nboot**: number of bootstraps
- **delta_min**: lower start value for bisection
- **delta_max**: upper start value for bisection
- **tolerance**: tolerance for the coverage probability in the bisection
- **traceplot**: logical indicating whether a traceplot is to be produced
traceplot if TRUE: Plot for visualization of the bisection process
n_bisec maximal number of bisection steps
algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If algorithm is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

\[[l, u] = \hat{\mu} \pm q^{calib} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}^2_c} \]

with \(\hat{\mu} \) as the expected future observation (historical mean) and \(\hat{\sigma}^2_c \) as the variance components and \(\hat{\sigma}^2_{C+1} \) as the residual variance obtained from the random effects model fitted with \texttt{lme4::lmer()} and \(q^{calib} \) as the as the bootstrap-calibrated coefficient used for interval calculation.

If algorithm is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

\[[l, u] = \left[\hat{\mu} - q_l^{calib} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}^2_c}, \hat{\mu} + q_u^{calib} \sqrt{\hat{\text{var}}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}^2_c} \right]. \]

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.

This function is an direct implementation of the PI given in Menssen and Schaarschmidt 2022 section 3.2.4.

Value

\texttt{lmer_pi_futvec()} returns an object of class \texttt{c("predint", "normalPI")} with prediction intervals or limits in the first entry ($prediction).

References

Examples

loading lme4
library(lme4)

Fitting a random effects model based on c2_dat1
fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
summary(fit)

Prediction interval using c2_dat2 as future data
pred_int <- lmer_pi_unstruc(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
summary(pred_int)

Upper prediction limit for m=3 future observations
pred_u <- lmer_pi_unstruc(model=fit, m=3, alternative="upper", nboot=100)
summary(pred_u)

Please note that nboot was set to 100 in order to decrease computing time
of the example. For a valid analysis set nboot=10000.

mortality_HCD

Historical mortality of male B6C3F1-mice

Description

This data set contains historical control data about the mortality of male B6C3F1-mice obtained in long term carcinogenicity studies at the National Toxicology Program presented in NTP Historical Control Reports from 2013 to 2016. It was used in Menssen and Schaarschmidt 2019 as a real life example.

Usage

mortality_HCD

Format

A data.frame with 2 rows and 10 columns:

- **dead** no. of dead mice
- **alive** no. of living mice

References

NTP Historical Control Reports: https://ntp.niehs.nih.gov/data/controls
Description

nb_pi() is a helper function that is internally called by neg_bin_pi(). It calculates simple uncalibrated prediction intervals for negative-binomial data with offsets.

Usage

```
nb_pi(
  newoffset,
  histoffset,
  lambda,
  kappa,
  q = qnorm(1 - 0.05/2),
  alternative = "both",
  newdat = NULL,
  histdat = NULL,
  algorithm = NULL
)
```

Arguments

- `newoffset`: number of experimental units in the future clusters
- `histoffset`: number of experimental units in the historical clusters
- `lambda`: overall Poisson mean
- `kappa`: dispersion parameter
- `q`: quantile used for interval calculation
- `alternative`: either "both", "upper" or "lower". alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
- `newdat`: additional argument to specify the current data set
- `histdat`: additional argument to specify the historical data set
- `algorithm`: used to define the algorithm for calibration if called via quasi_pois_pi(). This argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

\[
[l, u]_m = n_m^* \hat{\lambda} \pm q \sqrt{\frac{n_m^* \hat{\lambda} + \hat{\kappa} \bar{n} \hat{\lambda}}{\bar{n} H} + (n_m^* \hat{\lambda} + \hat{\kappa} n_m^2 \hat{\lambda}^2)}
\]
with \(n_m^* \) as the number of experimental units in \(m = 1, 2, \ldots, M \) future clusters, \(\hat{\lambda} \) as the estimate for the Poisson mean obtained from the historical data, \(\hat{\kappa} \) as the estimate for the dispersion parameter, \(n_h \) as the number of experimental units per historical cluster and \(\bar{n} = \sum n_h / H \).

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use the \texttt{neg_bin_pi()} function for real life applications.

