Package ‘provenance’

January 3, 2016

Title Statistical Toolbox for Sedimentary Provenance Analysis
Version 1.1
Description Bundles a number of established statistical methods to facilitate the visual interpretation of large datasets in sedimentary geology. Includes functionality for adaptive kernel density estimation, multidimensional scaling, generalised procrustes analysis and individual differences scaling using a variety of dissimilarity measures. Univariate provenance proxies, such as single-grain ages or (isotopic) compositions are compared with the Kolmogorov-Smirnov dissimilarity and Sircombe-Hazelton L2-norm. Categorical provenance proxies, such as mineralogical, petrographic or chemical compositions are compared with the Aitchison and Bray-Curtis distances. Also included are tools to plot compositional data on ternary diagrams, to calculate the sample size required for specified levels of statistical precision, and to assess the effects of hydraulic sorting on detrital compositions. Includes an intuitive query-based user interface for users who are not proficient in R.

Author Pieter Vermeesch [aut, cre]
Maintainer Pieter Vermeesch <p.vermeesch@ucl.ac.uk>
Depends R (>= 3.0.2)
Imports MASS, smacof, methods
License GPL-2
LazyData true
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-03 22:35:50

R topics documented:

 amalgamate ... 3
 as.acomp ... 4
 as.compositional ... 4
 as.data.frame.compositional 5
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>botev</td>
</tr>
<tr>
<td>bray.diss</td>
</tr>
<tr>
<td>CLR</td>
</tr>
<tr>
<td>densities</td>
</tr>
<tr>
<td>diss</td>
</tr>
<tr>
<td>endmembers</td>
</tr>
<tr>
<td>get.f</td>
</tr>
<tr>
<td>get.n</td>
</tr>
<tr>
<td>get.p</td>
</tr>
<tr>
<td>GPA</td>
</tr>
<tr>
<td>indscal</td>
</tr>
<tr>
<td>KDE</td>
</tr>
<tr>
<td>KDEs</td>
</tr>
<tr>
<td>KS.diss</td>
</tr>
<tr>
<td>MDS</td>
</tr>
<tr>
<td>minsorting</td>
</tr>
<tr>
<td>Namib</td>
</tr>
<tr>
<td>PCA</td>
</tr>
<tr>
<td>plot.compositional</td>
</tr>
<tr>
<td>plot.distributional</td>
</tr>
<tr>
<td>plot.GPA</td>
</tr>
<tr>
<td>plot.INDSCAL</td>
</tr>
<tr>
<td>plot.KDE</td>
</tr>
<tr>
<td>plot.MDS</td>
</tr>
<tr>
<td>plot.minsorting</td>
</tr>
<tr>
<td>plot.PCA</td>
</tr>
<tr>
<td>plot.ternary</td>
</tr>
<tr>
<td>procrustes</td>
</tr>
<tr>
<td>provenance</td>
</tr>
<tr>
<td>read.compositional</td>
</tr>
<tr>
<td>read.densities</td>
</tr>
<tr>
<td>read.distributional</td>
</tr>
<tr>
<td>restore</td>
</tr>
<tr>
<td>SH.diss</td>
</tr>
<tr>
<td>subset.compositional</td>
</tr>
<tr>
<td>subset.distributional</td>
</tr>
<tr>
<td>summaryplot</td>
</tr>
<tr>
<td>ternary</td>
</tr>
</tbody>
</table>

Index 36
amalgamate

Group components of a composition

Description

Adds several components of a composition together into a single component

Usage

amalgamate(X,...)

Default S3 method:
amalgamate(X,...)

S3 method for class 'compositional'
amalgamate(X,...)

S3 method for class 'SRDcorrected'
amalgamate(X,...)

Arguments

X a compositional dataset

... a series of new labels assigned to strings or vectors of strings denoting the components that need amalgamating

Value

an object of the same class as X with fewer components

Examples

data(Namib)
HMcomponents <- c("zr","tm","rt","TiOx","sph","ap","ep","gt","st","amp","cpx","opx")
am <- amalgamate(Namib$PTHM,feldspars=c("KF","P"),
 lithics=c("Lm","Lv","Ls"), heavies=HMcomponents)
plot(ternary(am))
as.acomp

create an acomp object

Description

Convert an object of class compositional to an object of class acomp for use in the compositions package

Usage

as.acomp(x)

Arguments

x
an object of class compositional

Value

a data.frame

Examples

data(Namib)
qufl <- ternary(Namib$P,T,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))plot(qfl,type="QFL.dickinson")qfl.acomp <- as.acomp(qfl)## uncomment the next two lines to plot an error## ellipse using the compositions package:library(compositions)# ellipses(mean(qfl.acomp),var(qfl.acomp),r=2)

as.compositional

create a compositional object

Description

Convert an object of class matrix, data.frame or acomp to an object of class compositional

Usage

as.compositional(x, method = NULL, colmap = "rainbow")

