Package ‘provenance’

May 18, 2017

Title Statistical Toolbox for Sedimentary Provenance Analysis
Version 1.7
Date 2017-05-18

Description Bundles a number of established statistical methods to facilitate
the visual interpretation of large datasets in sedimentary geology. Includes
functionality for adaptive kernel density estimation, multidimensional scaling,
generalised procrustes analysis and individual differences scaling using a
variety of dissimilarity measures. Univariate provenance proxies, such as
single-grain ages or (isotopic) compositions are compared with the Kolmogorov-
Smirnov, Kuiper or Sircombe-Hazelton L2 distances. Categorical provenance
proxies, such as mineralogical, petrographic or chemical compositions are
compared with the Aitchison and Bray-Curtis distances. Also included are tools
to plot compositional data on ternary diagrams, to calculate the sample size
required for specified levels of statistical precision, and to assess the
effects of hydraulic sorting on detrital compositions. Includes an intuitive
query-based user interface for users who are not proficient in R.

Author Pieter Vermeesch [aut, cre]
Maintainer Pieter Vermeesch <p.vermeesch@ucl.ac.uk>
Depends R (>= 3.0.0)
Imports MASS, methods

URL http://provenance.london-geochron.com
License GPL-2
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-05-18 15:25:29 UTC
R topics documented:

amalgamate 3
as.acomp 4
as.compositional 4
as.data.frame.compositional 5
botev 6
bray.diss 7
CLR 7
combine 8
densities 9
diss 10
dendmembers 10
gtf 11
gtn 12
gtp 13
GPA 13
indscal 14
KDE 15
KDEs 16
KS.diss 17
Kuiper.diss 18
MDS 18
minsorting 19
Namib 20
PCA 21
plot.compositional 22
plot.distributional 22
plot.GPA 23
plot.INDSCAL 24
plot.KDE 25
plot.MDS 26
plot.minsorting 27
plot.PCA 28
plot.ternary 28
procrustes 29
provenance 30
read.compositional 31
read.densities 32
read.distributional 32
restore 33
SH.diss 34
subset.compositional 35
subset.distributional 36
summaryplot 37
ternary 38

Index 39
amalgamate

Description

Adds several components of a composition together into a single component

Usage

amalgamate(X, ...)

Default S3 method:
amalgamate(X, ...)

S3 method for class 'compositional'
amalgamate(X, ...)

S3 method for class 'SRDcorrected'
amalgamate(X, ...)

Arguments

X a compositional dataset
...
a series of new labels assigned to strings or vectors of strings denoting the components that need amalgamating

Value

an object of the same class as X with fewer components

Examples

data(Namib)
HMcomponents <- c("zr","tm","rt","TiOx","sph","ap","ep","gt","st","amp","cpx","opx")
am <- amalgamate(Namib$PTHM,feldspars=c("KF","P"),
 lithics=c("Lm","Lv","Ls"),heavies=HMcomponents)
plot(ternary(am))
as.acomp

create an acomp object

Description

Convert an object of class compositional to an object of class acomp for use in the compositions package

Usage

as.acomp(x)

Arguments

x
an object of class compositional

Value

a data.frame

Examples

data(Namib)
qfl <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(qfl,type="QLF.dickinson")
qfl.acomp <- as.acomp(qfl)
uncomment the next two lines to plot an error
ellipse using the compositions package:
library(compositions)
ellipses(mean(qfl.acomp),var(qfl.acomp),r=2)

as.compositional

create a compositional object

Description

Convert an object of class matrix, data.frame or acomp to an object of class compositional

Usage

as.compositional(x, method = NULL, colmap = "rainbow")

Arguments

x
an object of class matrix, data.frame or acomp

method
dissimilarity measure, either 'aitchison' for Aitchison’s CLR-distance or 'bray' for the Bray-Curtis distance.

colmap
the colour map to be used in pie charts.
Value

an object of class compositional

Examples

```r
data(Namib)
PT.acomp <- as.acomp(Namib$PT)
PT.compositional <- as.compositional(PT.acomp)
print(Namib$PT$x - PT.compositional$x)
## uncomment the following lines for an illustration of using this
## function to integrate the \code{provenance} package with \code{compositions}
# library(compositions)
# data(Glacial)
# a.glac <- acomp(Glacial)
# c.glac <- as.compositional(a.glac)
# summaryplot(c.glac,ncol=8)
```

Description

Convert an object of class compositional to a data.frame for use in the robCompositions package

Usage

```r
## S3 method for class 'compositional'
as.data.frame(x, ...)
```

Arguments

- `x` an object of class compositional
- `...` optional arguments to be passed on to the generic function

Value

a data.frame

Examples

```r
data(Namib)
qfl <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(qfl,type="QFL.dickinson")
qfl.frame <- as.data.frame(qfl)
## uncomment the next two lines to plot an error
## ellipse using the robCompositions package:
```
library(robCompositions)
pca <- pcaCoDa(qfl.frame)
plot(pca,xlabs=rownames(qfl.frame))

botev

Compute the optimal kernel bandwidth

Description

Uses the diffusion algorithm of Zdravko Botev (2011) to calculate the bandwidth for kernel density estimation.