Value

\texttt{np_pi} returns an object of class \texttt{c("predint", "negativeBinomialPI")}.

Examples

```r
# Prediction interval
nb_pred <- nb_pi(newoffset=3, lambda=3, kappa=0.04, histoffset=1:9, q=qnorm(1-0.05/2))
summary(nb_pred)
```

Description

\texttt{neg_bin_pi()} calculates bootstrap calibrated prediction intervals for negative-binomial data.

Usage

```r
neg_bin_pi(
  histdat,  # a data.frame with two columns. The first has to contain the historical observations. The second has to contain the number of experimental units per study (offsets).
  newdat = NULL,
  newoffset = NULL,
  alternative = "both",
  alpha = 0.05,
  nboot = 10000,
  delta_min = 0.01,
  delta_max = 10,
  tolerance = 0.001,
  traceplot = TRUE,
  n_bisec = 30,
  algorithm = "MS22mod"
)
```
neg_bin_pi

newdat data.frame with two columns. The first has to contain the future observations. The second has to contain the number of experimental units per study (offsets).

newoffset vector with future number of experimental units per historical study.

alternative either "both", "upper" or "lower". **alternative** specifies if a prediction interval or an upper or a lower prediction limit should be computed.

alpha defines the level of confidence \((1 - \alpha)\)

nboot number of bootstraps

delta_min lower start value for bisection

delta_max upper start value for bisection

tolerance tolerance for the coverage probability in the bisection.

traceplot if TRUE: Plot for visualization of the bisection process

n_bisec maximal number of bisection steps

algorithm either "MS22" or "MS22mod" (see details)

Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If **algorithm** is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

\[
[l, u]_m = n_m^* \hat{\lambda} \pm q \sqrt{n_m^* \hat{\lambda} + \hat{\kappa} n_m^* \hat{\lambda}^2 + \frac{1}{n_H} \left(n_m^* \hat{\lambda} + \hat{\kappa} n_m^* \hat{\lambda}^2 \right)}
\]

with \(n_m^*\) as the number of experimental units in the future clusters, \(\hat{\lambda}\) as the estimate for the Poisson mean obtained from the historical data, \(\hat{\kappa}\) as the estimate for the dispersion parameter, \(n_h\) as the number of experimental units per historical cluster and \(\bar{n} = \sum_{h} n_h / H\).

If **algorithm** is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

\[
[l, u] = \left[n_m^* \hat{\lambda} - q_{l}^{calib} \sqrt{n_m^* \hat{\lambda} \frac{1}{n_H} + \frac{1}{n_H} \left(n_m^* \hat{\lambda} + \hat{\kappa} n_m^* \hat{\lambda}^2 \right)}, \ n_m^* \hat{\lambda} + q_{u}^{calib} \sqrt{n_m^* \hat{\lambda} \frac{1}{n_H} + \frac{1}{n_H} \left(n_m^* \hat{\lambda} + \hat{\kappa} n_m^* \hat{\lambda}^2 \right)} \right]
\]

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.

Value

neg_bin_pi() returns an object of class c("predint", "negativeBinomialPI") with prediction intervals or limits in the first entry (\$prediction).
References

Examples

HCD from the Ames test
ames_HCD

Prediction interval for one future number of revertant colonies
obtained in three petridishes
pred_int <- neg_bin_pi(histdat=ames_HCD, newoffset=3, nboot=100)
summary(pred_int)

Please note that nboot was set to 100 in order to decrease computing time
of the example. For a valid analysis set nboot=10000.

normal_pi

Simple uncalibrated prediction intervals for normal distributed data

Description

normal_pi() is a helper function that is internally called by the lmer_pi...() functions. It calculates simple uncalibrated prediction intervals for normal distributed observations.