Arguments

x
an object of class matrix, data.frame or acomp
method
dissimilarity measure, either 'aitchison' for Aitchison’s CLR-distance or 'bray' for the Bray-Curtis distance.
colmap
the colour map to be used in pie charts.
as.data.frame.compositional

Value

an object of class compositional

Examples

data(Namib)
PT.acomp <- as.acomp(Namib$PT)
PT.compositional <- as.compositional(PT.acomp)
print(NamibPTx - PT.compositional$x)
uncomment the following lines for an illustration of using this
function to integrate the \code{provenance} package with \code{compositions}
library(compositions)
data(Glacial)
a.glac <- acomp(Glacial)
c.glac <- as.compositional(a.glac)
summaryplot(c.glac,ncol=8)

as.data.frame.compositional

create a data.frame object

Description

Convert an object of class compositional to a data.frame for use in the robCompositions package

Usage

S3 method for class 'compositional'
as.data.frame(x, ...)

Arguments

x
an object of class compositional

...
optional arguments to be passed on to the generic function

Value

a data.frame

Examples

data(Namib)
qfl <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(qfl,type="QFL.dickinson")
qfl.frame <- as.data.frame(qfl)
uncomment the next two lines to plot an error
ellipse using the robCompositions package:
library(robCompositions)
pca <- pcaCoDa(qfl.frame)
plot(pca,xlab=rownames(qfl.frame))

botev
Compute the optimal kernel bandwidth

Description

Uses the diffusion algorithm of Zdravko Botev (2011) to calculate the bandwidth for kernel density estimation.

Usage

botev(x)

Arguments

- **x**
a vector of ordinal data

Value

- a scalar value with the optimal bandwidth

Author(s)

Dzdravko Botev

References

Examples

```r
fname <- system.file("DZ.csv",package="provenance")
bw <- botev(read.distributional(fname)$x$N1)
print(bw)
```
bray.diss

Bray-Curtis dissimilarity

Description

Calculates the Bray-Curtis dissimilarity between two samples

Usage

\[
\text{bray.diss}(x, y)
\]

Arguments

- \(x\) a vector containing the first compositional sample
- \(y\) a vector of length(x) containing the second compositional sample

Value

a scalar value

Examples

\[
\text{data(Namib)}
\]
\[
\text{print(bray.diss(NamibHsx["N1"],NamibHsx["N2"]))}
\]

CLR

Centred logratio transformation

Description

Calculates Aitchison's centered logratio transformation for a dataset of class compositional

Usage

\[
\text{CLR}(x)
\]

Arguments

- \(x\) an object of class compositional

Value

a matrix of CLR coordinates
Examples

```r
# The following code shows that applying provenance's PCA function
# to compositional data is equivalent to applying R's built-in
# princomp function to the CLR transformed data.
data(Namib)
plot(PCA(Namib$Major))
deV.new()
cldat <- CLR(Namib$Major)$x
biplot(princomp(clrdat))
```

densities

A list of rock and mineral densities

Description

List of rock and mineral densities using the following abbreviations: Q (quartz), KF (K-feldspar), P (plagioclase), F (feldspar), Lv (felsic/porflritic volcanic rock fragments), Lvm (microlithic / porflritic / trachitic volcanic rock fragments), Lcc (calcite), Lcd (dolomite), Lp (marl), Lch (chert), Lms (argillaceous / micaceous rock fragments), Lmv (metavolcanics), Lmf (metasediments), Lmb (metabasites), Lv (volcanic rock fragments), Lc (carbonates), Ls (sedimentary rock fragments), Lm (metamorphic rock fragments), Lu (serpentinite), mica, opaques, FeOx (Fe-oxides), turbids, zr (zircon), tm (tourmaline), rt (rutile), TiOx (Ti-oxides), sph (titanite), ap (apatite), mon (monazite), oth (other minerals), ep (epidote), othLgM (prehnite + pumpellyite + lawsonite + carpholite), gt (garnet), ctd (chloritoid), st (staurolite), and (andalusite), ky (kyanite), sil (sillimanite), amp (amphibole), px (pyroxene), cpx (clinopyroxene), opx (orthopyroxene), ol (olivine), spinel and othHM (other heavy minerals).