Usage

```r
botev(x)
```

Arguments

- **x**: a vector of ordinal data

Value

- a scalar value with the optimal bandwidth

Author(s)

Dzdravko Botev

References

Examples

```r
fname <- system.file("DZ.csv",package="provenance")
bw <- botev(read.distributional(fname)$x$N1)
print(bw)
```
bray.diss Bray-Curtis dissimilarity

Description

Calculates the Bray-Curtis dissimilarity between two samples

Usage

bray.diss(x, y)

Arguments

x a vector containing the first compositional sample
y a vector of length(x) containing the second compositional sample

Value

a scalar value

Examples

data(Namib)
print(bray.diss(Namib$HMSx["N1",],Namib$HMSx["N2",]))

CLR Centred logratio transformation

Description

Calculates Aitchison’s centered logratio transformation for a dataset of class compositional

Usage

CLR(x)

Arguments

x an object of class compositional

Value

a matrix of CLR coordinates
Examples

The following code shows that applying provenance's PCA function
to compositional data is equivalent to applying R's built-in
princomp function to the CLR transformed data.
data(Namib)
plot(PCA(Namib$Major))
dev.new()
clrdat <- CLR(Namib$Major)$x
biplot(princomp(clrdat))

combine

Combine samples of distributional data

Description

Lumps all single grain analyses of several samples together under a new name

Usage

combine(X, ...)

Arguments

X a distributional dataset
...
a series of new labels assigned to strings or vectors of strings denoting the samples that need amalgamating

Value

a distributional data object with fewer samples than X

Examples

data(Namib)
combined <- combine(Namib$DZ, east=c('N3', 'N4', 'N5', 'N6', 'N7', 'N8', 'N9', 'N10'),
 west=c('N1', 'N2', 'N11', 'N12', 'T8', 'T13'))
summaryplot(KDEs(combined))
A list of rock and mineral densities

Description

List of rock and mineral densities using the following abbreviations: Q (quartz), KF (K-feldspar), P (plagioclase), F (feldspar), Lv (felsic/porfiritic volcanic rock fragments), Lvm (microlithic / porfiritic / trachitic volcanic rock fragments), Lcc (calcite), Lcd (dolomite), Lp (marl), Lch (chert), Lms (argillaceous / micaceous rock fragments), Lmv (metavolcanics), Lmf (metasediments), Lmb (metabasites), Lv (volcanic rock fragments), Ls (sedimentary rock fragments), Lm (metamorphic rock fragments), Lu (serpentinite), mica, opaques, FeOx (Fe-oxides), turbids, zr (zircon), tm (tourmaline), rt (rutile), TiOx (Ti-oxides), sph (titanite), ap (apatite), mon (monazite), oth (other minerals), ep (epidote), othLgM (prehnite + pumpellyite + lawsonite + carpholite), gt (garnet), ctd (chloritoid), st (staurolite), and (andalusite), ky (kyanite), sil (sillimanite), amp (amphibole), px (pyroxene), cpx (clinopyroxene), opx (orthopyroxene), ol (olivine), spinel and othHM (other heavy minerals).

Author(s)

Alberto Resentini and Pieter Vermeesch

References

See Also

restore, minsorting

Examples

data(Namib,densities)
N8 <- subset(Namib$HM, select="N8")
distribution <- minsorting(N8,densities,phi=2,sigmaphi=1,medium="air",by=0.05)
plot(distribution)
Description

Calculate the dissimilarity matrix between two distributional or compositional datasets using the Kolmogorov-Smirnov, Sircombe-Hazelton, Aitchison or Bray Curtis distance.

Usage

```r
diss(x, method)
```

Arguments

- `x`: an object of class distributional or compositional
- `method`: (optional) either "KS", "Kuiper", "SH", "aitchison" or "bray"

Value

an object of class diss

Examples

```r
data(Namib)
p = round(100*diss(Namib$DZ))
```

endmembers

Petrographic end-member compositions

Description

A compositional dataset comprising the mineralogical compositions of the following end-members:
- undissected_magmatic_arc, dissected_magmatic_arc, ophiolite, recycled_clastic, undissected_continental_block, transitional_continental_block, dissected_continental_block, subcreted_axial_belt, and subducted_axial_belt

Author(s)

Alberto Resentini and Pieter Vermeesch
get.f

References

See Also

minsorting

Examples

data(endmembers,densities)
opiolite <- subset(endmembers,select="ophiolite")
plot(minsorting(ophiolite,densities,by=0.05))

get.f

Calculate the largest fraction that is likely to be missed

Description

For a given sample size, returns the largest fraction which has been sampled with p x 100

Usage

get.f(n, p = 0.05)

Arguments

n the number of grains in the detrital sample
p the required level of confidence

Value

the largest fraction that is sampled with at least 100 x p certainty

References

Examples

print(get.f(60))
print(get.f(117))
get.n

Calculate the number of grains required to achieve a desired level of sampling resolution

Description

Returns the number of grains that need to be analysed to decrease the likelihood of missing any fraction greater than a given size below a given level.

