Package ‘projections’
August 27, 2018

Title Project Future Case Incidence
Version 0.3.1
Description Provides functions and graphics for projecting daily incidence based on past incidence, and estimates of the serial interval and reproduction number. Projections are based on a branching process using a Poisson-distributed number of new cases per day, similar to the model used for estimating R0 in ‘EpiEstim’ or in ‘earlyR’, and described by Nouvellet et al. (2017) <doi:10.1016/j.epidem.2017.02.012>.
Depends R (>= 3.3.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Suggests testthat, vdiffr, roxygen2, knitr, rmarkdown, outbreaks, magrittr
Imports stats, utils, incidence (>= 1.4.1), distcrete, ggplot2
RoxygenNote 6.1.0
URL http://www.repematicsconsortium.org/projections
BugReports http://github.com/reconhub/projections/issues
NeedsCompilation no
Author Thibaut Jombart [aut, cre], Pierre Nouvellet [aut], Sangeeta Bhatia [ctb], Zhian N. Kamvar [ctb]
Maintainer Thibaut Jombart <thibautjombart@gmail.com>
Repository CRAN
Date/Publication 2018-08-27 09:40:03 UTC

R topics documented:

as.matrix.projections .. 2
build_projections ... 3
Description

These functions convert projections objects into other classes.

Usage

```r
## S3 method for class 'projections'
as.matrix(x, ...)
```

```r
## S3 method for class 'projections'
as.data.frame(x, ..., long = FALSE)
```

Arguments

- **x**: An projections object, or an object to be converted as projections (see details).
- **...**: Further arguments passed to other functions (no used).
- **long**: A logical indicating if the output data.frame should be 'long', i.e. where a single column containing 'groups' is added in case of data computed on several groups.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

the `project` function to generate the 'projections' objects.
build_projections Constructor for projections objects

Description
This function builds a valid projections object from some input simulations and dates.

Usage
build_projections(x, dates = NULL, cumulative = FALSE)

Arguments
x A matrix of simulated incidence stored as integers, where rows correspond to dates and columns to simulations.
dates A vector of dates containing one value per row in x; acceptable formats are: integer, Date, and POSIXct; if NULL, the time steps will be counted, with the first dates corresponding to 0.
cumulative A logical indicating if data represent cumulative incidence; defaults to FALSE.

Author(s)
Thibaut Jombart <thibautjombart@gmail.com>

See Also
the project function to generate the 'projections' objects.

cumulate.projections Compute cumulative projections

Description
cumulate is an S3 generic to compute cumulative numbers defined in the package incidence. The method for projections objects turns predicted incidences into cumulative incidences over time.

Usage
S3 method for class 'projections'
cumulate(x)

Arguments
x A projections object.
Author(s)
Thibaut Jombart <thibautjombart@gmail.com>

See Also
The `project` function to generate the projections objects.

Examples

```r
if (require(distcrete) && require(incidence)) {
  ## simulate basic epicurve
  dat <- c(0, 2, 2, 3, 3, 5, 5, 6, 6, 6, 6)
  i <- incidence(dat)

  ## example with a function for SI
  si <- distcrete("gamma", interval = 1L,
                  shape = 1.5,
                  scale = 2, w = 0)
  set.seed(1)
  pred_1 <- project(i, runif(100, 0.8, 1.9), si, n_days = 30)
  plot_1 <- plot(pred_1)

  ## cumulative predictions
  pred_1_cum <- cumulate(pred_1)
  pred_1_cum
  plot(pred_1_cum)
}
```

get_dates

Access content projections objects

Description
These simple helper functions retrieve content from projections objects. They currently include:

Usage

```r
## S3 method for class 'projections'
get_dates(x, ...)
```

Arguments

- `x` A projections object.
- `...` Further arguments passed to methods; currently not used.
Details

- **get_dates**: get dates of the predictions.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

Examples

```r
if (require(distcrete) && require(incidence)) { withAutoprint(

## prepare input: epicurve and serial interval
dat <- c(0, 2, 2, 3, 3, 5, 5, 6, 6, 6, 6, 6)
i <- incidence(dat)
si <- distcrete("gamma", interval = 1L,
  shape = 1.5,
  scale = 2, w = 0)

## make predictions
pred_1 <- project(i, 1.2, si, n_days = 30)
pred_1

## retrieve content
get_dates(pred_1)
max(i$dates) # predictions start 1 day after last incidence

)}}
```

plot.projections

Plot projections objects

Description

The `plot` method of projections objects (output by the function `project`) shows quantiles of predicted incidence over time. The function `add_projections` can be used to add a similar plot to an existing incidence plot. This latter function is piping friendly (see examples).