Author(s)

Alberto Resentini and Pieter Vermeesch

References

See Also

restore, minsorting

Examples

```r
data(Namib, densities)
N8 <- subset(Namib$HM, select="N8")
distribution <- minsorting(N8, densities, phi=2, sigma phi=1, medium="air", by=0.05)
plot(distribution)
```
diss Calculate the dissimilarity matrix between two distributional or compositional datasets

Description
Calculate the dissimilarity matrix between two datasets of class distributional or compositional using the Kolmogorov-Smirnov, Sircombe-Hazelton, Aitchison or Bray Curtis distance

Usage
diss(x, method)

S3 method for class 'distributional'
diss(x, method = NULL)

S3 method for class 'compositional'
diss(x, method = NULL)

Arguments
- x: an object of class distributional or compositional
- method: (optional) either "KS", "SH", "aitchison" or "bray"

Value
an object of class diss

Examples
data(Namib)
print(round(100*diss(Namib$DZ)))

endmembers Petrographic end-member compositions

Description
A compositional dataset comprising the mineralogical compositions of the following end-members:
undissected_magmatic_arc, dissected_magmatic_arc, ophiolite, recycled_clastic, undissected_continental_block, transitional_continental_block, dissected_continental_block, subcreted_axial_belt and subducted_axial_belt

Author(s)
Alberto Resentini and Pieter Vermeesch
References

See Also

minsorting

Examples

data(endmembers,densities)
ophiolite <- subset(endmembers,select="ophiolite")
plot(minsorting(ophiolite,densities,by=0.05))

get.f(n, p = 0.05)

Arguments

n the number of grains in the detrital sample
p the required level of confidence

Value

the largest fraction that is sampled with at least 100 x p certainty

References

Examples

print(get.f(60))
print(get.f(117))
get.n

Calculate the number of grains required to achieve a desired level of
sampling resolution

Description

Returns the number of grains that need to be analysed to decrease the likelihood of missing any
fraction greater than a given size below a given level.

Usage

get.n(p = 0.05, f = 0.05)

Arguments

p the probability that all n grains in the sample have missed at least one fraction
of size f
f the size of the smallest resolvable fraction (0<f<1)
n, the number of grains in the sample

Value

the number of grains needed to reduce the chance of missing at least one fraction f of the total
population to less than p

References

Vermeesch, Pieter. "How many grains are needed for a provenance study?." Earth and Planetary

Examples

number of grains required to be 99% that no fraction greater than 5% was missed:
print(get.n(0.01))
number of grains required to be 90% that no fraction greater than 10% was missed:
print(get.n(p=0.1,f=0.1))
get_p \hspace{1cm} \textit{Calculate the probability of missing a given population fraction}

\textbf{Description}

For a given sample size, returns the likelihood of missing any fraction greater than a given size

\textbf{Usage}

\begin{verbatim}
get_p(n, f = 0.05)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{n} \hspace{1cm} the number of grains in the detrital sample
 \item \texttt{f} \hspace{1cm} the size of the smallest resolvable fraction (0<f<1)
\end{itemize}

\textbf{Value}

the probability that all n grains in the sample have missed at least one fraction of size f

\textbf{References}

\textbf{Examples}

\begin{verbatim}
print(get_p(60))
print(get_p(117))
\end{verbatim}

\begin{verbatim}
GPA \hspace{1cm} \textit{Generalised Procrustes Analysis of configurations}
\end{verbatim}

\textbf{Description}

Given a number of (2D) configurations, this function uses a combination of transformations (reflections, rotations, translations and scaling) to find a 'consensus' configuration which best matches all the component configurations in a least-squares sense.

\textbf{Usage}

\begin{verbatim}
GPA(X, scale = TRUE)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{X} \hspace{1cm} a list of dissimilarity matrices
 \item \texttt{scale} \hspace{1cm} boolean flag indicating if the transformation should include the scaling operation
\end{itemize}
Value

a two column vector with the coordinates of the group configuration

See Also

procrustes

indscal

Description

Usage

indscal(..., type = "ordinal")

Arguments

... a sequence of datasets of class distributional or compositional
type is either "ratio", "interval", or "ordinal"

Value

an object of class INDSCL, i.e. a list containing the following items:
delta: Observed dissimilarities
obsdiss: List of observed dissimilarities, normalized
confdiss: List of configuration dissimilarities
conf: List of matrices of final configurations
gspace: Joint configurations aka group stimulus space
cweights: Configuration weights
stress: Stress-1 value
spp: Stress per point
sps: Stress per subject (matrix)
ndim: Number of dimensions
model: Type of smacof model
niter: Number of iterations
nobj: Number of objects
Author(s)
Jan de Leeuw and Patrick Mair

References

Examples
data(Namib)
plot(indscal(Namib$OZ,Namib$HM))

KDE

Create a kernel density estimate

Description

Usage
KDE(x, from = NA, to = NA, bw = NA, adaptive = TRUE, log = FALSE, ...)

Arguments
x a vector of numbers
from minimum age of the time axis. If NULL, this is set automatically
to maximum age of the time axis. If NULL, this is set automatically
bw the bandwidth of the KDE. If NULL, bw will be calculated automatically using botev()
adaptive boolean flag controlling if the adaptive KDE modifier of Abramson (1982) is used
log transform the ages to a log scale if TRUE
... optional arguments to be passed on to density

Value
an object of class KDE, i.e. a list containing the following items:
x: horizontal plot coordinates
y: vertical plot coordinates
bw: the base bandwidth of the density estimate
ages: the data values from the input to the KDE function
KDEs

See Also

KDEs

Examples

data(Namib)
samp <- NamibDx[['N1']]
dens <- KDE(samp, 0, 3000, kernel="epanechnikov")
plot(dens)

Generate an object of class KDEs

Description

Convert a dataset of class distributional into an object of class KDEs for further processing by the summaryplot function.