Usage

```r
get.n(p = 0.05, f = 0.05)
```

Arguments

- `p` - the probability that all `n` grains in the sample have missed at least one fraction of size `f`
- `f` - the size of the smallest resolvable fraction (0 < `f` < 1)
- `n` - the number of grains in the sample

Value

the number of grains needed to reduce the chance of missing at least one fraction `f` of the total population to less than `p`

References

Examples

```r
# number of grains required to be 99% that no fraction greater than 5% was missed:
print(get.n(p=0.01))
# number of grains required to be 90% that no fraction greater than 10% was missed:
print(get.n(p=0.1, f=0.1))
```
get.p

Calculate the probability of missing a given population fraction

Description
For a given sample size, returns the likelihood of missing any fraction greater than a given size

Usage
get.p(n, f = 0.05)

Arguments
n the number of grains in the detrital sample
f the size of the smallest resolvable fraction (0<f<1)

Value
the probability that all n grains in the sample have missed at least one fraction of size f

References

Examples
print(get.p(60))
print(get.p(117))

GPA

Generalised Procrustes Analysis of configurations

Description
Given a number of (2D) configurations, this function uses a combination of transformations (reflections, rotations, translations and scaling) to find a 'consensus' configuration which best matches all the component configurations in a least-squares sense.

Usage
GPA(X, scale = TRUE)

Arguments
X a list of dissimilarity matrices
scale boolean flag indicating if the transformation should include the scaling operation
Value

a two column vector with the coordinates of the group configuration

See Also

procrustes

Usage

indscal(..., type = "ordinal")

Arguments

... a sequence of datasets of class distributional or compositional
type is either "ratio" or "ordinal"

Value

an object of class INDSCAL, i.e. a list containing the following items:
delta: Observed dissimilarities
obsdiss: List of observed dissimilarities, normalized
confdiss: List of configuration dissimilarities
conf: List of matrices of final configurations
gspace: Joint configurations aka group stimulus space
cweights: Configuration weights
stress: Stress-1 value
spp: Stress per point
sps: Stress per subject (matrix)
ndim: Number of dimensions
model: Type of smacof model
niter: Number of iterations
nobj: Number of objects
Author(s)

Jan de Leeuw and Patrick Mair

References

Examples

data(Namib)
plot(indscal(Namib$DZ,Namib$HM))

KDE

Create a kernel density estimate

Description

Usage

```r
KDE(x, from = NA, to = NA, bw = NA, adaptive = TRUE, log = FALSE, n = 512, ...)
```

Arguments

- `x`: a vector of numbers
- `from`: minimum age of the time axis. If NULL, this is set automatically
- `to`: maximum age of the time axis. If NULL, this is set automatically
- `bw`: the bandwidth of the KDE. If NULL, bw will be calculated automatically using `botev()`
- `adaptive`: boolean flag controlling if the adaptive KDE modifier of Abramson (1982) is used
- `log`: transform the ages to a log scale if TRUE
- `n`: horizontal resolution of the density estimate
- `...`: optional arguments to be passed on to `density`

Value

an object of class `KDE`, i.e. a list containing the following items:
- `x`: horizontal plot coordinates
- `y`: vertical plot coordinates
- `bw`: the base bandwidth of the density estimate
- `ages`: the data values from the input to the `KDE` function
KDEs

Generate an object of class KDEs

Description

Convert a dataset of class `distributional` into an object of class `KDEs` for further processing by the `summaryplot` function.

