Package ‘prevtoinc’

October 14, 2022

Title Prevalence to Incidence Calculations for Point-Prevalence Studies in a Nosocomial Setting

Version 0.12.0

Author Niklas Willrich [aut, cre]

Maintainer Niklas Willrich <WillrichN@rki.de>

Description Functions to simulate point prevalence studies (PPSs) of healthcare-associated infections (HAIs) and to convert prevalence to incidence in steady state setups. Companion package to the preprint Willrich et al., From prevalence to incidence - a new approach in the hospital setting; <doi:10.1101/554725>, where methods are explained in detail.

Depends R (>= 3.2.2)

License MIT + file LICENSE

LazyData true

RoxygenNote 6.1.1

Imports dplyr, rlang, tibble, purrr

Suggests knitr, rmarkdown, testthat, ggplot2, gridExtra, tidyr

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2019-06-18 13:50:04 UTC

R topics documented:

A_to_X_dist ... 2
calculate_CI_I_pp ... 3
calculate_I .. 4
calculate_I_mixed .. 5
calculate_I_rhame .. 6
calculate_I_smooth ... 8
CI_np_bs ... 9
create_dist_vec .. 10
A_to_X_dist

function to transform the distribution of stays to a fixed point to the distribution of the staying times

Description

function to transform the distribution of stays to a fixed point to the distribution of the staying times

Usage

A_to_X_dist(dist.point)

Arguments

dist.point vector of probabilities of staying 1:length(dist.point) days

Value

vector of probabilities of being at the hospital for 1:length(dist.point) days at random time of observation

Examples

generate vector of probabilities for truncated Poisson distribution for # distribution of times of stay X
dist.X <- dpois(1:70, 4)
plot(dist.X)
transform to distribution of distribution of staying-time up to observation point under # assumption of steady state
dist.A <- X_to_A_dist(dist.X)
plot(dist.A)
transform back to get original distribution
dist.X.2 <- A_to_X_dist(dist.A)
plot(dist.X.2)

calculate_CI_I_pp

\begin{itemize}
 \item \textbf{Calculate confidence intervals for Grenander estimator of Ipp based on asymptotics}
\end{itemize}

\underline{Description}

Asymptotic or bootstrap approximation of confidence intervals for estimates of Ipp with gren method
Can use output of calculate_I_* functions as input. The asymptotic method uses the asymptotic normality of the estimator of I.pp to calculate the confidence interval and the method "bs" uses a parametric bootstrap approximation based on the "naive" estimator.

\underline{Usage}

\begin{verbatim}
calculate_CI_I_pp(data, method = "asymptotic", alpha = 0.05, n_bs = 10000)
\end{verbatim}

\underline{Arguments}

\begin{itemize}
 \item \textbf{data} data frame which contains at least the following columns
 \begin{itemize}
 \item n - number of patients sampled
 \item n.noso - number of HAIs
 \item P.hat - estimate of prevalence P
 \item x.loi.hat - estimate of x.loi
 \item x.los.hat - estimate of x.los
 \item I.pp.hat - estimate of incidence proportion per admission I.pp
 \end{itemize}
 \item \textbf{method} either "asymptotic" for asymptotic confidence interval or "bs" for bootstrap-based confidence interval
 \item \textbf{alpha} confidence level
 \item \textbf{n_bs} number of bootstrap replications if method is "bs"
\end{itemize}

\underline{Value}

tibble with columns CI.lower.Ipp and CI.upper.Ipp

\underline{Examples}

\begin{verbatim}
example.dist <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
example.dist.los <- create_dist_vec(function(x) dpois(x-1, lambda = 12),
 max.dist = 70)
data.pps.fast <- simulate_pps_fast(n.sample=5000,
\end{verbatim}
calculate_I

Function to calculate different estimators for I from PPS data.

Description

Function to calculate different estimators for I from PPS data.