Usage

KDEs(x, from = NA, to = NA, bw = NA, samebandwidth = TRUE,
adaptive = TRUE, pch = NA, normalise = FALSE, log = FALSE, ...)

Arguments

x an object of class distributional
from minimum limit of the x-axis.
to maximum limit of the x-axis.
bw the bandwidth of the kernel density estimates. If bw = NA, the bandwidth will be set automatically using botev()
samebandwidth boolean flag indicating whether the same bandwidth should be used for all samples. If samebandwidth = TRUE and bw = NULL, then the function will use the median bandwidth of all the samples.
adaptive boolean flag switching on the adaptive bandwidth modifier of Abramson (1982)
pch (optional) symbol to be used to mark the sample points along the x-axis
normalise boolean flag indicating whether or not the KDEs should all integrate to the same value.
log boolean flag indicating whether the data should be plotted on a logarithmic scale.
... optional parameters to be passed on to density
Value

an object of class KDEs, i.e. a list containing the following items:
- `kdes`: a named list with objects of class KDE
- `from`: the beginning of the common time scale
- `to`: the end of the common time scale
- `themax`: the maximum probability density of all the KDEs
- `pch`: the plot symbol to be used by `plot.KDEs`
- `xlabel`: the x-axis label to be used by `plot.KDEs`

See Also

KDE

Examples

data(Namib)
KDEs <- KDEs(Namib$DZ, 0, 3000, pch=NA)
summaryplot(KDEs, ncol=3)

| KS.diss | Kolmogorov-Smirnov dissimilarity |

Description

Returns the Kolmogorov-Smirnov dissimilarity between two samples

Usage

`KS.diss(x, y)`

Arguments

- `x`: the first sample as a vector
- `y`: the second sample as a vector

Value

a scalar value representing the maximum vertical distance between the two cumulative distributions

Examples

data(Namib)
print(KS.diss(NamibDZx["N1"], NamibDZx["T8"]))
Multidimensional Scaling

Description
Performs classical or nonmetric Multidimensional Scaling analysis
Multidimensional Scaling of compositional data
Multidimensional Scaling of distributional data
Multidimensional Scaling of a dissimilarity matrix

Usage
`MDS(x, ...)`

```r
## S3 method for class 'compositional'
MDS(x, classical = FALSE, ...)

## S3 method for class 'distributional'
MDS(x, classical = FALSE, ...)

## S3 method for class 'diss'
MDS(x, classical = FALSE, ...)
```

Arguments
- **x**: an object of class distributional, compositional or diss
- **...**: optional arguments to be passed onto `diss` (if `x` is of class compositional or distributional) or onto `cmdscale` or `isoMDS` (if `x` is of class dist).
- **classical**: boolean flag indicating whether classical (TRUE) or nonmetric (FALSE) MDS should be used

Value
an object of class `MDS`, i.e. a list containing the following items:
- **points**: a two column vector of the fitted configuration
- **classical**: a boolean flag indicating whether the MDS configuration was obtained by classical (TRUE) or nonmetric (FALSE) MDS.
- **diss**: the dissimilarity matrix used for the MDS analysis
- **stress**: (only if `classical`=TRUE) the final stress achieved (in percent)

Examples
```r
data(Namib)
plot(MDS(Namib$Major, classical=TRUE))
```
minsorting

Assess settling equivalence of detrital components

Description

Models grain size distribution of minerals and rock fragments of different densities

Usage

minsorting(X, dens, sname = NULL, phi = 2, sigmaphi = 1,
medium = "freshwater", from = -2.25, to = 5.5, by = 0.25)

Arguments

- `X`: an object of class `compositional`
- `dens`: a vector of mineral and rock densities
- `sname`: sample name if unspecified, the first sample of the dataset will be used
- `phi`: the mean grain size of the sample in Krumbein’s phi units
- `sigmaphi`: the standard deviation of the grain size distribution, in phi units
- `medium`: the transport medium, one of either “air”, “freshwater” or “seawater”
- `from`: the minimum grain size to be evaluated, in phi units
- `to`: the maximum grain size to be evaluated, in phi units
- `by`: the grain size interval of the output table, in phi units

Value

an object of class `minsorting`, i.e. a list with two tables:

- `mfract`: the grain size distribution of each mineral (sum of the columns = 1)
- `mcomp`: the composition of each mineral (sum of the rows = 1)

Author(s)

Alberto Resentini and Pieter Vermeesch

References

See Also

restore
Examples

data(endmembers,densities)
distribution <- minsorting(endmembers,densities,sname='ophiolite',phi=2,
sigmaphi=1,medium="seawater",by=0.05)
plot(distribution,cumulative=FALSE)

Description

A large dataset of provenance data from Namibia comprised of 14 sand samples from the Namib Sand Sea and 2 samples from the Orange River.

