Package ‘probout’

October 14, 2022

Version 1.1.2

Date 2022-02-10

Title Unsupervised Multivariate Outlier Probabilities for Large Datasets

Author Chris Fraley [aut, cre]

Maintainer Chris Fraley <fraley@u.washington.edu>

Depends R (>= 3.1.0), FNN, mclust, MASS

Suggests mvtnorm, GDAdata, knitr, rmarkdown

VignetteBuilder knitr

Description Estimates unsupervised outlier probabilities for multivariate numeric data with many observations from a nonparametric outlier statistic.

License MIT + file LICENSE

URL https://www.r-project.org

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-02-11 12:10:02 UTC

R topics documented:

- allProb .. 2
- leader ... 3
- logdens .. 5
- LWradius ... 6
- OutlierStatistic 7
- partProb ... 8
- simData ... 10

Index 12
allProb

Outlier probabilities for all observations

Description

Outlier probabilities for all of the data, obtained by assigning to each observation the probability of its associated leader partition.

Usage

```r
allProb( leaderInstance, partprob)
```

Arguments

- `leaderInstance` A single component from a call to `leader`, giving leader algorithm results for one value of the partitioning radius.
- `partprob` A vector of probabilities for each partition in `leaderInstance`.

Value

A vector of probabilities for each observation in the data underlying `leaderInstance`. Each observation inherits the probability of its associated partition.

See Also

`leader`, `partProb`

Examples

```r
set.seed(0)

lead <- leader(faithful)
nlead <- length(lead[[1]]$partitions)

# repeat multiple times to account for randomness
ntimes <- 100
probs <- matrix(NA, nlead, ntimes)
for (i in 1:ntimes) {
  probs[,i] <- partProb( simData(lead[[1]]), method = "distance")
}

# median probability for each partition
partprobs <- apply(probs, 1, median)
quantile(partprobs)

# plot leaders with outlier probability > .95
plot( faithful[,1], faithful[,2], pch = 16, cex = .5,
```
main = "red : instances with outlier probability > .95"

allprobs <- allProb(lead[[1]], partprobs)
out <- allprobs > .95
points(faithful[out,1], faithful[out,2], pch = 8, cex = 1, col = "red")

leader

Leader Algorithm for Data Partitioning

Description
Partitions the data according to Hartigan’s leader algorithm, and provides ranges, centroids, and variances for the partitions.

Usage
leader(data, radius = NULL, scale = T)

Arguments
data A numeric vector or matrix of observations. If a matrix, rows correspond to observations and columns correspond to variables.

radius A vector of values for the partitioning radius. Wilkinson’s default radius is used if radius is left unspecified (see function LWradius).

scale A logical variable indicating whether or not the data should be mapped to the unit hypercube. The default is to scale the data. Values of the radius will not be scaled; they should be specified relative to the unit hypercube unless scale = F.

Details
Given a partitioning radius \(r \), the leader algorithm makes one pass through the data, designating an observation as a new leader if it is not within \(r \) of an existing leader, and otherwise assigning it to the partition associated with the nearest existing leader. The set of leaders typically depends on the order of the data observations.

If \(radius = 0 \), then all of the data observations are leaders, and only radius and leaders are returned as output components.

This implementation does a completely new nearest-neighbor search for each observation and for each radius. A more efficient approach would be to maintain, for each radius, a data structure (such as a kd-tree) allowing fast nearest-neighbor search. These data structures could then be updated to account for new observations. Currently, there doesn’t seem to be a way to do this in R.

Value
A list with one component for each value of radius, each having the following sub-components:

radius The value of the radius associated with the partitioning.
partitions A list with one component for each partition, giving the indexes (as observations in the data) of the members of the partition. The first index is that of the associated leader (sometimes called exemplar).

leaders The indexes of the leaders for each partition.

centroids The centroids for each partition, as a matrix with rows corresponding to the partitions and columns corresponding to variables if multidimensional. These will be the data if \(\text{radius} = 0 \).

variances The variances for each partition, as a matrix with rows corresponding to the partitions and columns corresponding to variables if multidimensional.

ranges A list with two components: \(\text{min} \) and \(\text{max} \) giving the minimum and maximum values for each variable for each partition. These range components are given as a matrix with rows corresponding to the partitions and columns corresponding to variables if multidimensional.

maxdist A vector with one value for each partition, giving the largest distance from each leader to any member of its partition.