Usage

calculate_I(data, data.theo = NULL)

Arguments

data data frame as generated by ‘simulate_pps_data’ or ‘simulate_pps_fast’
data.theo data frame as generated by ‘simulate_incidence_stats’ or ‘simulate incidence_stats_fast’

Value

data frame with following columns

- n - number of patients sampled
- n.noso - number of HAIs
- P.hat - estimate of prevalence P
- I.hat - estimate of incidence rate I
- I.pp.hat - estimate of incidence proportion per admission I_{pp}
- x.loi.hat - estimate of x_{loi}
- x.los.hat - estimate of x_{los}
- method - name of the method

and rows for the estimators gren, rear, pps.median, pps.mean, pps.mixed, rhame.theo, L.full (for a description of the estimators see vignette).
Examples

```r
# create example data for PPS
e.example.dist <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
e.example.dist.los <- create_dist_vec(function(x) dpois(x-1, lambda = 12),
                                max.dist = 70)
data.pps.fast <- simulate_pps_fast(n.sample=200,
P=0.05,
dist.X.loi = example.dist,
dist.X.los = example.dist.los)
head(data.pps.fast)

# estimate incidence based on Rhame-Sudderth formula
calculate_I(data = data.pps.fast)
```

calculate_I_mixed

Function to calculate incidence from PPS data using a mix of two estimators

Description

A sigmoid function with parameters a and b (see below) is used to get weights for a combination of the two estimator for x_{loi} and x_{los}.

Usage

```r
calculate_I_mixed(I.pps.1, I.pps.2, a = 0.01, b = 500,
method = "pps.mixed")
```

Arguments

- **I.pps.1**: resulting data frame for first estimator
- **I.pps.2**: resulting data frame for second estimator
- **a**: parameter a for the sigmoid function
- **b**: parameter b for the sigmoid function
- **method**: name of the method

Details

is achieved in the following way for estimation of x_{loi}

$$\alpha = \exp(a \cdot (n_{ñoso} - b)) / (1 + \exp(a \cdot (n_{ñoso} - b)))$$

$$x_{loi.hat.mixed} = \alpha \cdot x_{loi.hat.1} + (1 - \alpha) \cdot x_{loi.hat.2}$$

is achieved in the following way for estimation of x_{los}

$$\alpha = \exp(a \cdot (n - b)) / (1 + \exp(a \cdot (n - b)))$$

$$x_{los.hat.mixed} = \alpha \cdot x_{los.hat.1} + (1 - \alpha) \cdot x_{los.hat.2}$$
Calculate incidence from PPS data using a Rhame-Sudderth like approach with estimates for x.loi and x.los supplied.

Value

One-row data frame with following columns

- n - number of patients sampled
- n.noso - number of HAIs
- P.hat - estimate of prevalence P
- I.hat - estimate of incidence rate I
- I.pp.hat - estimate of incidence proportion per admission I.pp
- x.loi.hat - estimate of x.loi
- x.los.hat - estimate of x.los
- method - name of the method

Examples

```r
# create example data for PPS
dist.X.loi <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
dist.X.los <- create_dist_vec(function(x) dpois(x-1, lambda = 12), max.dist = 70)
data.pps.fast <- simulate_pps_fast(n.sample=200, P=0.05, dist.X.loi = dist.X.loi, dist.X.los = dist.X.los)
head(data.pps.fast)

# estimate of incidence
I.1 <- calculate_I_smooth(data = data.pps.fast, method = "gren")

# estimate incidence based on Rhame-Sudderth formula
I.2 <- calculate_I_rhame(data = data.pps.fast, x.loi.hat = 8, x.los.hat = 13)

# mixed estimator
calculate_I_mixed(I.1, I.2)
```

Description

Function to calculate incidence from PPS data using a Rhame-Sudderth like approach with estimates for x.loi and x.los supplied.
calculate_I_rhame

Usage

\texttt{calculate_I_rhame(data, x.loi.hat, x.los.hat = NA, method = \"rhame\")}

Arguments

data one-row data frame which contains a column A.loi (only used to calculate P.hat) with lengths of nosocomial infections up to survey (a 0 indicates no HAI present)
x.loi.hat value for estimated expected length of infection x.loi
x.los.hat value for estimated expected length of stay x.los (optional)
method a string with associated name for method

Value

one-row data frame with following columns

- n - number of patients sampled
- n.noso - number of HAIs
- P.hat - estimate of prevalence P
- I.hat - estimate of incidence rate I
- I.pp.hat - estimate of incidence proportion per admission I.pp
- x.loi.hat - estimate of x.loi
- x.los.hat - estimate of x.los
- method - name of the method

Examples

create example data for PPS
example.dist <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
example.dist.los <- create_dist_vec(function(x) dpois(x-1, lambda = 12),
max.dist = 70)
data.pps.fast <- simulate_pps_fast(n.sample=200,
P=0.05,
dist.X.loi = example.dist,
dist.X.los = example.dist.los)

head(data.pps.fast)

estimate incidence based on Rhame-Sudderth formula
calculate_I_rhame(data = data.pps.fast,
x.loi.hat = 8,
x.los.hat = 13)
calculate_I_smooth

Estimate the incidence based on PPS data using monotone estimators for the distribution of A.