Details

Namib is a list containing the following 6 items:

- **dz**: a distributional dataset containing the zircon U-Pb ages for ca. 100 grains from each sample, as well as their (1-sigma) analytical uncertainties.
- **pt**: a compositional dataset with the bulk petrography of the samples, i.e. the quartz ('Q'), K-feldspar ('KF'), plagioclase ('P'), and lithic fragments of metamorphic ('Lm'), volcanic ('Lv') and sedimentary ('Ls') origin.
- **hm**: a compositional dataset containing the heavy mineral composition of the samples, comprised of zircon ('zr'), tourmaline ('tm'), rutile ('rt'), Ti-oxides ('TiOx'), titanite ('sph'), apatite ('ap'), epidote ('ep'), garnet ('gt'), staurolite ('st'), andalusite ('and'), kyanite ('ky'), sillimanite ('sil'), amphibole ('amp'), clinopyroxene ('cpx') and orthopyroxene ('opx').
- **pthm**: a compositional dataset combining the variables contained in **pt** and **hm** plus 'mica', 'opaques', 'turbids' and 'other' transparent heavy minerals ('LgM'), normalised to 100.
- **major**: a compositional dataset listing the concentrations (in wt TiO2, P2O5 and MnO).
- **trace**: a compositional data listing the concentrations (in ppm) of Rb, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb, Th, U, Zr, Hf, V, Nb, Cr, Co, Ni, Cu, Zn, Ga and Pb.

Author(s)

Pieter Vermeesch and Eduardo Garzanti

References

Examples

data(Namib)
samp <- NamibDZx[['N1']]
dens <- KDE(samp,0,3000)
plot(dens)
pca

Description
Performs PCA of compositional data using a centred logratio distance

Usage

```r
PCA(x, ...)  
```

Arguments

- `x` an object of class `compositional`
- `...` optional arguments to R's `princomp` function

Value

an object of classes `PCA`, which is synonymous to the stats packages' `princomp` class.

Examples

```r
data(Namib)  
plot(MDS(Namib$Major,classical=TRUE))  
dev.new()  
plot(PCA(Namib$Major),asp=1)  
print("This example demonstrates the equivalence of classical MDS and PCA")
```

plot.compositional

Description

Plots an object of class `compositional` as a pie chart

Usage

```r
## S3 method for class 'compositional'  
plot(x, sname, annotate = TRUE, colmap = NULL, ...)
```
plot.distributional

Arguments

- **x**: an object of class compositional
- **sname**: the sample name
- **annotate**: a boolean flag controlling if the pies of the pie-chart should be labeled
- **colmap**: an optional string with the name of one of R’s built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.

... optional parameters to be passed on to the graphics object

Examples

data(Namib)
plot(Namib$H1M,'N1',colmap='heat.colors')

plot.distributional Plot continuous data as histograms or cumulative age distributions

Description

Plot one or several samples from a distributional dataset as a histogram or Cumulative Age Distributions (CAD).

Usage

```r
## S3 method for class 'distributional'
plot(x, snames = NULL, annotate = TRUE,
     CAD = FALSE, pch = NA, verticals = TRUE, colmap = NULL, ...)
```

Arguments

- **x**: an object of class distributional
- **snames**: a string or a vector of string with the names of the samples that need plotting if snames is a vector, then the function will default to a CAD.
- **annotate**: boolean flag indicating whether the x- and y-axis should be labeled
- **CAD**: boolean flag indicating whether the data should be plotted as a cumulative age distribution or a histogram. For multi-sample plots, the function will override this value with TRUE.
- **pch**: an optional the symbol to mark the sample points along the CAD
- **verticals**: boolean flag indicating if the horizontal lines of the CAD should be connected by vertical lines
- **colmap**: an optional string with the name of one of R’s built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.

... optional arguments to the generic plot function
Examples

data(Namib)
plot(Namib$DZ,c('N1','N2'))

plot.GPA

Plot a Procrustes configuration

Description

Plots the group configuration of a Generalised Procrustes Analysis

Usage

S3 method for class 'GPA'
plot(x, ...)

Arguments

x an object of class GPA

... optional arguments to the generic plot function

See Also

procrustes

Examples

data(Namib)
GPA <- procrustes(Namib$DZ,Namib$HM)
plot(GPA)

plot.INDSCAL

Plot an INDSCAL group configuration and source weights

Description

Given an object of class INDSCAL, generates two plots: the group configuration and the subject weights. Together, these describe a 3-way MDS model.

