Package ‘primePCA’

October 14, 2022

Type Package

Title Projected Refinement for Imputation of Missing Entries in PCA

Version 1.2

Date 2021-8-5

Author Ziwei Zhu, Tengyao Wang, Richard J. Samworth

Maintainer Ziwei Zhu <ziweiz@umich.edu>

Imports softImpute, Matrix, MASS, methods

RoxygenNote 7.1.1

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2021-08-05 15:10:02 UTC

R topics documented:

 col_scale ... 2
 inverse_prob_method .. 2
 primePCA ... 3
 sin_theta_distance .. 4

Index 5
col_scale

Center and/or normalize each column of a matrix

Description

Center and/or normalize each column of a matrix

Usage

```r
col_scale(X, center = T, normalize = F)
```

Arguments

- `X`: a numeric matrix with NAs or "Incomplete" matrix object (see softImpute package)
- `center`: center each column of `X` if `center == TRUE`. The default value is `TRUE`.
- `normalize`: normalize each column of `X` such that its sample variance is 1 if `normalize == TRUE`. The default value is `False`.

Value

a centered and/or normalized matrix of the same dimension as `X`.

inverse_prob_method

Inverse probability weighted method for estimating the top K eigenspaces

Description

Inverse probability weighted method for estimating the top K eigenspaces

Usage

```r
inverse_prob_method(X, K, trace.it = F, center = T, normalize = F)
```

Arguments

- `X`: a numeric matrix with NAs or "Incomplete" matrix object (see softImpute package)
- `K`: the number of principal components of interest
- `trace.it`: report the progress if `trace.it == TRUE`
- `center`: center each column of `X` if `center == TRUE`. The default value is `TRUE`.
- `normalize`: normalize each column of `X` such that its sample variance is 1 if `normalize == TRUE`. The default value is `False`.
Value

Columnwise centered matrix of the same dimension as X.

Examples

```r
X <- matrix(1:30 + .1 * rnorm(30), 10, 3)
X[1, 1] <- NA
X[2, 3] <- NA
v_hat <- inverse_prob_method(X, 1)
```

Description

primePCA algorithm

Usage

```r
primePCA(
  X,
  K,
  V_init = NULL,
  thresh_sigma = 10,
  max_iter = 1000,
  thresh_convergence = 1e-05,
  thresh_als = 1e-10,
  trace.it = F,
  prob = 1,
  save_file = "",
  center = T,
  normalize = F
)
```

Arguments

- **X**: an n-by-d data matrix with NA values
- **K**: the number of the principal components of interest
- **V_init**: an initial estimate of the top K eigenspaces of the covariance matrix of X. By default, primePCA will be initialized by the inverse probability method.
- **thresh_sigma**: used to select the "good" rows of X to update the principal eigenspaces σ_* in the paper.
- **max_iter**: maximum number of iterations of refinement
- **thresh_convergence**: The algorithm is halted if the Frobenius-norm sine-theta distance between the two consecutive iterates
sin_theta_distance

- **thresh_als**: This is fed into `thresh in svd.als of softImpute. is less than thresh_convergence.`
- **trace.it**: report the progress if `trace.it = TRUE`
- **prob**: probability of reserving the "good" rows. `prob == 1` means to reserve all the "good" rows.
- **save_file**: the location that saves the intermediate results, including `V_cur`, `step_cur` and `loss_all`, which are introduced in the section of returned values. The algorithm will not save any intermediate result if `save_file == ""`
- **center**: center each column of `X` if `center == TRUE`. The default value is `TRUE`
- **normalize**: normalize each column of `X` such that its sample variance is 1 if `normalize == TRUE`. The default value is `False`

Value

A list is returned, with components `V_cur`, `step_cur` and `loss_all`. `V_cur` is a `d`-by-`K` matrix of the top `K` eigenvectors. `step_cur` is the number of iterations. `loss_all` is an array of the trajectory of MSE.

Examples

```r
X <- matrix(1:30 + .1 * rnorm(30), 10, 3)
X[1, 1] <- NA
X[2, 3] <- NA
v_tilde <- primePCA(X, 1)$V_cur
```

sin_theta_distance

Frobenius norm sin theta distance between two column spaces

Description

Frobenius norm sin theta distance between two column spaces

Usage

```r
sin_theta_distance(V1, V2)
```

Arguments

- **V1**: a matrix with orthonormal columns
- **V2**: a matrix of the same dimension as `V1` with orthonormal columns

Value

The Frobenius norm sin theta distance between two `V1` and `V2`
Index

col_scale, 2
inverse_prob_method, 2
primePCA, 3
sin_theta_distance, 4