Description

Estimate incidence from PPS by the method proposed in the companion paper. ‘data’ should be supplied as a data frame with at least a column named ‘A.loi’ giving lengths of infection up to date of PPS. Values of zero for ‘A.loi’ indicate absence of a HAI. Optionally, the data frame can also contain a column ‘A.los’ supplying lengths of stay up to PPS to estimate x.los with the same method as well. If ‘correct.one’ is ‘TRUE’, the number infections on their first day will be augmented to be at least as high as the number of infections on their second day for the estimation of x.loi.

Usage

```r
calculate_I_smooth(data, method = "gren", correct.one.loi = "no", correct.one.los = "no")
```

Arguments

- `data` data frame which contains a column ‘A.loi’ with lengths of nosocomial infections up to survey point (zero if none) and possibly a column ‘A.los’ with lengths of stay up to survey point.
- `method` method to use for smoothing ("gren" (Grenander) or "rear" (rearrangement)).
- `correct.one.loi` use correction for underreporting of one day LOIs: "no" if none, "fill.ones" to set the one-day cases to be at least the number of two-day cases, "start.two" to only use $P(A=2|A > 1)$ as a proxy for $P(A=1)$.
- `correct.one.los` use correction for underreporting of one day LOSs: "no" if none, "fill.ones" to set the one-day cases to be at least the number of two-day cases, "start.two" to only use $P(A=2|A > 1)$ as a proxy for $P(A=1)$.

Value

One-row data frame with following columns:

- `n` number of patients sampled
- `n.noso` number of HAIs
- `P.hat` estimate of prevalence P
- `I.hat` estimate of incidence rate I
- `I.pp.hat` estimate of incidence proportion per admission $I.pp$
- `x.loi.hat` estimate of $x.loi$
- `x.los.hat` estimate of $x.los$
- `method` name of the method
Examples

create example data for PPS
example.dist <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
example.dist.los <- create_dist_vec(function(x) dpois(x-1, lambda = 12),
 max.dist = 70)
data.pps.fast <- simulate_pps_fast(n.sample=200,
 P=0.05,
 dist.X.loi = example.dist,
 dist.X.los = example.dist.los)

head(data.pps.fast)

estimate of incidence
calculate_I_smooth(data = data.pps.fast,
 method = "gren")

CI_np_bs

Function to calculate confidence intervals I.pp for gren estimator with
bootstrap method based on Grenander estimator

Description

Implements a bootstrap procedure for estimation of confidence intervals for I.pp based on bootstrapp-
ing from the length of stay/infection distributions estimated by the gren method.

Usage

CI_np_bs(data, n_bs = 1000, alpha = 0.05)

Arguments

data data frame which contains a column ‘A.loi’ with lengths of nosocomial infec-
tions up to survey point (zero if none) and a column ‘A.los’ with length of stay up to survey point
n_bs number of bootstrap samples to use for calculations
alpha confidence level

Value

single-row tibble with columns CI.lower.Ipp and CI.upper.Ipp
create_dist_vec

Create vector of probabilities for a finite positive discrete distribution

Description

Cuts-off the (possibly unbounded) probability distribution at 'max.dist' and normalizes the resulting vector of probability to sum up to 1.

Usage

create_dist_vec(dist, max.dist)

Arguments

dist probability mass function to use
max.dist maximum value at which to cutoff distribution

Value

vector of probabilites for values 1:max.dist

Examples

gem_dist_fct(1:70)
create_dist_vec(gem_dist_fct, max.dist = 70)
Function to simulate a single hospital bed trajectory

Description

Simulates the occupation of bed and incidence of HAIs of a single bed. Length of HAI is assumed
to be additive to length of stay without HAI.