Usage

S3 method for class 'INDSCAL'
plot(x, asp = 1, xlab = "X", ylab = "Y", xaxt = "n",
yaxt = "n", ...)
plot.KDE

Arguments

- **x**: an object of class INDSCAL
- **asp**: the aspect ratio of the plot
- **xlab**: a string with the label of the x axis
- **ylab**: a string with the label of the y axis
- **xaxt**: if = 'y', adds ticks to the x axis
- **yaxt**: if = 'y', adds ticks to the y axis
- **...**: optional arguments to the generic plot function

See Also

indscal

Examples

```r
data(Namib)
plot(indscal(Namib$DZ, Namib$HM))
```

plot.KDE

Plot a kernel density estimate

Description

Plots an object of class KDE

Usage

```r
## S3 method for class 'KDE'
plot(x, pch = "|", xlab = "age [Ma]", ylab = "", ...)"`,
```

Arguments

- **x**: an object of class KDE
- **pch**: the symbol used to show the samples. Set pch = NA to turn them off
- **xlab**: the label of the x-axis
- **ylab**: the label of the y-axis
- **...**: optional parameters to be passed on to the graphics object

See Also

KDE
Examples

```r
data(Namib)
samp <- Namib$D$x[['N1']]
dens <- KDE(samp, 0, 3000)
plot(dens)
```

Description

Plots the coordinates of a multidimensional scaling analysis as an X-Y scatter plot or 'map' and, if `x$classical = FALSE`, a Shepard plot.

Usage

```r
## S3 method for class 'MDS'
plot(x, nnlines = FALSE, pch = NA, cex = NA, xlab = "",
     ylab = "", xaxt = "n", yaxt = "n", ...)
```

Arguments

- `x` an object of class MDS
- `nnlines` if TRUE, draws nearest neighbour lines
- `pch` plot character (see `?plot` for details)
- `cex` magnification of the plot character (see `?par` for details)
- `xlab` a string with the label of the x axis
- `ylab` a string with the label of the y axis
- `xaxt` if = 's', adds ticks to the x axis
- `yaxt` if = 's', adds ticks to the y axis
- `...` optional arguments to the generic `plot` function

See Also

MDS
plot.minsorting

Plot inferred grain size distributions

Description

Plot the grain size distributions of the different minerals under consideration

Usage

S3 method for class 'minsoring'
plot(x, cumulative = FALSE, components = NULL, ...)

Arguments

- **x**: an object of class `minsoring`
- **cumulative**: boolean flag indicating whether the grain size distribution should be plotted as a density or cumulative probability curve.
- **components**: string or list of strings with the names of a subcomposition that needs plotting
- **...**: optional parameters (see `?par` for details)

See Also

`minsoring`

Examples

data(endmembers,densities)
OPH <- subset(endmembers,select="ophiolite")
distribution <- minsoring(OPH,densities,phi=2,sigmaphi=1,medium="air",by=0.05)
plot(distribution,components=c("F","px","opaques"))

plot.PCA

Compositional biplot

Description

Plot the results of a principal components analysis as a biplot

Usage

S3 method for class 'PCA'
plot(x, ...)

Arguments

x an object of class PCA

... optional arguments of the biplot function

See Also

PCA

Examples

data(Namib)
plot(PCA(Namib$Major))

plot.ternary Plot a ternary diagram

Description

Plots triplets of compositional data on a ternary diagram

Usage

S3 method for class 'ternary'
plot(x, type = "empty", pch = NA, labels = names(x),
 showpath = FALSE, ...)

Arguments

x an object of class ternary

type adds annotations to the ternary diagram, one of either empty, QFL or QmFLt.dickinson

pch plot character, see ?par for details

labels vector of strings to be added to the plot symbols

showpath if x has class SRDcorrected, and showpath==TRUE, the intermediate values of the SRD correction will be plotted on the ternary diagram as well as the final composition

... optional arguments to the generic points function

See Also

ternary

Examples

data(Namib)
tern <- ternary(Namib$PT,'Q',c('KF','P'),c('Lm','Lv','Ls'))
plot(tern,type='QFL.dickinson')
procrustes

Generalised Procrustes Analysis of provenance data

Description

Given a number of input datasets, this function performs an MDS analysis on each of these and the feeds the resulting configurations into the GPA() function.

Usage

```r
procrustes(...)
```

Arguments

```r
... a sequence of datasets of classes distributional and compositional
```

Value

an object of class GPA, i.e. a list containing the following items:

- `points`: a two column vector with the coordinates of the group configuration
- `labels`: a list with the sample names

Author(s)

Pieter Vermeesch

References

See Also

GPA

Examples

```r
data(Namib)
gpa <- procrustes(Namib$DZ,Namib$HM)
plot(gpa)
```
provenance

Menu-based interface for provenance

Description

For those users less familiar with the syntax of the R programming language, the `provenance()` function provides a user-friendly way to access the most important functionality in the form of a menu-based query interface. Further details and examples are provided on http://provenance.london-geochron.com

Usage

provenance()

Author(s)

Pieter Vermeesch

References

See Also

http://provenance.london-geochron.com

read.compositional

Read a .csv file with categorical data

Description

Reads a data table containing categorical data (e.g. petrographic, heavy mineral or geochemical data)

