Package ‘primes’

December 19, 2023

Type Package
Title Fast Functions for Prime Numbers
Version 1.5.2
Date 2023-12-14
Description Fast functions for dealing with prime numbers, such as testing whether a number is prime and generating a sequence of prime numbers. Additional functions include finding prime factors and Ruth-Aaron pairs, finding next and previous prime numbers in the series, finding or estimating the nth prime, estimating the number of primes less than or equal to an arbitrary number, computing primorials, prime k-tuples (e.g., twin primes), finding the greatest common divisor and smallest (least) common multiple, testing whether two numbers are coprime, and computing Euler's totient function. Most functions are vectorized for speed and convenience.

License MIT + file LICENSE
Depends R (>= 4.0)
Imports Rcpp
LinkingTo Rcpp
Suggests testthat
URL https://github.com/ironholds/primes
BugReports https://github.com/ironholds/primes/issues
RoxygenNote 7.2.3
Encoding UTF-8
LazyData true
NeedsCompilation yes
Author Os Keyes [aut, cre], Paul Egeler [aut] (<https://orcid.org/0000-0001-6948-9498>)
Maintainer Os Keyes <ironholds@gmail.com>
Repository CRAN
Date/Publication 2023-12-19 01:20:02 UTC
R topics documented:

- `gcd` (Page 2)
- `generate_n_primes` (Page 3)
- `is_prime` (Page 4)
- `k_tuple` (Page 5)
- `next_prime` (Page 6)
- `nth_prime` (Page 7)
- `phi` (Page 8)
- `primes` (Page 9)
- `prime_count` (Page 9)
- `prime_factors` (Page 10)
- `primorial` (Page 11)
- `ruth_aaron_pairs` (Page 11)

Index

gcd | Find the Greatest Common Divisor, Smallest Common Multiple, or Coprimality

description

These functions provide vectorized computations for the greatest common divisor (`gcd`), smallest common multiple (`scm`), and coprimality. Coprime numbers are also called mutually prime or relatively prime numbers. The smallest common multiple is often called the least common multiple.

Usage

- `gcd(m, n)`
- `scm(m, n)`
- `coprime(m, n)`
- `Rgcd(...)`
- `Rscm(...)`

Arguments

`m, n, ...` integer vectors.
generate_n_primes

Details
The greatest common divisor uses Euclid’s algorithm, a fast and widely used method. The smallest common multiple and coprimality are computed using the gcd, where \(\text{scm} = \frac{a}{\text{gcd}(a, b)} \times b \) and two numbers are coprime when \(\text{gcd} = 1 \).

The gcd, scm, and coprime functions perform element-wise computation. The Rgcd and Rscm functions perform gcd and scm over multiple values using reduction. That is, they compute the greatest common divisor and least common multiple for an arbitrary number of integers based on the properties \(\text{gcd}(a_1, a_2, ..., a_n) = \text{gcd}(\text{gcd}(a_1, a_2, ...), a_n) \) and \(\text{scm}(a_1, a_2, ..., a_n) = \text{scm}(\text{scm}(a_1, a_2, ...), a_n) \).

The binary operation is applied to two elements; then the result is used as the first operand in a call with the next element. This is done iteratively until all elements are used. It is idiomatically equivalent to \(\text{Reduce}(\text{gcd}, x) \) or \(\text{Reduce}(\text{scm}, x) \), where \(x \) is a vector of integers, but much faster.

Value
The functions gcd, scm, and coprime return a vector of the length of longest input vector. If one vector is shorter, it will be recycled. The gcd and scm functions return an integer vector while coprime returns a logical vector. The reduction functions Rgcd and Rscm return a single integer.

Author(s)
Paul Egeler, MS

Examples
```r
gcd(c(18, 22, 49, 13), 42)
## [1]  6  2  7  1

Rgcd(18, 24, 36, 12)
## [1] 6

scm(60, 90)
## [1] 180

Rscm(1:10)
## [1] 2520

coprime(60, c(77, 90))
## [1] TRUE FALSE
```

generate_n_primes

Generate a Sequence of Prime Numbers

Description
Generate a sequence of prime numbers from min to max or generate a vector of the first n primes. Both functions use a fast implementation of the Sieve of Eratosthenes.
Usage

generate_n_primes(n)

generate_primes(min = 2L, max)

Arguments

- `n`
 the number of primes to generate.