Usage

normal_pi(
 mu,
 pred_se,
 m = 1,
 q = qnorm(1 - 0.05/2),
 alternative = "both",
 futmat_list = NULL,
 futvec = NULL,
 newdat = NULL,
 histdat = NULL,
 algorithm = NULL
)

Arguments

mu overall mean
pred_se standard error of the prediction
m number of future observations
q quantile used for interval calculation
normal_pi

alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
futmat_list used to add the list of future design matrices to the output if called via lmer_pi_futmat()
futvec used to add the vector of the historical row numbers that define the future experimental design to the output if called via lmer_pi_futmat()
newdat additional argument to specify the current data set
histdat additional argument to specify the historical data set
algorithm used to define the algorithm for calibration if called via lmer_pi_...(). This argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval as given in Menssen and Schaarschmidt 2022

\[[l, u] = \hat{\mu} \pm q \sqrt{\text{var}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}^2_c} \]

with \(\hat{\mu} \) as the expected future observation (historical mean) and \(\hat{\sigma}^2_c \) as the variance components and \(\hat{\sigma}^2_{C+1} \) as the residual variance and \(q \) as the quantile used for interval calculation.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use the lmer_pi_...() functions for real life applications.

Value

normal_pi() returns an object of class c("predint", "normalPI") with prediction intervals or limits in the first entry ($prediction).

References

Examples

simple PI
norm_pred <- normal_pi(mu=10, pred_se=3, m=1)
summary(norm_pred)
pi_rho_est

Estimation of the binomial proportion and the intra class correlation.

Description

pi_rho_est() estimates the overall binomial proportion \(\hat{\pi} \) and the intra class correlation \(\hat{\rho} \) of data that is assumed to follow the beta-binomial distribution. The estimation of \(\hat{\pi} \) and \(\hat{\rho} \) is done following the approach of Lui et al. 2000.

Usage

pi_rho_est(dat)

Arguments

dat a data.frame with two columns (successes and failures)

Value

a vector containing estimates for \(\pi \) and \(\rho \)

References

Examples

Estimates for bb_dat1
pi_rho_est(bb_dat1)

plot.predint

Plots of predint objects

Description

This function provides methodology for plotting the prediction intervals or limits that are calculated using the functionality of the predint package.

Usage

```r
## S3 method for class 'predint'
plot(x, ..., size = 4, width = 0.05, alpha = 0.5)
```
print.predint

Arguments

- **x**: object of class `predint`
- **...**: arguments handed over to `ggplot2::aes()`
- **size**: size of the dots
- **width**: margin of jittering
- **alpha**: opacity of dot colors

Value

Since `plot.predint()` is based on `ggplot2::ggplot`, it returns an object of class `c("gg", "ggplot")`.

Examples

```r
### PI for quasi-Poisson data
pred_int <- quasi_pois_pi(histdat=ames_HCD,
                           newoffset=3,
                           nboot=100,
                           traceplot = FALSE)

### Plot the PI
plot(pred_int)

### Since plot.predint is based on ggplot, the graph can be altered using
# the methodology provided via ggplot2
plot(pred_int)+
    theme_classic()
```

print.predint

Print objects of class predint

Description

Print objects of class predint

Usage

```r
## S3 method for class 'predint'
print(x, ...)
```

Arguments

- **x**: an object of class `predint`
- **...**: additional arguments passed over to `base::cbind()` and `base::data.frame()`

Value

prints output to the console
qb_dat1

Quasi-binomial data (example 1)

Description

This data set contains sampled quasi-binomial data from 10 clusters each of size 50. The data set was sampled with `rqbinom(n=10, size=50, prob=0.1, phi=3)`.

Usage

```
qb_dat1
```

Format

A `data.frame` with 3 rows and 2 columns:

- **succ** numbers of success
- **fail** numbers of failures

qb_dat2

Quasi-binomial data (example 2)

Description

This data set contains sampled quasi-binomial data from 3 clusters with different size. The data set was sampled with `rqbinom(n=3, size=c(40, 50, 60), prob=0.1, phi=3)`.

Usage

```
qb_dat2
```

Format

A `data.frame` with 3 rows and 2 columns:

- **succ** numbers of success
- **fail** numbers of failures
qb_pi

Description

qb_pi() is a helper function that is internally called by quasi_bin_pi(). It calculates simple uncalibrated prediction intervals for binary data with constant overdispersion (quasi-binomial assumption).