Usage

create_patient_history_add(X_los_dist, X_loi_dist, I, steps)

Arguments

- X_los_dist: vector of probabilities for values 1:length(dist.X.los) of X.los
- X_loi_dist: vector of probabilities for values 1:length(dist.X.loi) of X.loi
- I: incidence rate per patient-day at risk
- steps: number of days to evolve trajectory of bed

Value

data frame with following columns

- pat_nbr - sequential patient number
- hai_nbr - sequential HAI number
- X_los - predicted total length of stay for patient on current day
- X_los_wo_hai -
- X_loi - total length of current HAI
- X_loi_tot - added total lengths of all HAIs up to day
- A_los - length of stay up to day
- X_lnint - length of stay after acquiring first HAI

Examples

```r
example.dist <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
exmaple.dist.los <- create_dist_vec(function(x) dpois(x-1, lambda = 12),
                                  max.dist = 70)
bed_hist <- create_patient_history_add(example.dist.los, example.dist, I = 0.08, 1000)
tail(bed_hist)
```
epmf

Calculate empirical probability mass function for a discrete positive distribution starting at 1

Description
Calculate empirical probability mass function for a discrete positive distribution starting at 1

Usage

```r
epmp(values)
```

Arguments

- `values`: used for the calculation of the empirical pmf

Value

vector of probabilities for epmf for the range 1:length(values)

Examples

```r
# generate random sample of independent draws from Poisson distribution
x <- rpois(200,4)
# calculate empirical probability mass function and true probability mass function
y.emp <- epmf(x)
y.theo <- dpois(1:max(x), 4)
plot(y.emp)
points(y.theo, col = "red")
```

generate_I_fast

Function to simulate PPS and data and calculate a number of estimators

Description

Function to simulate PPS and data and calculate a number of estimators

Usage

```r
generate_I_fast(n.sample, P, dist.X.loi, data.theo = NULL,
dist.X.los = NA, one.factor.loi = 1, one.factor.los = 1)
```
Arguments

- `n.sample` number of beds to simulate
- `P` average prevalence of nosocomial infections
- `dist.X.loi` vector of probabilities for values 1:length(dist.X.loi) of X.loi
- `data.theo` data frame with theoretical info generated by simulate_incidence_stats_* function
- `dist.X.los` vector of probabilities for values 1:length(dist.X.los) of X.los
- `one.factor.loi` factor by which to approx. reduce number of one day observations for A.loi
- `one.factor.los` factor by which to approx. reduce number of one day observations for A.los

Value

data frame with following columns

- `n` - number of patients sampled
- `n.noso` - number of HAIs
- `P.hat` - estimate of prevalence P
- `I.hat` - estimate of incidence rate I
- `I.pp.hat` - estimate of incidence proportion per admission I.pp
- `x.loi.hat` - estimate of x.loi
- `x.los.hat` - estimate of x.los
- `method` - name of the method

and rows for the estimators gren, rear, pps.median, pps.mean, pps.mixed, rhame.theo, L.full (for a description of the estimators see vignette).

Examples

```r
example.dist <- create_dist_vec(function(x) dpois(x-1, 7), max.dist = 70)
generate_I_fast(200, P = 0.05, example.dist )
```

```
geom_dist_fct              Probability mass function for a geometric distribution shifted by one and resulting expected value 8

Description

Probability mass function for a geometric distribution shifted by one and resulting expected value 8

Usage

geom_dist_fct(x)
```
Arguments

- `x` vector of positive integer values to evaluate

Examples

```r
plot(geom_dist_fct(1:100))
```

length_biased_dist Calculate length-biased distribution from discrete length-unbiased distribution starting at 1

Description

Calculate length-biased distribution from discrete length-unbiased distribution starting at 1

Usage

```r
length_biased_dist(dist)
```

Arguments

- `dist` vector of probabilities of distribution to transform

Value

vector of probabilities of transformed distribution

Examples

```r
# geometric distribution starting in 1 and cutoff at 70 with mean at about 8.
geom.dist <- create_dist_vec(geom_dist_fct, max.dist = 70)
# calculate mean
sum(1:length(geom.dist)*geom.dist)
# plot original distribution
plot(geom.dist)
geom.dist.lb <- length_biased_dist(geom.dist)
# plot length biased distribution
plot(geom.dist.lb)
```
length_unbiased_mean

Calculate mean of length-unbiased distribution from discrete length-biased distribution starting at 1

Description

Calculate mean of length-unbiased distribution from discrete length-biased distribution starting at 1

Usage

\[\text{length_unbiased_mean(dist)} \]