- `min`
 the lower bound of the sequence.

- `max`
 the upper bound of the sequence.

Value

An integer vector of prime numbers.

Author(s)

Paul Egeler, MS

Examples

```r
generate_primes(max = 12)
## [1] 2 3 5 7 11
```

```r
generate_n_primes(5)
## [1] 2 3 5 7 11
```

is_prime

Test for Prime Numbers

Description

Test whether a vector of numbers is prime or composite.

Usage

```r
is_prime(x)
```

Arguments

- `x`
 an integer vector containing elements to be tested for primality.

Value

A logical vector.
Author(s)
Os Keyes and Paul Egeler, MS

Examples

```r
is_prime(4:7)
## [1] FALSE TRUE FALSE TRUE

is_prime(1299827)
## [1] TRUE
```

<table>
<thead>
<tr>
<th>k_tuple</th>
<th>Prime k-tuples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Use prime k-tuples to create lists of twin primes, cousin primes, prime triplets, and so forth.

Usage

```r
k_tuple(min, max, tuple)
sexy_prime_triplets(min, max)
twin_primes(min, max)
cousin_primes(min, max)
sexy_primes(min, max)
third_cousin_primes(min, max)
```

Arguments

- **min**: the lower bound of the sequence.
- **max**: the upper bound of the sequence.
- **tuple**: an integer vector representing the target k-tuple pattern.

Details

You can construct your own tuples and generate series of primes using `k_tuple`; however, there are functions that exist for some of the named relationships. They are listed below.

- **twin_primes**: represents $c(0, 2)$.
- **cousin_primes**: represents $c(0, 4)$.
• third_cousin_primes: represents c(0,8).
• sexy_primes: represents c(0,6).
• sexy_prime_triplets: represents c(0,6,12). (This relationship is unique in that p + 18 is guaranteed to be composite.)

The term "third cousin primes" is of the author’s coinage. There is no canonical name for that relationship to the author’s knowledge.

Value
A list of vectors of prime numbers satisfying the condition of tuple.

Author(s)
Paul Egeler, MS

Examples

```r
# All twin primes up to 13
twin_primes(2, 13) # Identical to `k_tuple(2, 13, c(0,2))`
## [[1]]
## [1] 3 5
## [[2]]
## [1] 5 7
## [[3]]
## [1] 11 13

# Some prime triplets
k_tuple(2, 19, c(0,4,6))
## [[1]]
## [1] 7 11 13
## [[2]]
## [1] 13 17 19
```

next_prime

Find the Next and Previous Prime Numbers

Description

Find the next prime numbers or previous prime numbers over a vector.

Usage

```r
next_prime(x)
prev_prime(x)
```
nth_prime

Arguments
x a vector of integers from which to start the search.

Details
For prev_prime, if a value is less than or equal to 2, the function will return \texttt{NA}.

Value
An integer vector of prime numbers.

Author(s)
Paul Egeler, MS

Examples

```r
next_prime(5)
## [1] 7

prev_prime(5:7)
## [1] 3 5 5
```

nth_prime

\textit{Get the n-th Prime from the Sequence of Primes.}

Description
Get the n-th prime, \(p_n \), in the sequence of primes.

Usage

```r
nth_prime(x)
```

Arguments
x an integer vector.

Value
An integer vector.

Author(s)
Paul Egeler, MS
Examples

```
nth_prime(5)
## [1] 11

nth_prime(c(1:3, 7))
## [1] 2 3 5 17
```

phi

Euler's Totient Function

Description

Compute Euler's Totient Function ($\phi(n)$). Provides the count of k integers that are coprime with n such that $1 \leq k \leq n$ and $\gcd(n, k) = 1$.

Usage

```
phi(n)
```

Arguments

- `n` an integer vector.