Usage

qb_pi(
 newsize, histsize, pi, phi, q = qnorm(1 - 0.05/2), alternative = "both", newdat = NULL, histdat = NULL, algorithm = NULL
)

Arguments

newsize number of experimental units in the historical clusters.
histsize number of experimental units in the future clusters.
pi binomial proportion
phi dispersion parameter
q quantile used for interval calculation
alternative either "both", "upper" or "lower" alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
newdat additional argument to specify the current data set
histdat additional argument to specify the historical data set
algorithm used to define the algorithm for calibration if called via quasi_bin_pi. This argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

\[[l, u]_m = n_m \hat{\pi} \pm q \sqrt{\hat{\phi} n_m \hat{\pi}(1 - \hat{\pi}) + \frac{\hat{\phi} n_m^2 \hat{\pi}(1 - \hat{\pi})}{\sum_h n_h}} \]
with n_m^* as the number of experimental units in the $m = 1, 2, \ldots, M$ future clusters, $\hat{\pi}$ as the estimate for the binomial proportion obtained from the historical data, $\hat{\phi}$ as the estimate for the dispersion parameter and n_h as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use the `beta_bin_pi()` functions for real life applications.

Value

`qb_pi` returns an object of class `c("predint", "quasiBinomialPI")`.

Examples

```r
qb_pred <- qb_pi(newsize=50, pi=0.3, phi=3, histsize=c(50, 50, 30), q=qnorm(1-0.05/2))
summary(qb_pred)
```

qp.dat1

Quasi-Poisson data (example 1)

Description

This data set contains sampled quasi-Poisson data for 10 clusters. The data set was sampled with `rpois(n=10, lambda=50, phi=3)`.

Usage

`qp.dat1`

Format

A data.frame with two columns

- **y** numbers of events
- **offset** size of experimental units
qp_dat2

Quasi-Poisson data (example 2)

Description

This data set contains sampled quasi-Poisson data for 3 clusters. The data set was sampled with
rqpois(n=3, lambda=50, phi=3).

Usage

qp_dat2

Format

A data.frame with two columns

y numbers of events

offset size of experimental units

qp_pi

Simple uncalibrated prediction intervals for quasi-Poisson data

Description

qp_pi() is a helper function that is internally called by quasi_poiss_pi(). It calculates simple
uncalibrated prediction intervals for Poisson data with constant overdispersion (quasi-Poisson as-
sumption).

Usage

qp_pi(
 newoffset,
 histoffset,
 lambda,
 phi,
 q = qnorm(1 - 0.05/2),
 alternative = "both",
 newdat = NULL,
 histdat = NULL,
 algorithm = NULL
)
Arguments

- `newoffset` number of experimental units in the future clusters
- `histoffset` number of experimental units in the historical clusters
- `lambda` overall Poisson mean
- `phi` dispersion parameter
- `q` quantile used for interval calculation
- `alternative` either "both", "upper" or "lower" alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
- `newdat` additional argument to specify the current data set
- `histdat` additional argument to specify the historical data set
- `algorithm` used to define the algorithm for calibration if called via `quasi_pois_pi()`. This argument is not of interest for the calculation of simple uncalibrated intervals

Details

This function returns a simple uncalibrated prediction interval

$$[l, u]_m = n^*_m \hat{\lambda} \pm q \sqrt{n^*_m \hat{\phi} \hat{\lambda} + \frac{n^*_m \hat{\phi}^2 \hat{\lambda}}{\sum_h n_h}}$$

with n^*_m as the number of experimental units in the $m = 1, 2, ..., M$ future clusters, $\hat{\lambda}$ as the estimate for the Poisson mean obtained from the historical data, $\hat{\phi}$ as the estimate for the dispersion parameter and n_h as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use the `quasi_pois_pi_pi()` functions for real life applications.

Value

`qp_pi` returns an object of class `c("predint", "quasiPoissonPI")`.