Arguments

dist vector of probabilities of length-biased distribution

Value

mean of length-unbiased distribution

Examples

```r
# geometric distribution starting in 1 and cutoff at 70 with mean at about 8.
geom.dist <- create_dist_vec(geom_dist_fct, max.dist = 70)
# calculate mean of distribution
sum(1:length(geom.dist)*geom.dist)
# create length-biased distribution in same format
geom.dist.lb <- length_biased_dist(geom.dist)

# recalculate mean of original distribution based on length-biased distribution
length_unbiased_mean(geom.dist.lb)
```

monotone_smother

Calculate a monotone probability mass function estimate

Description

using a rearrangement or a Grenander estimator as described in Jankowski, Wellner, 2009 <doi:10.1214/09-EJS526>

Usage

```r
monotone_smother(values, method = "rear", range = \texttt{c(1, max(values))})
```
Arguments

values observed values of distribution
method method of estimation "rear" rearrangement or "gren" Grenander
range boundaries of the support of the distribution

Value

vector of estimated pmf (support of distribution is by default assumed to be min(values):max(values))

Examples

generate sample from geometric distribution
A <- rgeom(50, 0.2)
plot empirical probability mass function
plot(epmf(A))
dist.A.gren <- monotone_smoother(A, method = "gren")
plot estimated probability mass function
points(dist.A.gren, col = "red")

pois_dist_fct Probability mass function for a Poisson distribution shifted by one and resulting expected value 8

Description

Probability mass function for a Poisson distribution shifted by one and resulting expected value 8

Usage

pois_dist_fct(x)

Arguments

x vector of positive integer values to evaluate

Examples

plot(pois_dist_fct(1:100))
Description

The `prevtoinc` package implements functionality to simulate point-prevalence studies (PPSs) for healthcare-associated infections (HAIs) and estimate incidence based on the PPS data. It is a companion package to the preprint Willrich et al., From prevalence to incidence - a new approach in the hospital setting; [doi:10.1101/554725], where methods are explained in detail.

simulate_incidence_stats

Calculate theoretical values like x.los, x.loi and other characteristics of the patient population

Description

Calculate theoretical values like x.los, x.loi and other characteristics of the patient population

Usage

```r
simulate_incidence_stats(hospital, steps = 365 * 10000, n.sim.pat = 5000)
```

Arguments

- `hospital`: type of hospital as a list-object (see vignette for details)
- `steps`: number of steps to evolve process
- `n.sim.pat`: size of simulations to estimate individual characteristics of patients

Value

List with following components

- x.los - average length of stay x_los
- x.loi - average length of infection x_loi
- x.los.noso.only - average length of stay for patients with HAI
- x.los.wo.noso - average length of stay for patients discounting time with HAI
- I - theoretical incidence rate per patient day
- I.pp - list of theoretical incidences for patient types
- patient.stats - list with ‘x.los’ and ‘x.loi’ for different patient types
- patient.risk.times - list of patient days at risk for different patient types
simulate_incidence_stats_fast

Function to calculate theoretical value for x.loi and I

Description

Function to calculate theoretical value for x.loi and I

Usage

simulate_incidence_stats_fast(P, dist.X.loi, dist.X.los = NA)

Arguments

P prevalence of HAIs
dist.X.loi probability mass function of distribution of lengths of infection
dist.X.los vector of probabilities for values 1:length(dist.X.los) of X.los
simulate_pps_data

Value

list with following components

- x.loi - average length of infection
- x.los - average length of stay
- I - theoretical incidence rate per patient day
- I.pp - theoretical incidence proportion per admission

Examples

```r
example.dist <- create_dist_vec(function(x) dpois(x-1, 7), 70)
data.fast.inc.theo <- simulate_incidence_stats_fast(P=0.05, dist.X.loi = example.dist)
data.fast.inc.theo$x.loi
data.fast.inc.theo$I
```

simulate_pps_data
Function to simulate PPS data

Description

Simulates PPS data for a prespecified hospital according to a steady state model of incidence (see vignette "Overview of prevtoinc-Package" for details.)

