Package ‘primes’

September 3, 2020

Type Package
Title Fast Functions for Prime Numbers
Version 1.1.0
Date 2020-08-31
Description Fast functions for dealing with prime numbers, such as testing whether a number is prime and generating a sequence prime numbers. Additional functions include finding prime factors and Ruth-Aaron pairs, finding next and previous prime numbers in the series, finding or estimating the nth prime, estimating the number of primes less than or equal to an arbitrary number, computing primorials, prime k-tuples (e.g., twin primes), finding the greatest common divisor and smallest (least) common multiple, testing whether two numbers are coprime, and computing Euler’s totient function. Most functions are vectorized for speed and convenience.
License MIT + file LICENSE
Depends R (>= 2.10)
Imports Rcpp
LinkingTo Rcpp
Suggests testthat
SystemRequirements C++11
URL https://github.com/ironholds/primes
BugReports https://github.com/ironholds/primes/issues
RoxygenNote 7.1.1
Encoding UTF-8
LazyData true
NeedsCompilation yes
Author Os Keyes [aut, cre],
Pual Egeler [aut] (<https://orcid.org/0000-0001-6948-9498>)
Maintainer Os Keyes <ironholds@gmail.com>
Repository CRAN
Date/Publication 2020-09-03 06:40:07 UTC
R topics documented:

- gcd ... 2
- generate_n_primes .. 3
- is_prime ... 4
- k_tuple .. 4
- next_prime .. 6
- nth_prime .. 7
- phi ... 7
- primes .. 8
- prime_count ... 9
- prime_factors ... 10
- primorial .. 11
- ruth_aaron_pairs ... 11

Description

These functions provide vectorized computations for the greatest common divisor (gcd), smallest common multiple (scm), and coprimality. Coprime numbers are also called *mutually prime* or *relatively prime* numbers. The smallest common multiple is often called the *least common multiple*.

Usage

- `gcd(m, n)`
- `scm(m, n)`
- `coprime(m, n)`

Arguments

- `m, n` integer vectors.

Details

The greatest common divisor uses Euclid’s algorithm, a fast and widely used method. The smallest common multiple and coprimality are computed using the gcd, where \(\text{scm} = \frac{a}{\gcd(a,b)} \times b \) and two numbers are coprime when \(\gcd = 1 \).

Value

A vector of the length of longest input vector. If one vector is shorter, it will be recycled. The `gcd` and `scm` functions return an integer vector while `coprime` returns a logical vector.
generate_n_primes

Author(s)
Paul Egeler, MS

Examples

```r
gcd(c(18, 22, 49, 13), 42)
#> [1] 6 2 7 1

scm(60, 90)
#> [1] 180

coprime(60, c(77, 90))
#> [1]  TRUE FALSE
```

Description
Generate a sequence of prime numbers from min to max or generate a vector of the first n primes. Both functions use a fast implementation of the Sieve of Eratosthenes.

Usage

```r
generate_n_primes(n)
generate_primes(min = 2L, max)
```

Arguments

- `n`: the number of primes to generate.
- `min`: the lower bound of the sequence.
- `max`: the upper bound of the sequence.

Value
An integer vector of prime numbers.

Author(s)
Paul Egeler, MS

Examples

```r
generate_primes(max = 12)
#> [1]  2  3  5  7 11

generate_n_primes(5)
#> [1]  2  3  5  7 11
is_prime  

*Test for Prime Numbers*

**Description**

Test whether a vector of numbers is prime or composite.

**Usage**

```r
is_prime(x)
```

**Arguments**

- `x`  
an integer vector containing elements to be tested for primality.

**Value**

A logical vector.

**Author(s)**

Os Keyes and Paul Egeler, MS

**Examples**

```r
is_prime(4:7)
[1] FALSE TRUE FALSE TRUE

is_prime(1299827)
[1] TRUE
```

---

k_tuple  

*Prime k-tuples*

**Description**

Use prime k-tuples to create lists of twin primes, cousin primes, prime triplets, and so forth.
Usage

k_tuple(min, max, tuple)

twin_primes(min, max)
cousin_primes(min, max)
sexy_primes(min, max)
sexy_prime_triplets(min, max)
third_cousin_primes(min, max)

Arguments

min  the lower bound of the sequence.
max  the upper bound of the sequence.
tuple an integer vector representing the target $k$-tuple pattern.

Details

You can construct your own tuples and generate series of primes using k_tuple; however, there are functions that exist for some of the named relationships. They are listed below.

- twin_primes: represents $c(0, 2)$.
- cousin_primes: represents $c(0, 4)$.
- third_cousin_primes: represents $c(0, 8)$.
- sexy_primes: represents $c(0, 6)$.
- sexy_prime_triplets: represents $c(0, 6, 12)$.

The term "third cousin primes" is of the author's coinage. There is no canonical name for that relationship to the author's knowledge.

Value

A list of vectors of prime numbers satisfying the condition of tuple.

Author(s)

Paul Egeler, MS

Examples

# All twin primes up to 13
twin_primes(2, 13) # Identical to 'k_tuple(2, 13, c(0,2))'
## [[1]]
## [1] 3 5
##
# Some prime triplets

k_tuple(2, 19, c(0,4,6))

## [[1]]
## [1] 7 11 13
## [[2]]
## [1] 13 17 19

---

### next_prime

**Find the Next and Previous Prime Numbers**

**Description**

Find the next prime numbers or previous prime numbers over a vector.

**Usage**