References

See Also

LWradius

Examples

```r
radius.default <- LWradius(nrow(faithful),ncol(faithful))
lead <- leader(faithful, radius = c(0,radius.default))

# number of partitions for each radius
sapply(lead, function(x) length(x$partitions))

# plot the leaders for the non-zero radius
plot( faithful[,1], faithful[,2],
     main = "blue indicates leaders (default radius)",
     pch = 16, cex = .5)
ldrs <- lead[[2]]$leaders
points( faithful[ldrs,1], faithful[ldrs,2],
        pch = 8, col = "dodgerblue", cex = .5)
```
logdens

Description

Computes the log density for observations in a univariate or multivariate Gaussian mixture model with spherical or diagonal (co)variance that varies across components.

Usage

logdens(x, simData, shrink = 1)

Arguments

x
A numeric vector or matrix for which the log density is to be computed.

simData
Observations from a call to simData, which includes the partition centroids and variance information for the underlying simulation model.

shrink
Shrinkage parameter for the mixture model variance. To be consistent with the shrinkage as described in partProb, the variance is scaled by the square of shrink. The default value is shrink = 1, so that no shrinkage is applied to the variance.

Details

If either radius = 0, or simData returns only centroids (nsim = 0), then no density estimate is attempted.

Value

A vector giving the log density of x in the model as specified by simData, with optional shrinkage applied to the variance.

References

See Also

partProb
Examples

```r
lead <- leader(faithful)
sim <- simData( lead)
logdens( faithful, sim)
```

LWradius
Wilkinson’s default leader-partitioning radius

Description

Wilkinson’s default leader-partitioning radius.

Usage

```r
LWradius( n, p)
```

Arguments

- `n` The number of observations (rows) in the data.
- `p` The number of variables (columns) in the data; `p = 1` if univariate.

Value

Wilkinson’s default leader partitioning radius `0.1/(log(n)^(1/p))`.

References

L. Wilkinson (2016), Visualizing Outliers, Technical Report, University of Illinois at Chicago,

See Also

`leader`

Examples

```r
x1 <- rnorm(10000)
LWradius(length(x1),1)
LWradius(nrow(faithful),ncol(faithful))
```
OutlierStatistic

Nonparametric Outlier Statistic

Description

Robust nonparametric outlier statistic for univariate or multivariate data.

Usage

OutlierStatistic(x, nproj=1000, prior=NULL, seed=NULL)

Arguments

x A numeric vector or matrix for which the outlier statistic is to be determined.
nproj If x is multivariate, the number of random projections to be used in computing the statistic.
prior If x is multivariate, a prior estimate of the statistic for each observation in x, to be used as a base line for maximization relative to new random projections.
seed An optional integer argument to set.seed for reproducible simulations. By default the current seed will be used. Reproducibility can also be achieved by calling set.seed before calling OutlierStatistic.

Value

A vector giving the maximum value of the outlier statistic for each observation over all projections.

References

Note

Note that partition probabilities are computed from an exponential distribution fit to the outlier statistic, rather than from the empirical distribution of the outlier statistic.

See Also

partProb
Examples

```r
stat <- OutlierStatistic(faithful)
q.99 <- quantile(stat,.99)
out <- stat > q.99

plot( faithful[,1], faithful[,2],
     main="red : .99 quantile for outlier statistic", cex=.5)
points( faithful[out,1], faithful[out,2],
       pch = 4, col = "red", lwd = 1, cex = .5)

require(mvtnorm)
set.seed(0)
Sigma <- crossprod(matrix(rnorm(2*2),2,2))
x <- rmvt( 10000, sigma = Sigma, df = 2)
stat <- OutlierStatistic(x)
q.95 <- quantile(stat,.95)

hist(x, main = "gray : .95 quantile for outlier statistic", col = "black")
abline( v = x[stat > q.95], col = "gray")
hist(x, col = "black", add = TRUE)
```

partProb

Description

Assigns outlier probabilities to the partitions by fitting an exponential distribution to a nonparametric outlier statistic for simulated data or partition centroids.