Usage

read.compositional(fname, method = NULL, colmap = "rainbow")

Arguments

fname a string with the path to the .csv file
method either "bray" (for the Bray-Curtis distance) or "aitchison" (for Aitchison’s central logratio distance). If omitted, the function defaults to 'aitchison', unless there are zeros present in the data.
colmap an optional string with the name of one of R’s built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.
Value

an object of class compositional, i.e. a list with the following items:

x: a data frame with the samples as rows and the categories as columns

method: either "aitchison" (for Aitchison’s centred logratio distance) or "bray" (for the Bray-Curtis distance)

Examples

fname <- system.file("Major.csv",package="provenance")
Major <- read.compositional(fname)
plot(PCA(Major))

data(Namib,densities)
N8 <- subset(Namib$HM,select="N8")
distribution <- minsorting(N8,densities,phi=2, sigmaphi=1, medium="air",by=0.05)
plot(distribution)
read.distributional
Read a .csv file with continuous (detrital zircon) data

Description

Reads a data table containing continuous data (e.g. detrital zircon ages)

Usage

read.distributional(fname, errorfile = NA, method = "KS",
 xlab = "age [Ma]", colmap = "rainbow")

Arguments

fname
 the path of a .csv file with the input data, arranged in columns.
errorfile
 the (optional) path of a .csv file with the standard errors of the input data, arranged by column in the same order as fname. Must be specified if the data are to be compared with the Sircombe-Hazelton dissimilarity.
method
 an optional string specifying the dissimilarity measure which should be used for comparing this with other datasets. Should be one of either "KS" (for Kolmogorov-Smirnov) or "SH" (for Sircombe and Hazelton). If method = "SH", then errorfile should be specified. If method = "SH" and errorfile is unspecified, then the program will default back to the Kolmogorov-Smirnov dissimilarity.
xlab
 an optional string specifying the nature and units of the data. This string is used to label kernel density estimates.
colmap
 an optional string with the name of one of R's built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.

Value

an object of class distributional, i.e. a list with the following items:
x: a named list of vectors containing the numerical data for each sample
err: an (optional) named list of vectors containing the standard errors of x
method: either "KS" (for Kolmogorov-Smirnov) or "SH" (for Sircombe Hazelton)
breaks: a vector with the locations of the histogram bin edges
xlab: a string containing the label to be given to the x-axis on all plots

Examples

agefile <- system.file("DZ.csv",package="provenance")
errfile <- system.file("DZerr.csv",package="provenance")
DZ <- read.distributional(agefile,errfile)
plot(KDE(DZxN1))
undo the effect of hydraulic sorting

Description

Restore the detrital composition back to a specified source rock density (SRD)

Usage

restore(X, dens, target = 2.71)

Arguments

X an object of class compositional
dens a vector of rock and mineral densities
target the target density (in g/cm3)

Value

an object of class SRDcorrected, i.e. an object of class compositional which is a daughter of class compositional containing the restored composition, plus one additional member called restoration, containing the intermediate steps of the SRD correction algorithm.

Author(s)
Alberto Resentini and Pieter Vermeesch

References

See Also
minsorting

Examples

data(Namib,densities)
rescomp <- restore(Namib$PTHM,densities,2.71)
HMcomp <- c("zr","tm","rt","sph","ap","ep","gt","st","amp","cpx","opx")
amcomp <- amalgamate(rescomp,Plag="P",HM=HMcomp,Opq="opaques")
plot(ternary(amcomp),showpath=TRUE)
Description

Calculates Sircombe and Hazelton’s L2 distance between the Kernel Functional Estimates (KFEs, not to be confused with Kernel Density Estimates!) of two samples with specified analytical uncertainties.

Usage

\[
\text{SH.diss}(x, i, j, c.\text{con} = 0)
\]

Arguments

- `x`: an object of class `distributional`
- `i`: index of the first sample
- `j`: index of the second sample
- `c.\text{con}`: smoothing bandwidth of the kernel functional estimate

Value

A scalar value expressing the L2 distance between the KFEs of samples `i` and `j`.

Author(s)

Keith Sircombe and Martin Hazelton

References

See Also

KS.diss

Examples

```r
datfile <- system.file("DZ.csv", package="provenance")
errfile <- system.file("DZerr.csv", package="provenance")
DZ <- read.distributional(datfile, errfile)
d <- SH.diss(DZ, 1, 2)
print(d)
```
subset.compositional Get a subset of compositional data

Description
Return a subset of provenance data according to some specified indices

Usage
```r
## S3 method for class 'compositional'
subset(x, subset = NULL, select = NULL,
       components = NULL, ...)
```

Arguments
- `x`: an object of class compositional
- `subset`: logical expression indicating elements or rows to keep: missing values are taken as false.
- `select`: a vector of sample names.
- `components`: a vector specifying a subcomposition
- `...`: optional arguments for the generic subset function