Usage

```
KDEs(x, from = NA, to = NA, bw = NA, samebandwidth = TRUE,
    adaptive = TRUE, pch = NA, normalise = FALSE, log = FALSE, n = 512,
    ...)```

**Arguments**

- **x**: an object of class `distributional`
- **from**: minimum limit of the x-axis.
- **to**: maximum limit of the x-axis.
- **bw**: the bandwidth of the kernel density estimates. If `bw = NA`, the bandwidth will be set automatically using `botev()`
- **samebandwidth**: boolean flag indicating whether the same bandwidth should be used for all samples. If `samebandwidth = TRUE` and `bw = NULL`, then the function will use the median bandwidth of all the samples.
- **adaptive**: boolean flag switching on the adaptive bandwidth modifier of Abramson (1982)
- **pch**: (optional) symbol to be used to mark the sample points along the x-axis
- **normalise**: boolean flag indicating whether or not the KDEs should all integrate to the same value.
- **log**: boolean flag indicating whether the data should be plotted on a logarithmic scale.
- **n**: horizontal resolution of the density estimates
- **...**: optional parameters to be passed on to `density`
Value

an object of class KDEs, i.e. a list containing the following items:

- kdes: a named list with objects of class KDE
- from: the beginning of the common time scale
- to: the end of the common time scale
- themax: the maximum probability density of all the KDEs
- pch: the plot symbol to be used by plot.KDEs
- xlabel: the x-axis label to be used by plot.KDEs

See Also

KDE

Examples

data(Namib)
KDEs <- KDEs(Namib$DZ,0,3000,pch=NA)
summaryplot(KDEs,ncol=3)

KS.diss  

Kolmogorov-Smirnov dissimilarity

Description

Returns the Kolmogorov-Smirnov dissimilarity between two samples

Usage

KS.diss(x, y)

Arguments

- x  
  the first sample as a vector
- y  
  the second sample as a vector

Value

a scalar value representing the maximum vertical distance between the two cumulative distributions

Examples

data(Namib)
print(KS.diss(Namib$DZ$x[['N1']],Namib$DZ$x[['T8']]))
Kuiper.diss  

**Kuiper dissimilarity**

**Description**

Returns the Kuiper dissimilarity between two samples

**Usage**

Kuiper.diss(x, y)

**Arguments**

- x: the first sample as a vector
- y: the second sample as a vector

**Value**

a scalar value representing the sum of the maximum vertical distances above and below the cumulative distributions of x and y

**Examples**

data(Namib)
print(Kuiper.diss(Namib$DZ$x[['N1']],Namib$DZ$x[['T8']])))

---

**MDS  

Multidimensional Scaling**

**Description**

Performs classical or nonmetric Multidimensional Scaling analysis of provenance data

**Usage**

MDS(x, ...)

## S3 method for class 'compositional'
MDS(x, classical = FALSE, k = 2, ...)

## S3 method for class 'distributional'
MDS(x, classical = FALSE, k = 2, ...)

## S3 method for class 'diss'
MDS(x, classical = FALSE, k = 2, ...)
Argument

- **x**: an object of class `distributional`, `compositional` or `diss`
- **...**: optional arguments to be passed onto `diss` (if `x` is of class `compositional` or `distributional`) or onto `cmdscale` or `isoMDS` (if `x` is of class `dist`).
- **classical**: boolean flag indicating whether classical (TRUE) or nonmetric (FALSE) MDS should be used.
- **k**: the desired dimensionality of the solution.

Value

- an object of class `MDS`, i.e. a list containing the following items:
  - **points**: a two column vector of the fitted configuration.
  - **classical**: a boolean flag indicating whether the MDS configuration was obtained by classical (TRUE) or nonmetric (FALSE) MDS.
  - **diss**: the dissimilarity matrix used for the MDS analysis.
  - **stress**: (only if `classical=TRUE`) the final stress achieved (in percent).

Examples

```r
data(Namib)
plot(MDS(Namib$Major, classical=TRUE))
```

Description

Models grain size distribution of minerals and rock fragments of different densities.

Usage

```r
minsorting(X, dens, sname = NULL, phi = 2, sigmaphi = 1,
medium = "freshwater", from = -2.25, to = 5.5, by = 0.25)
```

Arguments

- **X**: an object of class `compositional`.
- **dens**: a vector of mineral and rock densities.
- **sname**: sample name if unspecified, the first sample of the dataset will be used.
- **phi**: the mean grain size of the sample in Krumbein’s phi units.
- **sigmaphi**: the standard deviation of the grain size distribution, in phi units.
- **medium**: the transport medium, one of either "air", "freshwater" or "seawater".
- **from**: the minimum grain size to be evaluated, in phi units.
- **to**: the maximum grain size to be evaluated, in phi units.
- **by**: the grain size interval of the output table, in phi units.
Value

an object of class `minsoring`, i.e. a list with two tables:
mfract: the grain size distribution of each mineral (sum of the columns = 1)
mcomp: the composition of each mineral (sum of the rows = 1)

Author(s)

Alberto Resentini and Pieter Vermeesch

References


See Also

restore

Examples

data(endmembers,densities)
distribution <- minsoring(endmembers,densities,sname='ophiolite',phi=2,
sigmaphi=1,medium="seawater",by=0.05)
plot(distribution,cumulative=FALSE)

---

Namib  An example dataset

Description

A large dataset of provenance data from Namibia comprised of 14 sand samples from the Namib Sand Sea and 2 samples from the Orange River.

Details

`Namib` is a list containing the following 6 items:

- `dz`: a distributional dataset containing the zircon U-Pb ages for ca. 100 grains from each sample, as well as their (1-sigma) analytical uncertainties.
- `pt`: a compositional dataset with the bulk petrography of the samples, i.e. the quartz (`'Q'`), K-feldspar (`'KF'`), plagioclase (`'P'`), and lithic fragments of metamorphic (`'Lm'`), volcanic (`'Lv'`) and sedimentary (`'Ls'`) origin.
- `hm`: a compositional dataset containing the heavy mineral composition of the samples, comprised of zircon (`'zr'`), tourmaline (`'tm'`), rutile (`'rt'`), Ti-oxides (`'TiOx'`), titanite (`'sph'`), apatite (`'ap'`),

