Package ‘primes’

July 29, 2020

Type Package
Title Generate and Test for Prime Numbers
Version 1.0.0
Date 2020-07-27

Description Functions for dealing with prime numbers, such as testing whether a number is prime and generating a sequence prime numbers. Additional functions include finding prime factors and Ruth-Aaron pairs, finding next and previous prime numbers in the series, finding or estimating the nth prime, estimating the number of primes less than or equal to an arbitrary number, computing primorials, and prime k-tuples (e.g., twin primes).

License MIT + file LICENSE
Depends R (>= 2.10)
Imports Rcpp
LinkingTo Rcpp
Suggests testthat
SystemRequirements C++11

URL http://github.com/ironholds/primes
BugReports http://github.com/ironholds/primes/issues
RoxygenNote 7.1.1
Encoding UTF-8
LazyData true

NeedsCompilation yes

Author Os Keyes [aut, cre],
Paul Egeler [aut] (<https://orcid.org/0000-0001-6948-9498>)

Maintainer Os Keyes <ironholds@gmail.com>
Repository CRAN
Date/Publication 2020-07-28 23:00:02 UTC
R topics documented:

- generate_n_primes .. 2
- is_prime .. 3
- k_tuple ... 3
- next_prime .. 5
- nth_prime .. 6
- primes ... 6
- prime_count ... 7
- prime_factors ... 8
- primorial .. 9
- ruth_aaron_pairs 9

Index

<table>
<thead>
<tr>
<th>generate_n_primes</th>
<th>Generate a Sequence of Prime Numbers</th>
</tr>
</thead>
</table>

Description

Generate a sequence of prime numbers from min to max or generate a vector of the first n primes. Both functions use a fast implementation of the Sieve of Eratosthenes.

Usage

```r
generate_n_primes(n)
generate_primes(min = 2L, max)
```

Arguments

- `n` the number of primes to generate.
- `min` the lower bound of the sequence.
- `max` the upper bound of the sequence.

Value

An integer vector of prime numbers.

Author(s)

Paul Egeler, MS

Examples

```r
generate_primes(max = 12)
## [1] 2 3 5 7 11

generate_n_primes(5)
## [1] 2 3 5 7 11
```
is_prime

Test for Prime Numbers

Description
Test whether a vector of numbers is prime or composite.

Usage
is_prime(x)

Arguments
x an integer vector containing elements to be tested for primality.

Value
A logical vector.

Author(s)
Os Keyes and Paul Egeler, MS

Examples

is_prime(4:7)
[1] FALSE TRUE FALSE TRUE

is_prime(1299827)
[1] TRUE

k_tuple
Prime k-tuples

Description
Use prime k-tuples to create lists of twin primes, cousin primes, prime triplets, and so forth.
Usage

- `k_tuple(min, max, tuple)`
- `twin_primes(min, max)`
- `cousin_primes(min, max)`
- `sexy_primes(min, max)`
- `sexy_prime_triplets(min, max)`
- `third_cousin_primes(min, max)`

Arguments

- `min` the lower bound of the sequence.
- `max` the upper bound of the sequence.
- `tuple` an integer vector representing the target k-tuple pattern.

Details

You can construct your own tuples and generate series of primes using `k_tuple`; however, there are functions that exist for some of the named relationships. They are listed below.

- `twin_primes`: represents $c(0,2)$.
- `cousin_primes`: represents $c(0,4)$.
- `third_cousin_primes`: represents $c(0,8)$.
- `sexy_primes`: represents $c(0,6)$.
- `sexy_prime_triplets`: represents $c(0,6,12)$.

The term "third cousin primes" is of the author’s coinage. There is no canonical name for that relationship to the author’s knowledge.

Value

A list of vectors of prime numbers satisfying the condition of `tuple`.