Examples

```r
# Prediction interval
qp_pred <- qp_pi(newoffset=3, lambda=3, phi=3, histoffset=1:9, q=qnorm(1-0.05/2))
summary(qp_pred)
```
quasi_bin_pi

Prediction intervals for quasi-binomial data

Description

`quasi_bin_pi()` calculates bootstrap calibrated prediction intervals for binomial data with constant overdispersion (quasi-binomial assumption).

Usage

```r
quasi_bin_pi(
  histdat,
  newdat = NULL,
  newsize = NULL,
  alternative = "both",
  alpha = 0.05,
  nboot = 10000,
  delta_min = 0.01,
  delta_max = 10,
  tolerance = 0.001,
  traceplot = TRUE,
  n_bisec = 30,
  algorithm = "MS22mod"
)
```

Arguments

- **histdat**: a `data.frame` with two columns (success and failures) containing the historical data.
- **newdat**: a `data.frame` with two columns (success and failures) containing the future data.
- **newsize**: a vector containing the future cluster sizes.
- **alternative**: either "both", "upper" or "lower". `alternative` specifies if a prediction interval or an upper or a lower prediction limit should be computed.
- **alpha**: defines the level of confidence (1-alpha).
- **nboot**: number of bootstraps.
- **delta_min**: lower start value for bisection.
- **delta_max**: upper start value for bisection.
- **tolerance**: tolerance for the coverage probability in the bisection.
- **traceplot**: if `TRUE`: Plot for visualization of the bisection process.
- **n_bisec**: maximal number of bisection steps.
- **algorithm**: either "MS22" or "MS22mod" (see details).
Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If `algorithm` is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

\[
[l, u]_m = n^*_m \hat{\pi} \pm q^{calib} \hat{se}(Y_m - y^*_m)
\]

where

\[
\hat{se}(Y_m - y^*_m) = \sqrt{\hat{\phi} n^*_m \hat{\pi}(1 - \hat{\pi}) + \hat{\phi} n^*_m^2 \hat{\pi}(1 - \hat{\pi}) \sum_h n_h}
\]

with \(n^*_m\) as the number of experimental units in the future clusters, \(\hat{\pi}\) as the estimate for the binomial proportion obtained from the historical data, \(q^{calib}\) as the bootstrap-calibrated coefficient, \(\hat{\phi}\) as the estimate for the dispersion parameter and \(n_h\) as the number of experimental units per historical cluster.

If `algorithm` is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

\[
[l, u] = \left[n^*_m \hat{\pi} - q^{calib}_l \hat{se}(Y_m - y^*_m), \quad n^*_m \hat{\pi} + q^{calib}_u \hat{se}(Y_m - y^*_m) \right]
\]

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.

Value

`quasi_bin_pi` returns an object of class `c("predint", "quasiBinomialPI")` with prediction intervals or limits in the first entry ($prediction$).

References

Examples

Pointwise prediction interval
pred_int <- quasi_bin_pi(histdat=mortality_HCD, newsize=40, nboot=100)
summary(pred_int)

Pointwise upper prediction limit
pred_u <- quasi_bin_pi(histdat=mortality_HCD, newsize=40, alternative="upper", nboot=100)
summary(pred_u)
Please note that nboot was set to 100 in order to decrease computing time # of the example. For a valid analysis set nboot=10000.

quasi_poiss_pi

Prediction intervals for quasi-Poisson data

Description

`quasi_poiss_pi()` calculates bootstrap calibrated prediction intervals for Poisson data with constant overdispersion (quasi-Poisson).

Usage

```r
quasi_poiss_pi(
  histdat,
  newdat = NULL,
  newoffset = NULL,
  alternative = "both",
  alpha = 0.05,
  nboot = 10000,
  delta_min = 0.01,
  delta_max = 10,
  tolerance = 0.001,
  traceplot = TRUE,
  n_bisec = 30,
  algorithm = "MS22mod"
)
```