```r
```
epidote ('ep'), garnet ('gt'), staurolite ('st'), andalusite ('and'), kyanite ('ky'), sillimanite ('sil'), amphibole ('amp'), clinopyroxene ('cpx') and orthopyroxene ('opx').

PTHM: a compositional dataset combining the variables contained in PT and HM plus 'mica', 'opaques', 'turbids' and 'other' transparent heavy minerals ('LgM'), normalised to 100.

Major: a compositional dataset listing the concentrations (in wt TiO2, P2O5 and MnO).

Trace: a compositional data listing the concentrations (in ppm) of Rb, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb, Th, U, Zr, Hf, V, Nb, Cr, Co, Ni, Cu, Zn, Ga and Pb.

Author(s)

Pieter Vermeesch and Eduardo Garzanti

References


Examples

data(Namib)
samp <- Namib$D2$N[['N1']]
dens <- KDE(samp,0,3000)
plot(dens)

PCA

Principal Component Analysis

Description

Performs PCA of compositional data using a centred logratio distance

Usage

PCA(x, ...)

Arguments

x an object of class compositional

... optional arguments to R’s princomp function

Value

an object of classes PCA, which is synonymous to the stats packages’ princomp class.
Examples

data(Namib)
plot(MDS(Namib$Major,classical=TRUE))
device()
plot(PCA(Namib$Major),asp=1)
print("This example demonstrates the equivalence of classical MDS and PCA")

plot.compositional  Plot a pie chart

Description

Plots an object of class compositional as a pie chart

Usage

## S3 method for class 'compositional'
plot(x, sname, annotate = TRUE, colmap = NULL, ...)

Arguments

- **x**: an object of class compositional
- **sname**: the sample name
- **annotate**: a boolean flag controlling if the pies of the pie-chart should be labeled
- **colmap**: an optional string with the name of one of R’s built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.
- **...**: optional parameters to be passed on to the graphics object

Examples

data(Namib)
plot(Namib$HM,'N1',colmap='heat.colors')

plot.distributional  Plot continuous data as histograms or cumulative age distributions

Description

Plot one or several samples from a distributional dataset as a histogram or Cumulative Age Distributions (CAD).
Usage

## S3 method for class 'distributional'
plot(x, snames = NULL, annotate = TRUE,
     CAD = FALSE, pch = NA, verticals = TRUE, colmap = NULL, ...)

Arguments

- **x**: an object of class `distributional`
- **snames**: a string or a vector of string with the names of the samples that need plotting if `snames` is a vector, then the function will default to a CAD.
- **annotate**: boolean flag indicating whether the x- and y-axis should be labeled
- **CAD**: boolean flag indicating whether the data should be plotted as a cumulative age distribution or a histogram. For multi-sample plots, the function will override this value with `TRUE`.
- **pch**: an optional symbol to mark the sample points along the CAD
- **verticals**: boolean flag indicating if the horizontal lines of the CAD should be connected by vertical lines
- **colmap**: an optional string with the name of one of R’s built-in colour palettes (e.g., `heat.colors`, `terrain.colors`, `topo.colors`, `cm.colors`), which are to be used for plotting the data.
- **...**: optional arguments to the generic `plot` function

Examples

data(Namib)
plot(Namib$DZ,c("N1","N2"))

plot.GPA  

Plot a Procrustes configuration

Description

Plots the group configuration of a Generalised Procrustes Analysis

Usage

## S3 method for class 'GPA'
plot(x, pch = NA, pos = NULL, col = "black", bg = "white",
     cex = 1, ...)


Arguments

- **x**: an object of class GPA
- **pch**: plot symbol
- **pos**: position of the sample labels relative to the plot symbols if pch != NA
- **col**: plot colour (may be a vector)
- **bg**: background colour (may be a vector)
- **cex**: relative size of plot symbols
- **...**: optional arguments to the generic *plot* function

See Also

- procrustes

Examples

```r
data(Namib)
GPA <- procrustes(Namib$DZ,Namib$HM)
coast <- c('N1','N2','N3','N10','N11','N12','T8','T13')
snames <- names(Namib$DZ)
bgcol <- rep('yellow',length(snames))
bgcol[which(snames %in% coast)] <- 'red'
plot(GPA,pch=21,bg=bgcol)
```

Description

Given an object of class INDSCAL, generates two plots: the group configuration and the subject weights. Together, these describe a 3-way MDS model.

Usage