Usage

```r
## S3 method for class 'projections'
plot(x, ...)

add_projections(p, x, quantiles = c(0.01, 0.05, 0.1, 0.5),
  ribbon = TRUE, boxplots = FALSE, palette = quantile_pal,
  quantiles_alpha = 1, linetype = 1, linesize = 0.5,
```
ribbon_quantiles = NULL, ribbon_color = NULL, ribbon_alpha = 0.3,
boxplots_color = "#47476b", boxplots_alpha = 0.8, outliers = TRUE)

Arguments

x A projections object.
...
Further arguments to be passed to add_projections.
p A previous incidence plot to which projections should be added.
quantiles A vector of quantiles to plot, automatically completed to be symmetric around
the median.
ribbon A logical indicating if a ribbon should be drawn; defaults to TRUE.
boxplots A logical indicating if boxplots should be drawn.
palette A color palette to be used for plotting the quantile lines; defaults to quantile_pal.
quantiles_alpha
 A number used to control the transparency of the quantile lines, from 0 (full
transparency) to 1 (full opacity); defaults to 1.
linetype An integer indicating the type of line used for plotting the quantiles; defaults to
1 for a plain line.
linesize An integer indicating the size of line used for plotting the quantiles; defaults to 0.5.
ribbon_quantiles
 A vector of 2 quantiles to be used to determine the limits of the ribbon; if NULL
(default); uses the most extreme quantiles if available; if quantiles are not pro-
vided, the daily range will be used.
ribbon_color Any valid color, used for the ribbon.
ribbon_alpha A number used to control the transparency of the ribbon, from 0 (full trans-
parency) to 1 (full opacity); defaults to 0.3.
boxplots_color Any valid color, used for the boxplot.
boxplots_alpha A number used to control the transparency of the boxplots, from 0 (full trans-
parency) to 1 (full opacity); defaults to 0.8.
outliers A logical indicating if outliers should be displayed alongside the boxplots; de-
faults to TRUE.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

project to generate projections
print.projections

Examples

```r
if (require(outbreaks) &&
    require(distcrete) &&
    require(incidence) &&
    require(magrittr)) {

  si <- distcrete("gamma", interval = 1L,
                  shape = 0.37,
                  scale = 41.4, w = 0)

  i <- incidence(ebola_sim$linfelist$date_of_onset)
  plot(i)

  ## add projections after the first 100 days, over 60 days
  set.seed(1)
  proj <- project(x = i[1:100], R = 2.1, si = si, n_days = 60)

  ## plotting projections: different options
  plot(proj)
  plot(proj, quantiles = c(.025, .5)) # 95% CI
  plot(proj, ribbon_color = "red", quantiles = FALSE) # range
  plot(proj, ribbon_color = "red", quantiles = FALSE,
       ribbon_quantiles = c(.025, .5))
  plot(proj, boxplots = TRUE, quantiles = FALSE, ribbon = FALSE)
  plot(proj, boxplots = TRUE, quantiles = FALSE, outliers = FALSE)
  plot(proj, linetype = 3)

  ## adding them to incidence plot
  plot(i) %>% add_projections(proj)
  plot(i[1:160]) %>% add_projections(proj)
  plot(i[1:160]) %>% add_projections(proj, boxplots = FALSE)
  plot(i[1:160]) %>%
    add_projections(proj, boxplots_alpha = .3, boxplots_color = "red")

  ## same, with customised quantiles and colors
  quantiles <- c(.001, .01, .05, .1, .2, .3, .4, .5)
  pal <- colorRampPalette(c("#b3c6ff", "#00e64d", "#cc0066"))
  plot(i[1:200]) %>%
    add_projections(proj, quantiles, palette = pal)
}
```

print.projections

Print method for projections objects

Description

This method prints the content of projections objects.
Usage

```r
## S3 method for class 'projections'
print(x, ...)
```

Arguments

- `x`: A projections object.
- `...`: Further parameters to be passed to other methods (currently not used).

Author(s)

Thibaut Jombart (<thibautjombart@gmail.com>)

project

Project future incidence

Description

This function simulates future incidence based on past incidence data, a selection of plausible reproduction numbers (R), and the distribution of the serial interval (time from primary onset to secondary onset).