```r
next_prime(x)
prev_prime(x)
```

**Arguments**

- `x` a vector of integers from which to start the search.

**Details**

For `prev_prime`, if a value is less than or equal to 2, the function will return `NA`.

**Value**

An integer vector of prime numbers.

**Author(s)**

Paul Egeler, MS

**Examples**

```r
next_prime(5)
[1] 7

prev_prime(5:7)
[1] 3 5 5
```
nth_prime

Get the n-th Prime from the Sequence of Primes.

Description
Get the n-th prime, $p_n$, in the sequence of primes.

Usage
nth_prime(x)

Arguments
x an integer vector.

Value
An integer vector.

Author(s)
Paul Egeler, MS

Examples
nth_prime(5)
## [1] 11
nth_prime(c(1:3, 7))
## [1] 2 3 5 17

phi

Euler's Totient Function

Description
Compute Euler's Totient Function ($\phi(n)$). Provides the count of $k$ integers that are coprime with $n$ such that $1 \leq k \leq n$ and \( \gcd(n, k) = 1 \).

Usage
phi(n)

Arguments
n an integer vector.
Value

An integer vector.

Author(s)

Paul Egeler, MS

References


See Also

gcd, coprime, prime_factors

Examples

phi(12)
## [1] 4

phi(c(9, 10, 142))
## [1] 6 4 70

pre-computed Prime Numbers

Description

The first one thousand prime numbers.

Usage

primes

Format

An integer vector containing the first one thousand prime numbers.

See Also

generate_primes, generate_n_primes
### Description

Functions for estimating $\pi(n)$—the number of primes less than or equal to $n$—and for estimating the value of $p_n$, the $n$-th prime number.

### Usage

- `prime_count(n, upper_bound)`
- `nth_prime_estimate(n, upper_bound)`

### Arguments

- $n$ an integer. See Details for more information.
- `upper_bound` a logical indicating whether to estimate the lower- or upper bound.

### Details

The `prime_count` function estimates the number of primes $\leq n$. When `upper_bound = FALSE`, it is guaranteed to under-estimate for all $n \geq 17$. When `upper_bound = TRUE`, it holds for all positive $n$.

The `nth_prime_estimate` function brackets upper and lower bound values of the $n$th prime. It is valid for $n \geq 6$.

The methods of estimation used here are a few of many alternatives. For further information, the reader is directed to the References section.

### Author(s)

Paul Egeler, MS

### References

**prime_factors**  
*Perform Prime Factorization on a Vector*

**Description**

Compute the prime factors of elements of an integer vector.

**Usage**

```r
prime_factors(x)
```

**Arguments**

- `x`  
an integer vector.

**Value**

A list of integer vectors reflecting the prime factorizations of each element of the input vector.

**Author(s)**

Paul Egeler, MS

**Examples**

```r
prime_factors(c(1, 5:7, 99))
[[1]]
integer(0)
[[2]]
[1] 5
[[3]]
[1] 2 3
[[4]]
[1] 7
[[5]]
[1] 3 3 11
```
**primorial**

*Compute the Primorial*

**Description**
Computes the primorial for prime numbers and natural numbers.

**Usage**
- `primorial_n(n)`
- `primorial_p(n)`

**Arguments**

- `n` an integer indicating the numbers to be used in the computation. See *Details* for more information.

**Details**
The `primorial_p` function computes the primorial with respect the the first `n` prime numbers; while the `primorial_n` function computes the primorial with respect the the first `n` natural numbers.

**Value**
A numeric vector of length 1.

**Author(s)**
Paul Egeler, MS

---

**ruth_aaron_pairs**

*Find Ruth-Aaron Pairs of Integers*

**Description**
Find pairs of consecutive integers where the prime factors sum to the same value. For example, (5, 6) are Ruth-Aaron pairs because the prime factors 5 = 2 + 3.

**Usage**
`ruth_aaron_pairs(min, max, distinct = FALSE)`
Arguments

- **min**: an integer representing the minimum number to check.
- **max**: an integer representing the maximum number to check.
- **distinct**: a logical indicating whether to consider repeating prime factors or only distinct prime number factors.

Value

A List of integer pairs.

Author(s)

Paul Egeler, MS
# Index

* **datasets**
  - primes, 8

  coprime, 8
  - coprime (gcd), 2
  - cousin_primes (k_tuple), 4

  gcd, 2, 8
  - generate_n_primes, 3, 8
  - generate_primes, 8
  - generate_primes (generate_n_primes), 3

  is_prime, 4

  k_tuple, 4

  lcm (gcd), 2

  next_prime, 6
  - nth_prime, 7
  - nth_prime_estimate (prime_count), 9

  phi, 7
  - prev_prime (next_prime), 6
  - prime_count, 9
  - prime_factors, 8, 10
  - primes, 8
  - primorial, 11
  - primorial_n (primorial), 11
  - primorial_p (primorial), 11

  ruth_aaron_pairs, 11

  scm (gcd), 2
  - sexy_prime_triplets (k_tuple), 4
  - sexy_primes (k_tuple), 4

  third_cousin_primes (k_tuple), 4
  - twin_primes (k_tuple), 4