```r
S3 method for class 'INDSCAL'
plot(x, asp = 1, pch = NA, pos = NULL, col = "black",
 bg = "white", cex = 1, xlab = "X", ylab = "Y", xaxt = "n",
 yaxt = "n", ...)
```

Arguments

- **x**: an object of class INDSCAL
- **asp**: the aspect ratio of the plot
- **pch**: plot symbol (may be a vector)
- **pos**: position of the sample labels relative to the plot symbols if pch != NA
- **col**: plot colour (may be a vector)
plot.KDE

Plot a kernel density estimate

Description
Plots an object of class KDE

Usage
## S3 method for class 'KDE'
plot(x, pch = "|", xlab = "age [Ma]", ylab = "", ...)  

Arguments
x an object of class KDE
pch the symbol used to show the samples. May be a vector. Set pch = NA to turn them off.

xlab the label of the x-axis

ylab the label of the y-axis

... optional parameters to be passed on to the graphics object

See Also
KDE
Examples

```r
data(Namib)
samp <- Namib$Dx[['N1']]
dens <- KDE(samp, from=0, to=3000)
plot(dens)
```

### plot.MDS

Plot an MDS configuration

Description

Plots the coordinates of a multidimensional scaling analysis as an X-Y scatter plot or 'map' and, if `x$classical = FALSE`, a Shepard plot.

Usage

```r
S3 method for class 'MDS'
plot(x, nnlines = FALSE, pch = NA, pos = NULL, cex = 1,
col = "black", bg = "white", oma = rep(1, 4), mar = rep(2, 4),
mgp = c(2, 1, 0), xpd = NA, ...)
```

Arguments

- `x`: an object of class MDS
- `nnlines`: if TRUE, draws nearest neighbour lines
- `pch`: plot character (see ?plot for details). May be a vector.
- `pos`: position of the sample labels relative to the plot symbols if pch != NA
- `cex`: relative size of plot symbols (see ?par for details)
- `col`: plot colour (may be a vector)
- `bg`: background colour (may be a vector)
- `oma`: A vector of the form `c(bottom, left, top, right)` giving the size of the outer margins in lines of text.
- `mar`: A numerical vector of the form `c(bottom, left, top, right)` that gives the number of lines of margin to be specified on the four sides of the plot.
- `mgp`: The margin line (in mtext units) for the axis title, axis labels and axis line. See ?par for further details.
- `xpd`: A logical value or NA. See ?par for further details.
- `...`: optional arguments to the generic `plot` function

See Also

MDS
Examples

```r
data(Namib)
mds <- MDS(Namib$DZ)
coast <- c('N1', 'N2', 'N3', 'N10', 'N11', 'N12', 'T8', 'T13')
snames <- names(Namib$DZ)
bgcol <- rep('yellow', length(snames))
bgcol[which(snames %in% coast)] <- 'red'
plot(mds, pch=21, bg=bgcol)
```

Description

Plot the grain size distributions of the different minerals under consideration

Usage

```r
S3 method for class 'minsoring'
plot(x, cumulative = FALSE, components = NULL, ...)
```

Arguments

- **x**: an object of class `minsoring`
- **cumulative**: boolean flag indicating whether the grain size distribution should be plotted as a density or cumulative probability curve.
- **components**: string or list of strings with the names of a subcomposition that needs plotting
- **...**: optional parameters to be passed on to `graphics::matplot` (see `?par` for details)

See Also

- `minsoring`

Examples

```r
data(endmembers, densities)
OPH <- subset(endmembers, select="ophiolite")
distribution <- minsorting(OPH, densities, phi=2, sigmaphi=1, medium="air", by=0.05)
plot(distribution, components=c('F', 'px', 'opaques'))
```
plot.PCA

Description

Plot the results of a principal components analysis as a biplot

Usage

## S3 method for class 'PCA'
plot(x, ...)

Arguments

x 
an object of class PCA
...
optional arguments of the biplot function

See Also

PCA

Examples

data(Namib)
plot(PCA(Namib$Major))

plot.ternary

Description

Plots triplets of compositional data on a ternary diagram

Usage

## S3 method for class 'ternary'
plot(x, type = "empty", pch = NA, pos = NULL,
   labels = names(x), showpath = FALSE, bg = NA, col = "cornflowerblue",
   ...)
Arguments

- **x**: an object of class `ternary`
- **type**: adds annotations to the ternary diagram, one of either `empty`, `QFL.descriptive`, `QFL.folk` or `QFL.dickinson`
- **pch**: plot character, see `?par` for details (may be a vector)
- **pos**: position of the sample labels relative to the plot symbols if `pch` != `NA`
- **labels**: vector of strings to be added to the plot symbols
- **showpath**: if `x` has class `SRDcorrected`, and `showpath==TRUE`, the intermediate values of the SRD correction will be plotted on the ternary diagram as well as the final composition
- **bg**: background colour for the plot symbols (may be a vector)
- **col**: colour to be used for the background lines (if applicable)
- ... optional arguments to the generic `points` function

See Also

ternary

Examples

data(Namib)
store <- ternary(Namib$PT,'Q',c('KF','P'),c('Lm','Lv','Ls'))
plot(store,type='QFL.descriptive',pch=21,bg='red',labels=NULL)

---

**procrustes**

*Generalised Procrustes Analysis of provenance data*

Description

Given a number of input datasets, this function performs an MDS analysis on each of these and the feeds the resulting configurations into the `GPA()` function.

Usage