Usage

```r
project(x, R, si, n_sim = 100, n_days = 7, R_fix_within = FALSE,
       model = c("poisson", "negbin"), size = 0.03)
```

Arguments

- `x`: An incidence object containing daily incidence; other time intervals will trigger an error.
- `R`: A vector of numbers representing plausible reproduction numbers; for instance, these can be samples from a posterior distribution using the EpiEstim package.
- `si`: A function computing the serial interval, or a numeric vector providing its mass function. For functions, we strongly recommend using the RECON package distcrete to obtain such distribution (see example).
- `n_sim`: The number of epicurves to simulate. Defaults to 100.
- `n_days`: The number of days to run simulations for. Defaults to 14.
- `R_fix_within`: A logical indicating if R should be fixed within simulations (but still varying across simulations). If FALSE, R is drawn for every simulation and every time step. Fixing values within simulations favours more extreme predictions (see details).
- `model`: Distribution to be used for projections. Must be one of "poisson" or "negbin" (negative binomial process). Defaults to poisson.
- `size`: Size parameter of negative binomial distribution. Ignored if model is poisson.
Details

The decision to fix \(R \) values within simulations (\texttt{R_fix_within}) reflects two alternative views of the uncertainty associated with \(R \). When drawing \(R \) values at random from the provided sample, (\texttt{R_fix_within} set to \texttt{FALSE}), it is assumed that \(R \) varies naturally, and can be treated as a random variable with a given distribution. When fixing values within simulations (\texttt{R_fix_within} set to \texttt{TRUE}), \(R \) is treated as a fixed parameter, and the uncertainty is merely a consequence of the estimation of \(R \). In other words, the first view is rather Bayesian, while the second is more frequentist.

Author(s)

Pierre Nouvellet and Thibaut Jombart

Examples

```r
## example using simulated Ebola outbreak
if (require(outbreaksIIIFF
  require(distcreteIIIFF
  require(incidenceIIIFF
  require(magrittrII {  
    si <- distcrete("gamma", interval = 1L,
                  shape = 0.37,
                  scale = 41.4, w = 0)  
  
i <- incidence(ebola_sim$linelist$date_of_onset)
  plot(i)  

## projections after the first 100 days, over 60 days, fixed \( R \) to 2.1
set.seed(1)
proj_1 <- project(x = i[1:100], R = 2.1, si = si, n_days = 60)
plot(proj_1)  

## add projections to incidence plot
plot(i[1:160]) %>% add_projections(proj_1)  

## projections after the first 100 days, over 60 days, varying \( R \)
set.seed(1)
R <- rnorm(100, 1.8, 0.2)
hist(R, col = "grey", border = "white", main = "Distribution of \( R \)"
proj_2 <- project(x = i[1:100], R = R, si = si, n_days = 60)

## add projections to incidence plot
plot(i[1:160]) %>% add_projections(proj_2)  

## same with \( R \) constant per simulation (more variability)
```
set.seed(1)
proj_3 <- project(x = i[1:100], R = R, si = si, n_days = 60,
R_fix_within = TRUE)

add projections to incidence plot
plot(i[1:100]) %>% add_projections(proj_3)

[[.projections

Subsetting 'projections' objects

Description

Two functions can be used to subset projections objects. The operator "[" can be used as for matrices, using the syntax x[i, j] where 'i' is a subset of dates, and 'j' is a subset of simulations.

Usage

```r
## S3 method for class 'projections'
x[i, j]

## S3 method for class 'projections'
subset(x, ..., from = NULL, to = NULL,
sim = TRUE)
```

Arguments

- **x**: An projections object, generated by the function `project`.
- **i**: a subset of dates to retain
- **j**: a subset of groups to retain
- **...**: Further arguments passed to other methods (not used).
- **from**: The starting date; data strictly before this date are discarded.
- **to**: The ending date; data strictly after this date are discarded.
- **sim**: (optional) The simulations to retained, indicated as subsets of the columns of x.

Author(s)

Thibaut Jombart <thibautjombart@gmail.com>

See Also

The `project` function to generate the 'projections' objects.
Index

[.projections, 10

add_projections(plot.projections), 5
as.data.frame.projections
(as.matrix.projections), 2
as.matrix.projections, 2

build_projections, 3

cumulate.projections, 3

gt_dates, 4

plot.projections, 5
print.projections, 7
project, 2–6, 8, 10

subset.projections([.projections), 10