Usage

```r
partProb( simData, method = c("intrinsic","distance","logdensity","distdens", "density")), shrink = 1, nproj = 1000, seed = NULL)
```

Arguments

- **simData**: Observations from a call to `simData`, which includes the partition centroids and (optionally) simulated data as well.
- **method**: One of the following options:
 - "intrinsic": outlier statistic applied to simulation data (centroids if no simulation)
 - "distance": outlier statistic applied to distances between NN partitions
 - "logdensity": outlier statistic applied to differences in log density between NN partitions
 - "distdens": outlier statistic applied to a matrix consisting of the "distance" and "logdensity" values
 - "density": outlier statistic applied to smallest/largest ratios of density between NN partitions
The default is to use the "intrinsic" method.

shrink
Shrinkage parameter for outlier detection data. The offsets from `simData` are scaled by this factor before adding them to the partition centroids as data for outlier detection. The default value is `shrink = 1`, so that no shrinkage is applied to simulation offsets.

nproj
If the data is multivariate or `method = "distdens"`, the number of random projections to be used to obtain the outlier statistic.

seed
An optional integer argument to `set.seed` for reproducible outlier statistics. By default the current seed will be used. Reproducibility can also be achieved by calling `set.seed` before calling `partProb`.

Details
"logdensity" is generally prefered over "density", because negative values that are large in magnitude of the logarithm of the density will not be numerically distinguishable as density values.

Value
A vector of probabilities for each partition, obtained by fitting an exponential distribution to the outlier statistic.

References

See Also
`simData`, `OutlierStatistic`, `allProb`

Examples

```r
set.seed(0)
lead <- leader(faithful)
nlead <- length(lead[[1]]$partitions)

# repeat multiple times to account for randomness
ntimes <- 100
probs <- matrix(NA, nlead, ntimes)
for (i in 1:ntimes) {
  probs[,i] <- partProb( simData(lead[[1]]), method = "distance")
}

# median probability for each partition
partprobs <- apply(probs, 1, median)
quantile(probs)

# plot leaders with outlier probability > .95
```
plot(faithful[,1], faithful[,2], pch = 16, cex = .5,
 main = "red : leaders with outlier probability > .95")
out <- partprobs > .95
l <- lead[[1]]$leaders
points(faithful[l[out],1], faithful[l[out],2], pch = 8, cex = 1, col = "red")

simData

Simulates observations for outlier determination.

Description

Simulates observations from a mixture model based on information on partitions from the `leader` function.

Usage

```r
simData( leaderInstance, nsim=NULL, model=c("diagonal","spherical"), seed=NULL)
```

Arguments

- **leaderInstance** A single component from a call to `leader`, giving Leader Algorithm results for one value of the partitioning radius.
- **nsim** The number of observations to be simulated. Only the radius and centroids are returned of `nsim = 0` or `leaderInstance$radius == 0` — no observations are simulated. Default: `min(# observations,max(# partitions, 1000))`.
- **model** For multivariate data, a vector of character strings indicating the type of Gaussian mixture model covariance to be used in generating the simulated observations (see details). For univariate data, the observations are generated from a model in which the variances may vary across components.
- **seed** An optional integer argument to `set.seed` for reproducible simulations. By default the current seed will be used. Reproducibility can also be achieved by calling `set.seed` before calling `simData`.

Details

The following models are available for multivariate data:

- "spherical" : spherical, varying volume
- "diagonal" : diagonal, varying volume and shape

An ellipsoidal model is also possible, but has not yet been implemented. If `nsim = 0` or `leaderInstance$radius == 0`, no observations are simulated, and only the radius and partition centroids are returned.
Value

A list with the following components:

- **radius**: The value of the radius associated with `leaderInstance`.
- **location**: The vector or matrix of centroids of the partitions. If a matrix, rows correspond to the partitions and columns to the variables.
- **index**: A vector of integer values giving the index of the partition associated with each simulated observation.
- **offset**: A vector of numeric values giving offset for the simulated observations from their associated centroids.
- **weight**: A vector of numeric values between 0 and 1 giving the proportion of data observations.
- **scale**: The scale (variance) of the mixture components in a univariate or spherical model. Set to 1 for each component in the diagonal model.
- **shape**: A matrix giving the variances of the mixture component in a diagonal model. The rows correspond to the dimensions of the data, while the columns correspond to the mixture components (partitions).

References

See Also

leader, partProb

Examples

```r
radius.default <- LWradius(nrow(faithful), ncol(faithful))
lead <- leader(faithful, radius = c(0, radius.default))

# (simulated) data for outlier statistic (no simulation for radius = 0)
sim <- lapply(lead, simData)

# components of simData output
lapply(sim, names)
```
Index

* **cluster**
 leader, 3

* **datagen**
 simData, 10

* **misc**
 allProb, 2
 LWradius, 6

* **models**
 logdens, 5

* **nonparametric**
 OutlierStatistic, 7
 partProb, 8

allProb, 2, 9

leader, 2, 3, 6, 11
logdens, 5
LWradius, 4, 6

OutlierStatistic, 7, 9

partProb, 2, 5, 7, 8, 11

simData, 9, 10