```r
procrustes(...)```

Arguments

... a sequence of datasets of classes `distributional` and `compositional`

Value

an object of class `GPA`, i.e. a list containing the following items:
- **points**: a two column vector with the coordinates of the group configuration
- **labels**: a list with the sample names
provenance

Author(s)

Pieter Vermeesch

References

See Also

GPA

Examples

data(Namib)
gpa <- procrustes(Namib$DZ,Namib$HM)
plot(gpa)

Description

For those less familiar with the syntax of the R programming language, the provenance() function provides a user-friendly way to access the most important functionality in the form of a menu-based query interface. Further details and examples are provided on http://provenance.london-geochron.com

provenance provides statistical tools to interpret large amounts of distributional (single grain analyses) and compositional (mineralogical and bulk chemical) data from the command line, or using a menu-based user interface.

Usage

provenance()

Details

A list of documented functions may be viewed by typing help(package='provenance'). Detailed instructions are provided at http://provenance.london-geochron.com and in the Sedimentary Geology paper by Vermeesch, Resentini and Garzanti (2016).

Author(s)

Pieter Vermeesch

Maintainer: Pieter Vermeesch <p.vermeesch@ucl.ac.uk>
References

See Also

http://provenance.london-geochron.com

Useful links:
• http://provenance.london-geochron.com

read.compositional

Read a .csv file with categorical data

Description

Reads a data table containing categorical data (e.g. petrographic, heavy mineral or geochemical data)

Usage

read.compositional(fname, method = NULL, colmap = "rainbow")

Arguments

fname a string with the path to the .csv file
method either "bray" (for the Bray-Curtis distance) or "aitchison" (for Aitchison’s central logratio distance). If omitted, the function defaults to ‘aitchison’, unless there are zeros present in the data.
colmap an optional string with the name of one of R’s built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.

Value

an object of class compositional, i.e. a list with the following items:

x: a data frame with the samples as rows and the categories as columns
method: either “aitchison” (for Aitchison’s centred logratio distance) or “bray” (for the Bray-Curtis distance)

Examples

fname <- system.file("Major.csv",package="provenance")
Major <- read.compositional(fname)
plot(PCA(Major))
read.densities
Read a .csv file with mineral and rock densities

Description

Reads a data table containing densities to be used for hydraulic sorting corrections (minsorbing and srd functions)

Usage

```r
read.densities(fname)
```

Arguments

- `fname`
 a string with the path to the .csv file

Value

a vector with mineral and rock densities

Examples

```r
data(Namib,densities)
N8 <- subset(Namib$HM,select="N8")
distribution <- minsorbing(N8,densities,phi=2,sigmaphi=1,medium="air",by=0.05)
plot(distribution)
```

read.distributional
Read a .csv file with continuous (detrital zircon) data

Description

Reads a data table containing continuous data (e.g. detrital zircon ages)

Usage

```r
read.distributional(fname, errorfile = NA, method = "KS",
                   xlab = "age [Ma]", colmap = "rainbow")
```
Arguments

- **fname**: the path of a .csv file with the input data, arranged in columns.
- **errorfile**: the (optional) path of a .csv file with the standard errors of the input data, arranged by column in the same order as `fname`. Must be specified if the data are to be compared with the Sircombe-Hazelton dissimilarity.
- **method**: an optional string specifying the dissimilarity measure which should be used for comparing this with other datasets. Should be one of either "KS" (for Kolmogorov-Smirnov) or "SH" (for Sircombe and Hazelton). If `method = "SH"`, then `errorfile` should be specified. If `method = "SH"` and `errorfile` is unspecified, then the program will default back to the Kolmogorov-Smirnov dissimilarity.
- **xlab**: an optional string specifying the nature and units of the data. This string is used to label kernel density estimates.
- **colmap**: an optional string with the name of one of R's built-in colour palettes (e.g., heat.colors, terrain.colors, topo.colors, cm.colors), which are to be used for plotting the data.

Value

An object of class `distributional`, i.e. a list with the following items:

- **x**: a named list of vectors containing the numerical data for each sample
- **err**: an (optional) named list of vectors containing the standard errors of `x`
- **method**: either "KS" (for Kolmogorov-Smirnov), "Kuiper" (for the Kuiper statistic) or "SH" (for Sircombe Hazelton)
- **breaks**: a vector with the locations of the histogram bin edges
- **xlab**: a string containing the label to be given to the x-axis on all plots

Examples

```r
agefile <- system.file("DZ.csv",package="provenance")
errfile <- system.file("DZerr.csv",package="provenance")
DZ <- read.distributional(agefile,errfile)
plot(KDE(DZ$x$N1))
```

Description

Undo the effect of hydraulic sorting

Restore the detrital composition back to a specified source rock density (SRD)

Usage

```r
restore(X, dens, target = 2.71)
```
Arguments

X an object of class compositional
dens a vector of rock and mineral densities
target the target density (in g/cm^3)

Value

an object of class SRDcorrected, i.e. an object of class compositional which is a daughter of class compositional containing the restored composition, plus one additional member called restoration, containing the intermediate steps of the SRD correction algorithm.