Value
an object of class compositional

See Also
- read.compositional

subset.distributional Get a subset of distributional data

Description
Return a subset of provenance data according to some specified indices

Usage
```r
## S3 method for class 'distributional'
subset(x, subset = NULL, select = NULL, ...)
```
summaryplot

Arguments

x an object of class distributional
subset logical expression indicating elements or rows to keep: missing values are taken as false.
select a vector of sample names
... optional arguments for the generic subset function

Value
an object of class distributional

See Also
read.distributional

Examples

```r
data(Namib)
coast <- subset(Namib$HM, select=c("N1","N2","T8","T13","N12","N13"))
summaryplot(coast, ncol=2)
```

Description

Arranges kernel density estimates and pie charts in a grid format

Usage

```
summaryplot(..., ncol = 1)
```

Arguments

... a sequence of datasets of class compositional, KDEs, or distributional
ncol the number of columns

Value

a summary plot of all the data comprised of KDEs for the datasets of class KDEs, pie charts for those of class compositional and histograms for those of class distributional.

See Also

KDEs
Define a ternary composition

Description

Create an object of class ternary

Usage

ternary(X, x = NULL, y = NULL, z = NULL)

Arguments

X an object of class compositional

x string or a vector of strings indicating the variables making up the first sub-
composition of the ternary system. If omitted, the first component of X is used
instead.

y second (set of) variables

z third (set of) variables

Value

an object of class ternary, i.e. a list containing:

x: a three column matrix (or vector) of ternary compositions.

and (if X is of class SRDcorrected)

restoration: a list of intermediate ternary compositions inherited from the SRD correction

See Also

restore

Examples

data(Namib)

tern <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))

plot(tern,type="QFL")
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>amalgamate</td>
<td>3</td>
</tr>
<tr>
<td>as.acomp</td>
<td>4</td>
</tr>
<tr>
<td>as.compositional</td>
<td>4</td>
</tr>
<tr>
<td>as.data.frame.compositional</td>
<td>5</td>
</tr>
<tr>
<td>botev</td>
<td>6</td>
</tr>
<tr>
<td>bray.diss</td>
<td>7</td>
</tr>
<tr>
<td>CLR</td>
<td>7</td>
</tr>
<tr>
<td>densities</td>
<td>8</td>
</tr>
<tr>
<td>diss</td>
<td>9</td>
</tr>
<tr>
<td>endmembers</td>
<td>9</td>
</tr>
<tr>
<td>get.f</td>
<td>10</td>
</tr>
<tr>
<td>get.n</td>
<td>11</td>
</tr>
<tr>
<td>get.p</td>
<td>12</td>
</tr>
<tr>
<td>GPA</td>
<td>12</td>
</tr>
<tr>
<td>indscal</td>
<td>13</td>
</tr>
<tr>
<td>KDE</td>
<td>14</td>
</tr>
<tr>
<td>KDEs</td>
<td>15</td>
</tr>
<tr>
<td>KS.diss</td>
<td>16</td>
</tr>
<tr>
<td>MDS</td>
<td>17</td>
</tr>
<tr>
<td>minsorting</td>
<td>18</td>
</tr>
<tr>
<td>Namib</td>
<td>19</td>
</tr>
<tr>
<td>PCA</td>
<td>20</td>
</tr>
<tr>
<td>plot.compositional</td>
<td>20</td>
</tr>
<tr>
<td>plot.distributional</td>
<td>21</td>
</tr>
<tr>
<td>plot.GPA</td>
<td>22</td>
</tr>
<tr>
<td>plot.INDSCAL</td>
<td>22</td>
</tr>
<tr>
<td>plot.KDE</td>
<td>23</td>
</tr>
<tr>
<td>plot.MDS</td>
<td>24</td>
</tr>
<tr>
<td>plot.minsorting</td>
<td>25</td>
</tr>
<tr>
<td>plot.PCA</td>
<td>25</td>
</tr>
<tr>
<td>plot.ternary</td>
<td>26</td>
</tr>
<tr>
<td>procrustes</td>
<td>27</td>
</tr>
<tr>
<td>provenance</td>
<td>28</td>
</tr>
<tr>
<td>read.compositional</td>
<td>28</td>
</tr>
<tr>
<td>read.densities</td>
<td>29</td>
</tr>
<tr>
<td>read.distributional</td>
<td>30</td>
</tr>
<tr>
<td>restore</td>
<td>31</td>
</tr>
<tr>
<td>SH.diss</td>
<td>32</td>
</tr>
<tr>
<td>subset.compositional</td>
<td>33</td>
</tr>
<tr>
<td>subset.distributional</td>
<td>33</td>
</tr>
<tr>
<td>summaryplot</td>
<td>34</td>
</tr>
<tr>
<td>ternary</td>
<td>35</td>
</tr>
</tbody>
</table>