Arguments

- **histdat**: a `data.frame` with two columns. The first has to contain the historical observations. The second has to contain the number of experimental units per study (offsets).
- **newdat**: a `data.frame` with two columns. The first has to contain the future observations. The second has to contain the number of experimental units per study (offsets).
- **newoffset**: vector with future number of experimental units per historical study.
- **alternative**: either "both", "upper" or "lower". `alternative` specifies if a prediction interval or an upper or a lower prediction limit should be computed.
- **alpha**: defines the level of confidence \((1 - \alpha)\)
- **nboot**: number of bootstraps
- **delta_min**: lower start value for bisection
- **delta_max**: upper start value for bisection
- **tolerance**: tolerance for the coverage probability in the bisection
- **traceplot**: if `TRUE`: Plot for visualization of the bisection process
- **n_bisec**: maximal number of bisection steps
- **algorithm**: either "MS22" or "MS22mod" (see details)
Details

This function returns bootstrap-calibrated prediction intervals as well as lower or upper prediction limits.

If `algorithm` is set to "MS22", both limits of the prediction interval are calibrated simultaneously using the algorithm described in Menssen and Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given as

\[
[l, u]_m = n^*_m \hat{\lambda} \pm q_{\text{calib}} \sqrt{n^*_m \hat{\phi} \hat{\lambda} + \frac{n^*_m \hat{\phi} \hat{\lambda}}{\sum_h n_h}}
\]

with \(n^*_m\) as the number of experimental units in the future clusters, \(\hat{\lambda}\) as the estimate for the Poisson mean obtained from the historical data, \(q_{\text{calib}}\) as the bootstrap-calibrated coefficient, \(\hat{\phi}\) as the estimate for the dispersion parameter and \(n_h\) as the number of experimental units per historical cluster.

If `algorithm` is set to "MS22mod", both limits of the prediction interval are calibrated independently from each other. The resulting prediction interval is given by

\[
[l, u] = \left[n^*_m \hat{\lambda} - q^{\text{calib}} \sqrt{n^*_m \hat{\phi} \hat{\lambda} + \frac{n^*_m \hat{\phi} \hat{\lambda}}{\sum_h n_h}}, \ n^*_m \hat{\lambda} + q^{\text{calib}} \sqrt{n^*_m \hat{\phi} \hat{\lambda} + \frac{n^*_m \hat{\phi} \hat{\lambda}}{\sum_h n_h}} \right]
\]

Please note, that this modification does not affect the calibration procedure, if only prediction limits are of interest.

Value

`quasi_pois_pi` returns an object of class `c("predint", "quasiPoissonPI")` with prediction intervals or limits in the first entry (\$prediction).

Examples

```r
# Historical data
qp_dat1

# Future data
qp_dat2

# Pointwise prediction interval
pred_int <- quasi_pois_pi(histdat=ames_HCD, newoffset=3, nboot=100)
summary(pred_int)

# Pointwise upper prediction
pred_u <- quasi_pois_pi(histdat=ames_HCD, newoffset=3, alternative="upper", nboot=100)
summary(pred_u)
```

References

Examples

```r
# Historical data
qp_dat1

# Future data
qp_dat2

# Pointwise prediction interval
pred_int <- quasi_pois_pi(histdat=ames_HCD, newoffset=3, nboot=100)
summary(pred_int)

# Pointwise upper prediction
pred_u <- quasi_pois_pi(histdat=ames_HCD, newoffset=3, alternative="upper", nboot=100)
summary(pred_u)
```
rbbinom

Sampling of beta-binomial data

Description

`rbbinom()` samples beta-binomial data according to Menssen and Schaarschmidt (2019).

Usage

`rbbinom(n, size, prob, rho)`

Arguments

- `n` defines the number of clusters (i)
- `size` integer vector defining the number of trials per cluster (n_i)
- `prob` probability of success on each trial (π)
- `rho` intra class correlation (ρ)

