Package ‘prettyglm’

June 24, 2021

Type Package
Title Pretty Summaries of Generalized Linear Model Coefficients
Version 0.1.0
Maintainer Jared Fowler <jared.fowler8@gmail.com>
Description One of the main advantages of using Generalised Linear Models is their interpretability. The goal of ‘prettyglm’ is to provide a set of functions which easily create beautiful coefficient summaries which can readily be shared and explained.
License GPL-3
Depends R (>= 3.5.0)
Imports broom, car, dplyr, forcats, kableExtra, knitr, plotly, stringr, tibble, tidycat, tidyr, tidyselect, vip
Suggests rmarkdown, testthat
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Jared Fowler [cre, aut]
Repository CRAN
Date/Publication 2021-06-24 07:40:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>bank_data</td>
<td>2</td>
</tr>
<tr>
<td>clean_coefficients</td>
<td>3</td>
</tr>
<tr>
<td>pretty_coefficients</td>
<td>3</td>
</tr>
<tr>
<td>pretty_relativities</td>
<td>5</td>
</tr>
<tr>
<td>titanic</td>
<td>6</td>
</tr>
</tbody>
</table>
Index 8
Description

It is a dataset that describing Portugal bank marketing campaigns results. Conducted campaigns were based mostly on direct phone calls, offering bank client to place a term deposit. If after all marking afforts client had agreed to place deposit - target variable marked 'yes', otherwise 'no'

Usage

data(bank)

Format

An object of class "data.frame"

job Type of job
marital marital status
education education
default has credit in default?
housing has housing loan?
loan has personal loan?
age age
y has the client subscribed a term deposit? (binary: "yes","no")

Details

Source of the data https://archive.ics.uci.edu/ml/datasets/bank+marketing

References

This dataset is public available for research. The details are described in S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

Examples

data(bank)
head(bank_data)
clean_coefficients

Description
Processing to split out base levels and add variable importance to each term. Directly inspired by 'tidycat::tidy_categorical()', modified for use in prettyglm.

Usage

```r
clean_coefficients(d = NULL, m = NULL)
```

Arguments

- `d`: A data frame `tibble` output from `tidy.lm`; with one row for each term in the regression, including column `term`
- `m`: A model object `glm`

Value
Expanded `tibble` from the version passed to `d` including additional columns:

- `variable`: The name of the variable that the regression term belongs to.
- `level`: The level of the categorical variable that the regression term belongs to. Will be the term name for numeric variables.

Author(s)
Jared Fowler, Guy J. Abel

See Also
- `tidy.lm`

pretty_coefficients

Description
Creates a pretty kable of model coefficients including coefficient base levels.
pretty_coefficients

Usage

pretty_coefficients(
 model_object,
 relativity_transform = NULL,
 type_iii = NULL,
 conf.int = FALSE,
 return_data = FALSE
)

Arguments

model_object Model object to create coefficient table for. Must be of type: glm, lm, linear_reg or logistic_reg.
relativity_transform String of the function to be applied to the model estimate to calculate the relativity, for example: 'exp(estimate) - 1'. Default is for relativity to be excluded from output.
type_iii Type III statistical test to perform. Default is none. Options are 'Wald' or 'LR'. Warning 'LR' can be computationally expensive. Test performed via Anova
conf.int Set to TRUE to include confidence intervals in summary table. Warning, can be computationally expensive.
return_data Set to TRUE to return data.frame instead of creating kable.

Value

kable if return_data = FALSE. data.frame if return_data = TRUE.

Examples

library(dplyr)
library(prettyglm)
data('titanic')
columns_to_factor <- c('Pclass',
 'Sex',
 'Cabin',
 'Embarked',
 'Cabintype',
 'Survived')
titanic <- titanic %>%
 dplyr::mutate_at(columns_to_factor, list(~factor(.)))
survival_model <- stats::glm(Survived ~
 Pclass +
 Sex +
 Age +
 Fare +
 Embarked +
 SibSp +
 Parch +
 Cabintype,
pretty_relativities

```r
data = titanic,
family = binomial(link = 'logit'))
pretty_coefficients(survival_model)
```

Description

Creates a pretty html plot of model relativities including base Levels.

Usage

```r
pretty_relativities(
  feature_to_plot,
  model_object,
  plot_approx_ci = TRUE,
  relativity_transform = "exp(estimate)-1",
  ordering = NULL,
  plot_factor_as_numeric = FALSE,
  width = 800,
  height = 500,
  return_data = FALSE,
  ylabel = "Relativity"
)
```

Arguments

- `feature_to_plot`: A string of the variable to plot.
- `model_object`: Model object to create coefficient table for. Must be of type: glm, lm, linear_reg or logistic_reg.
- `plot_approx_ci`: Set to TRUE to include confidence intervals in summary table. Warning, can be computationally expensive.
- `relativity_transform`: String of the function to be applied to the model estimate to calculate the relativity, for example: `exp(estimate)`. Default is for relativity to be `exp(estimate) - 1`.
- `ordering`: Type III statistical test to perform. Default is none. Options are 'Wald' or 'LR'. Warning 'LR' can be computationally expensive. Test performed via Anova.
- `plot_factor_as_numeric`: Set to TRUE to return data.frame instead of creating kable.
- `width`: Width of plot.
- `height`: Height of plot.
return_data

Set to TRUE to return data set instead of plot

ylabel

Label for yaxis of relativity plot, some users may prefer to refer to this as log odds

Value

kable if return_data = FALSE. data.frame if return_data = TRUE.

Examples

library(dplyr)
library(prettyglm)
data('titanic')
columns_to_factor <- c('Pclass',
 'Sex',
 'Cabin',
 'Embarked',
 'Cabintype',
 'Survived')
titanic <- titanic %>%
dplyr::mutate_at(columns_to_factor, list(~factor(.)))
survival_model <- stats::glm(Survived ~
Pclass +
Sex +
Age +
Fare +
Embarked +
SibSp +
Parch +
Cabintype,
data = titanic,
family = binomial(link = 'logit'))
pretty_relativities(feature_to_plot = 'Pclass',
model_object = survival_model)

titanic

Titanic Data

Description

The sinking of the Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the widely considered “unsinkable” RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren’t enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew. While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others. In this challenge, we ask you to build a predictive model that answers the question: “what sorts of people were more likely to survive?” using passenger data (ie name, age, gender, socio-economic class, etc).
Usage

\texttt{data(titanic)}

Format

An object of class \textquote{\texttt{data.frame}}

\begin{verbatim}
\texttt{survival} Survival
\texttt{pclass} Ticket class
\texttt{sex} Sex
\texttt{Age} Age in years
\texttt{sibsp} number of siblings / spouses
\texttt{parch} number of parents / children
\texttt{ticket} Ticket number
\texttt{fare} Passenger fare
\texttt{cabin} Cabin Number
\texttt{cabinType} Type of cabin
\texttt{embarked} Port of Embarkation
\end{verbatim}

References

This data set sourced from https://www.kaggle.com/c/titanic/data?select=train.csv

Examples

\begin{verbatim}
data(titanic)
head(titanic)
\end{verbatim}
Index

* datasets
 bank_data, 2
 titanic, 6

Anova, 4, 5

bank_data, 2

clean_coefficients, 3

data.frame, 4–6

glm, 3–5

kable, 4–6

linear_reg, 4, 5

lm, 4, 5

logistic_reg, 4, 5

pretty_coefficients, 3

pretty_relativities, 5

tibble, 3

tidy.lm, 3

titanic, 6