Author(s)

Paul Egeler, MS

Examples

```r
# All twin primes up to 13
twin_primes(2, 13) # Identical to `k_tuple(2, 13, c(0,2))`
## [[1]]
## [1] 3 5
##```

# Some prime triplets

k_tuple(2, 19, c(0,4,6))

## 
## [1] 7 11 13
## [2] 13 17 19

---

**Description**

Find the next prime numbers or previous prime numbers over a vector.

**Usage**

```r
next_prime(x)
prev_prime(x)
```

**Arguments**

- `x` a vector of integers from which to start the search.

**Details**

For `prev_prime`, if a value is less than or equal to 2, the function will return `NA`.

**Value**

An integer vector of prime numbers.

**Author(s)**

Paul Egeler, MS

**Examples**

```r
next_prime(5)
[1] 7

prev_prime(5:7)
[1] 3 5 5
```
nth_prime

Get the n-th Prime from the Sequence of Primes.

Description
Get the n-th prime, \( p_n \), in the sequence of primes.

Usage
nth_prime(x)

Arguments
x an integer vector.

Value
An integer vector.

Author(s)
Paul Egeler, MS

Examples
nth_prime(5)
## [1] 11
nth_prime(c(1:3, 7))
## [1] 2 3 5 17

primes

Pre-computed Prime Numbers

Description
The first one thousand prime numbers.

Usage
primes

Format
An integer vector containing the first one thousand prime numbers.

See Also
generate_primes, generate_n_primes
Description

Functions for estimating $\pi(n)$—the number of primes less than or equal to $n$—and for estimating the value of $p_n$, the $n$-th prime number.

Usage

prime_count(n, upper_bound)

nth_prime_estimate(n, upper_bound)

Arguments

n an integer. See Details for more information.

upper_bound a logical indicating whether to estimate the lower- or upper bound.

Details

The prime_count function estimates the number of primes $\leq n$. When upper_bound = FALSE, it is guaranteed to under-estimate for all $n \geq 17$. When upper_bound = TRUE, it holds for all positive $n$.

The nth_prime_estimate function brackets upper and lower bound values of the nth prime. It is valid for $n \geq 6$.

The methods of estimation used here are a few of many alternatives. For further information, the reader is directed to the References section.

Author(s)

Paul Egeler, MS

References

Perform Prime Factorization on a Vector

Description

Compute the prime factors of elements of an integer vector.

Usage

prime_factors(x)

Arguments

x an integer vector.

Value

A list of integer vectors reflecting the prime factorizations of each element of the input vector.

Author(s)

Paul Egeler, MS

Examples

prime_factors(c(1, 5:7, 99))
## [[1]]
## integer(0)
## [[2]]
## [1] 5
## [[3]]
## [1] 2 3
## [[4]]
## [1] 7
## [[5]]
## [1] 3 3 11
primorial

Compute the Primorial

Description
Computes the primorial for prime numbers and natural numbers.

Usage
primorial_n(n)
primorial_p(n)

Arguments
n
an integer indicating the numbers to be used in the computation. See Details for more information.

Details
The primorial_p function computes the primorial with respect the the first n prime numbers; while the primorial_n function computes the primorial with respect the the first n natural numbers.

Author(s)
Paul Egeler, MS

ruth_aaron_pairs
Find Ruth-Aaron Pairs of Integers

Description
Find pairs of consecutive integers where the prime factors sum to the same value. For example, (5, 6) are Ruth-Aaron pairs because the prime factors 5 = 2 + 3.

Usage
ruth_aaron_pairs(min, max, distinct = FALSE)

Arguments
min
an integer representing the minimum number to check.
max
an integer representing the maximum number to check.
distinct
a logical indicating whether to consider repeating prime factors or only distinct prime number factors.
Value

A List of integer pairs.

Author(s)

Paul Egeler, MS
Index

* datasets
  primes, 6
  cousin_primes (k_tuple), 3

generate_n_primes, 2, 6
generate_primes, 6
generate_primes (generate_n_primes), 2

is_prime, 3

k_tuple, 3

next_prime, 5
nth_prime, 6
nth_prime_estimate (prime_count), 7

prev_prime (next_prime), 5
prime_count, 7
prime_factors, 8
primes, 6
primorial, 9
primorial_n (primorial), 9
primorial_p (primorial), 9

ruth_aaron_pairs, 9

sexy_prime_triplets (k_tuple), 3
sexy_primes (k_tuple), 3

third_cousin_primes (k_tuple), 3
twin_primes (k_tuple), 3