Details

For beta binomial data with $i = 1,...I$ clusters, the variance is

$$\text{var}(y_i) = n_i \pi (1 - \pi) [1 + (n_i - 1) \rho]$$

with ρ as the intra class correlation coefficient

$$\rho = 1/(1 + a + b).$$

For the sampling $(a + b)$ is defined as

$$(a + b) = (1 - \rho)/\rho$$

where $a = \pi(a + b)$ and $b = (a + b) - a$. Then, the binomial proportions for each cluster are sampled from the beta distribution

$$\pi_i \sim Beta(a, b)$$

and the number of successes for each cluster are sampled to be

$$y_i \sim Bin(n_i, \pi_i).$$

In this parametrization $E(\pi_i) = \pi = a/(a + b)$ and $E(y_i) = n_i \pi$. Please note, that $1 + (n_i - 1)\rho$ is a constant if all cluster sizes are the same and hence, in this special case, also the quasi-binomial assumption is fulfilled.
rnbinom

Value

a data.frame with two columns (succ, fail)

References

Examples

```r
# Sampling of example data
set.seed(234)
bb_dat1 <- rbbinom(n=10, size=50, prob=0.1, rho=0.06)
bb_dat1

set.seed(234)
bb_dat2 <- rbbinom(n=3, size=c(40, 50, 60), prob=0.1, rho=0.06)
bb_dat2
```

rnbinom

Sampling of negative binomial data

Description

rnbinom() samples negative-binomial data. The following description of the sampling process is based on the parametrization used by Gsteiger et al. 2013.

Usage

```r
rnbinom(n, lambda, kappa, offset = NULL)
```

Arguments

- `n` defines the number of clusters (I)
- `lambda` defines the overall Poisson mean (λ)
- `kappa` dispersion parameter (κ)
- `offset` defines the number of experimental units per cluster (n_i)
Details

The variance of the negative-binomial distribution is

$$\text{var}(Y_i) = n_i \lambda (1 + \kappa n_i \lambda).$$

Negative-binomial observations can be sampled based on predefined values of κ, λ, and n_i:

Define the parameters of the gamma distribution as $a = \frac{1}{\kappa}$ and $b_i = \frac{1}{\kappa n_i \lambda}$. Then, sample the Poisson means for each cluster

$$\lambda_i \sim \text{Gamma}(a, b_i).$$

Finally, the observations y_i are sampled from the Poisson distribution

$$y_i \sim \text{Pois}(\lambda_i)$$

Value

`rnbinom()` returns a `data.frame` with two columns: `y` as the observations and `offset` as the number of offsets per observation.

References

Examples

```r
# Sampling of negative-binomial observations
# with different offsets
set.seed(123)
rnbinom(n=5, lambda=5, kappa=0.13, offset=c(3,3,2,3,2))
```

Description

`rqbinom` samples overdispersed binomial data with constant overdispersion from the beta-binomial distribution such that the quasi-binomial assumption is fulfilled.

Usage

`rqbinom(n, size, prob, phi)`
Arguments

\(n \) defines the number of clusters \((i)\)
\n\(\text{size} \) integer vector defining the number of trials per cluster \((n_i)\)
\n\(\text{prob} \) probability of success on each trial \((\pi)\)
\n\(\phi \) dispersion parameter \((\Phi)\)

Details

It is assumed that the dispersion parameter \((\Phi)\) is constant for all \(i = 1, \ldots, I\) clusters, such that the variance becomes

\[
\text{var}(y_i) = \Phi n_i \pi (1 - \pi).
\]

For the sampling \((a + b)_i\) is defined as

\[
(a + b)_i = (\Phi - n_i)/(1 - \Phi)
\]

where \(a_i = \pi(a + b)_i\) and \(b_i = (a + b)_i - a_i\). Then, the binomial proportions for each cluster are sampled from the beta distribution

\[
\pi_i \sim \text{Beta}(a_i, b_i)
\]

and the numbers of success for each cluster are sampled to be

\[
y_i \sim \text{Bin}(n_i, \pi_i).
\]

In this parametrization \(E(\pi_i) = \pi\) and \(E(y_i) = n_i \pi\). Please note, the quasi-binomial assumption is not in contradiction with the beta-binomial distribution if all cluster sizes are the same.