Value

An integer vector.

Author(s)

Paul Egeler, MS

References

See Also

`gcd`, `coprime`, `prime_factors`

Examples

```
phi(12)
## [1] 4

phi(c(9, 10, 142))
## [1] 6 4 70
```
primes

Pre-computed Prime Numbers

Description
The first one thousand prime numbers.

Usage
primes

Format
An integer vector containing the first one thousand prime numbers.

See Also
generate_primes, generate_n_primes

prime_count
Prime-counting Functions and Estimating the Value of the n-th Prime

Description
Functions for estimating \(\pi(n) \)—the number of primes less than or equal to \(n \)—and for estimating the value of \(p_n \), the n-th prime number.

Usage

prime_count(n, upper_bound)

nth_prime_estimate(n, upper_bound)

Arguments

n an integer. See Details for more information.
upper_bound a logical indicating whether to estimate the lower- or upper bound.

Details
The prime_count function estimates the number of primes \(\leq n \). When upper_bound = FALSE, it is guaranteed to under-estimate for all \(n \geq 17 \). When upper_bound = TRUE, it holds for all positive \(n \).

The nth_prime_estimate function brackets upper and lower bound values of the n-th prime. It is valid for \(n \geq 6 \).

The methods of estimation used here are a few of many alternatives. For further information, the reader is directed to the References section.
Author(s)

Paul Egeler, MS

References

prime_factors
Perform Prime Factorization on a Vector

Description
Compute the prime factors of elements of an integer vector.

Usage
prime_factors(x)

Arguments

- **x**

an integer vector.

Value

A list of integer vectors reflecting the prime factorizations of each element of the input vector.

Author(s)

Paul Egeler, MS

Examples

prime_factors(c(1, 5:7, 99))

 ## [[1]]
 ## integer(0)
 ##
 ## [[2]]
 ## [1] 5
 ##
 ## [[3]]
 ## [1] 2 3
 ##
 ## [[4]]
 ## [1] 7
 ##
 ## [[5]]
 ## [1] 3 3 11
primorial

Compute the Primorial

Description

Computes the primorial for prime numbers and natural numbers.

Usage

- `primorial_n(n)`
- `primorial_p(n)`

Arguments

- `n`: an integer indicating the numbers to be used in the computation. See `Details` for more information.

Details

The `primorial_p` function computes the primorial with respect to the first `n` prime numbers; while the `primorial_n` function computes the primorial with respect to the first `n` natural numbers.

Value

A numeric vector of length 1.

Author(s)

Paul Egeler, MS

ruth_aaron_pairs

Find Ruth-Aaron Pairs of Integers

Description

Find pairs of consecutive integers where the prime factors sum to the same value. For example, (5, 6) are Ruth-Aaron pairs because the prime factors $5 = 2 + 3$.

Usage

- `ruth_aaron_pairs(min, max, distinct = FALSE)`
Arguments

- `min` an integer representing the minimum number to check.
- `max` an integer representing the maximum number to check.
- `distinct` a logical indicating whether to consider repeating prime factors or only distinct prime number factors.

Value

A List of integer pairs.

Author(s)

Paul Egeler, MS
Index

* **datasets**
 * primes, 9

coprime, 8
coprime (gcd), 2
cousin_primes (k_tuple), 5
gcd, 2, 8
generate_n_primes, 3, 9
generate_primes, 9
generate_primes (generate_n_primes), 3

is_prime, 4

k_tuple, 5

lcm (gcd), 2

next_prime, 6
nth_prime, 7
nth_prime_estimate (prime_count), 9

phi, 8
prev_prime (next_prime), 6
prime_count, 9
prime_factors, 8, 10
primes, 9
primorial, 11
primorial_n (primorial), 11
primorial_p (primorial), 11

Rgcd (gcd), 2
Rscm (gcd), 2
ruth_aaron_pairs, 11

scm (gcd), 2
sexy_prime_triplets (k_tuple), 5
sexy_primes (k_tuple), 5

third_cousin_primes (k_tuple), 5
twin_primes (k_tuple), 5