Usage

```r
simulate_pps_data(n.sample, steps, hospital)
```

Arguments

- `n.sample` number of beds to simulate
- `steps` number of steps to evolve the process
- `hospital` type of hospital as a list-object (see vignette for details)

Value

data frame with following columns

- A.loi - length of infection up to PPS
- L.loi - total length of infection
- A.los - length of stay up to PPS
- L.los - total length of stay
- patient.type - patient type
Examples

```r
pat.1 <- list(
  dist.X.los = create_dist_vec(function(x) dpois(x-1, lambda = 12), 70),
  I.p = 0.008,
  dist.X.loi = create_dist_vec(function(x) dpois(x-1, lambda = 10), 70))
pat.2 <- list(
  dist.X.los = create_dist_vec(function(x) dpois(x-1, lambda = 10), 70),
  I.p = 0.02,
  dist.X.loi = create_dist_vec(function(x) dpois(x-1, lambda = 7), 70))
patient.list <- list(pat.1, pat.2)

# define distribution of patients
pat.1.prob <- 0.4; pat.2.prob <- 0.6
pat.dist.hosp <- c(pat.1.prob, pat.2.prob)
hospital.1 <- list(
  inc.factor = 1,
  pat.dist = pat.dist.hosp,
  patient.list = patient.list)
data.pps <- simulate_pps_data(n.sample=1000, steps=200, hospital=hospital.1)
```

Description

The function `simulate_pps_fast` can be used to generate PPS data. This function simulates a PPS on the basis of a given prevalence `P` using a vector of probabilities `dist.X.loi` for the values 1:length(dist.X.loi) of X.loi. It directly samples the time of infection up to date based on `dist.X.loi`. Optionally, the length of stay is sampled independently (treating the marginal distributions of length of stay and length of infection as independent by assumption) using `dist.X.los` which is in the same format as `dist.X.loi`. Because of this non-joint sampling rows should not be interpreted as individual patients.

Usage

```r
simulate_pps_fast(n.sample, P, dist.X.loi, dist.X.los = NA,
  one.factor.loi = 1, one.factor.los = 1)
```

Arguments

- `n.sample` number of beds to simulate
X_to_A_dist

P prevalence of nosocomial infections
dist.X.loi vector of probabilities for values 1:length(dist.X.loi) of X.loi
dist.X.los vector of probabilities for values 1:length(dist.X.los) of X.los
one.factor.loi factor by which to approx. reduce number of one day observations for A.loi
one.factor.los factor by which to approx. reduce number of one day observations for A.los

Value

data frame with a row for a each simulated patient and the following columns

• A.loi - length of infection up to PPS
• L.loi - total length of infection
• A.los - length of stay up to PPS
• L.los - total length of stay
• patient.type - patient type (fixed to 1 for fast method)

Examples

example.dist <- create_dist_vec(function(x) dpois(x-1, 7), 70)
data.pps.fast <- simulate_pps_fast(n.sample=5000,
P=0.05,
dist.X.loi = example.dist)
head(data.pps.fast)

X_to_A_dist Transform a distribution of times of stay to a distribution of staying-time up to observation point under assumption of steady state.

Description

Transform a distribution of times of stay to a distribution of staying-time up to observation point under assumption of steady state.

Usage

X_to_A_dist(dist.stays)

Arguments

dist.stays vector of probabilities of being at the hospital for 1:length(dist.stays) days at random time of observation

Value

vector of probabilities of staying 1:length(dist.point) days
Examples

generate vector of probabilities for truncated Poisson distribution for
distribution of times of stay X
dist.X <- dpois(1:70, 4)
plot(dist.X)
transform to distribution of distribution of staying-time up to observation point under
assumption of steady state
dist.A <- X_to_A_dist(dist.X)
plot(dist.A)
transform back to get original distribution
dist.X.2 <- A_to_X_dist(dist.A)
plot(dist.X.2)
Index

A_to_X_dist, 2
calculate_CI_I_pp, 3
calculate_I, 4
calculate_I_mixed, 5
calculate_I_rhame, 6
calculate_I_smooth, 8
CI_np_bs, 9
create_dist_vec, 10
create_patient_history_add, 11
epmf, 12
generate_I_fast, 12
geom_dist_fct, 13
length_biased_dist, 14
length_unbiased_mean, 15
monotone_smoother, 15
pois_dist_fct, 16
prevtoinc, 17
prevtoinc-package (prevtoinc), 17
simulate_incidence_stats, 17
simulate_incidence_stats_fast, 18
simulate_pps_data, 19
simulate_pps_fast, 20
X_to_A_dist, 21