Author(s)

Alberto Resentini and Pieter Vermeesch

References

See Also

minsorting

Examples

data(Namib,densities)
rescomp <- restore(Namib$PTHM,densities,2.71)
HMcomp <- c("zr","tm","rt","sph","ap","ep","gt",
 "st","amp","cpx","opx")
amcomp <- amalgamate(rescomp,Plag="P",HM=HMcomp,Opq="opaques")
plot(ternary(amcomp),showpath=TRUE)

SH.diss Sircombe and Hazelton distance

Description

Calculates Sircombe and Hazelton’s L2 distance between the Kernel Functional Estimates (KFEs, not to be confused with Kernel Density Estimates!) of two samples with specified analytical uncertainties.

Usage

SH.diss(x, i, j, c.con = 0)
Arguments

x an object of class distributional
i index of the first sample
j index of the second sample
c.on smoothing bandwidth of the kernel functional estimate

Value

a scalar value expressing the L2 distance between the KFEs of samples i and j

Author(s)

Keith Sircombe and Martin Hazelton

References

See Also

KS.diss

Examples

datfile <- system.file("DZ.csv",package="provenance")
errfile <- system.file("DZerr.csv",package="provenance")
DZ <- read.distributional(datfile,errfile)
d <- SH.diss(DZ,1,2)
print(d)

Description

Return a subset of provenance data according to some specified indices

Usage

S3 method for class 'compositional'
subset(x, subset = NULL, select = NULL,
 components = NULL, ...)

subset.compositional Get a subset of compositional data
Arguments

x an object of class compositional
subset logical expression indicating elements or rows to keep: missing values are taken as false.
select a vector of sample names.
components a vector specifying a subcomposition
... optional arguments for the generic subset function

Value

an object of class compositional

See Also

read.compositional

subset.distributional Get a subset of distributional data

Description

Return a subset of provenance data according to some specified indices

Usage

S3 method for class 'distributional'
subset(x, subset = NULL, select = NULL, ...)

Arguments

x an object of class distributional
subset logical expression indicating elements or rows to keep: missing values are taken as false.
select a vector of sample names
... optional arguments for the generic subset function

Value

an object of class distributional

See Also

read.distributional
summaryplot

Examples

```r
data(Namib)
coast <- subset(Namib$HM, select=c("N1", "N2", "T8", "T13", "N12", "N13"))
summaryplot(coast, ncol=2)
```

Usage

```r
summaryplot(..., ncol = 1)
```

Arguments

- `...` a sequence of datasets of class compositional, KDEs, or distributional
- `ncol` the number of columns

Value

a summary plot of all the data comprised of KDEs for the datasets of class KDEs, pie charts for those of class compositional and histograms for those of class distributional.

See Also

KDEs

Examples

```r
data(Namib)
KDEs <- KDES(Namib$DZ, 0, 3000)
summaryplot(KDEs, Namib$HM, Namib$PT, ncol=2)
```
Define a ternary composition

Description

Create an object of class `ternary`

Usage

```r
ternary(X, x = NULL, y = NULL, z = NULL)
```

Arguments

- `X`: an object of class `compositional`
- `x`: string or a vector of strings indicating the variables making up the first sub-composition of the ternary system. If omitted, the first component of X is used instead.
- `y`: second (set of) variables
- `z`: third (set of) variables

Value

an object of class `ternary`, i.e. a list containing:

- `x`: a three column matrix (or vector) of ternary compositions.
- and (if X is of class `SRDcorrected`)
 - `restoration`: a list of intermediate ternary compositions inherited from the SRD correction

See Also

`restore`

Examples

```r
data(Namib)
tern <- ternary(Namib$PT,c('Q'),c('KF','P'),c('Lm','Lv','Ls'))
plot(tern,type="QFL")
```
Index

PACKAGE (provenance), 30
amalgamate, 3
as.acomp, 4
as.compositional, 4
as.data.frame.compositional, 5
botev, 6
bray.diss, 7
CLR, 7
combine, 8
densities, 9
diss, 10
endmembers, 10
get.f, 11
get.n, 12
get.p, 13
GPA, 13
indscal, 14
KDE, 15
KDEs, 16
KS.diss, 17
Kuiper.diss, 18
MDS, 18
minsoring, 19
Namib, 20
PCA, 21
plot.compositional, 22
plot.distributional, 22
plot.GPA, 23
plot.INDSCAL, 24
plot.KDE, 25
plot.MDS, 26
plot.minsorting, 27
plot.PCA, 28
plot.ternary, 28
procrustes, 29
provenance, 30
provenance-package (provenance), 30
read.compositional, 31
read.densities, 32
read.distributional, 32
restore, 33
SH.diss, 34
subset.compositional, 35
subset.distributional, 36
summaryplot, 37
ternary, 38