Value

a \texttt{data.frame} with two columns (succ, fail)

Examples

Sampling of example data
set.seed(456)
qb_dat1 <- rqbinom(n=10, size=50, prob=0.1, phi=3)
qb_dat1

set.seed(456)
qb_dat2 <- rqbinom(n=3, size=c(40, 50, 60), prob=0.1, phi=3)
qb_dat2
Description

`rqpois()` samples overdispersed Poisson data with constant overdispersion from the negative-binomial distribution such that the quasi-Poisson assumption is fulfilled. The following description of the sampling process is based on the parametrization used by Gsteiger et al. 2013.

Usage

```r
rqpois(n, lambda, phi, offset = NULL)
```

Arguments

- `n`: defines the number of clusters (I)
- `lambda`: defines the overall Poisson mean (\(\lambda \))
- `phi`: dispersion parameter (\(\Phi \))
- `offset`: defines the number of experimental units per cluster (\(n_i \))

Details

It is assumed that the dispersion parameter (\(\Phi \)) is constant for all \(i = 1, \ldots, I \) clusters, such that the variance becomes

\[
\text{var}(y_i) = \Phi n_i \lambda
\]

For the sampling \(\kappa_i \) is defined as

\[
\kappa_i = (\Phi - 1)/(n_i \lambda)
\]

where \(a_i = 1/\kappa_i \) and \(b_i = 1/(\kappa_i n_i \lambda) \). Then, the Poisson means for each cluster are sampled from the gamma distribution

\[
\lambda_i \sim \text{Gamma}(a_i, b_i)
\]

and the observations per cluster are sampled to be

\[
y_i \sim \text{Pois}(\lambda_i).
\]

Please note, that the quasi-Poisson assumption is not in contradiction with the negative-binomial distribution, if the data structure is defined by the number of clusters only (which is the case here) and the offsets are all the same \(n_h = n_{bh} = n \).

Value

a data.frame containing the sampled observations and the offsets

References

Examples

```r
# set.seed(123)
qp_dat1 <- rqpois(n=10, lambda=50, phi=3)
qp_dat1

# set.seed(123)
qp_dat2 <- rqpois(n=3, lambda=50, phi=3)
qp_dat2
```

summary.predint
Summarizing objects of class predint

Description

This function gives a summary about the prediction intervals (and limits) computed with `predint`.

Usage

```r
## S3 method for class 'predint'
summary(object, ...)
```

Arguments

- `object`: object of class `predint`
- `...`: further arguments passed over to `base::cbind()` and `base::data.frame()`

Value

A `data.frame` containing the current data (if provided via `newdat`), the prediction interval (or limit), the expected value for the future observation, the bootstrap calibrated coefficient(s), the prediction standard error and a statement about the coverage for each future observation, if new observations were provided via `newdat`.

Examples

```r
# Fitting a random effects model based on c2_dat1
fit <- lme4::lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)

# Prediction interval using c2_dat2 as future data
pred_int <- lmer_pi_futmat(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
summary(pred_int)
```

#--
Please note that nboot was set to 100 in order to decrease computing time
of the example. For a valid analysis set nboot=10000.
Index

* datasets
 ames_HCD, 2
 bb_dat1, 4
 bb_dat2, 4
 c2_dat1, 11
 c2_dat2, 11
 c2_dat3, 12
 c2_dat4, 12
 mortality_HCD, 24
 qb_dat1, 32
 qb_dat2, 32
 qp_dat1, 34
 qp_dat2, 35
 as.data.frame.predint, 3

 pi_rho_est, 30
 plot.predint, 30
 print.predint, 31
 qb_dat1, 32
 qb_dat2, 32
 qb_pi, 33
 qp_dat1, 34
 qp_dat2, 35
 quasi_bin_pi, 37
 quasi_pois_pi, 39
 rbbinom, 41
 rnbinom, 42
 rqbinom, 43
 rqpois, 45
 summary.predint, 46

 ames_HCD, 2
 c2_dat1, 11
 c2_dat2, 11
 c2_dat3, 12
 c2_dat4, 12
 lmer_bs, 10, 13
 lmer_pi, 14
 lmer_pi_futmat, 16
 lmer_pi_futvec, 19
 lmer_pi_unstruc, 22
 mortality_HCD, 24
 nb_pi, 25
 neg_bin_pi, 26
 normal_pi, 28