Package ‘proxyC’

Type Package
Title Computes Proximity in Large Sparse Matrices
Version 0.3.3
Description Computes proximity between rows or columns of large matrices efficiently in C++.
Functions are optimised for large sparse matrices using the Armadillo and Intel TBB libraries.
Among several built-in similarity/distance measures, computation of correlation,
cosine similarity and Euclidean distance is particularly fast.
URL https://github.com/koheiw/proxyC
BugReports https://github.com/koheiw/proxyC/issues
License GPL-3
Depends R (>= 3.1.0), methods
Imports Matrix (>= 1.2), Rcpp (>= 0.12.12), RcppParallel
Suggests testthat, entropy, proxy, knitr, rmarkdown
LinkingTo Rcpp, RcppParallel, RcppArmadillo (>= 0.7.600.1.0)
SystemRequirements C++11
Encoding UTF-8
RoxygenNote 7.2.1
VignetteBuilder knitr
NeedsCompilation yes
Author Kohei Watanabe [cre, aut, cph]
 (<https://orcid.org/0000-0001-6519-5265>),
 Robrecht Cannoodt [aut] (<https://orcid.org/0000-0003-3641-729X>)
Maintainer Kohei Watanabe <watanabe.kohei@gmail.com>
Repository CRAN
Date/Publication 2022-10-06 04:20:02 UTC

R topics documented:
colSds ... 2
colZeros ... 2
simil ... 3
Index

<table>
<thead>
<tr>
<th>colSds</th>
<th>Standard deviation of columns and rows of large matrices</th>
</tr>
</thead>
</table>

Description

Produces the same result as `apply(x, 1, sd)` or `apply(x, 2, sd)` without coercing matrix to dense matrix. Values are not identical to `sd` because of the floating point precision issue in C++.

Usage

```r
colSds(x)  
rowSds(x)
```

Arguments

- `x`
 matrix or Matrix object

Examples

```r
mt <- Matrix::rsparsematrix(100, 100, 0.01)  
colSds(mt)  
apply(mt, 2, sd) # the same
```

Index

<table>
<thead>
<tr>
<th>colZeros</th>
<th>Count number of zeros in columns and rows of large matrices</th>
</tr>
</thead>
</table>

Description

Produces the same result as applying `sum(x == 0)` to each row or column.

Usage

```r
colZeros(x)  
rowZeros(x)
```

Arguments

- `x`
 matrix or Matrix object

Examples

```r
mt <- Matrix::rsparsematrix(100, 100, 0.01)  
colZeros(mt)  
apply(mt, 2, function(x) sum(x == 0)) # the same
```
simil

Compute similarity/distance between rows or columns of large matrices

Description

Fast similarity/distance computation function for large sparse matrices. You can floor small similarity value to to save computation time and storage space by an arbitrary threshold (min_simil) or rank (rank). Please increase the number of threads for better performance using setThreadOptions.

Usage

```r
simil(
  x,
  y = NULL,
  margin = 1,
  method = c("cosine", "correlation", "jaccard", "ejaccard", "dice", "edice", "hamann",
             "faith", "simple matching"),
  min_simil = NULL,
  rank = NULL,
  drop0 = FALSE,
  diag = FALSE,
  use_nan = NULL,
  digits = 14
)
```

```r
dist(
  x,
  y = NULL,
  margin = 1,
  method = c("euclidean", "chisquared", "kullback", "jeffreys", "jensen", "manhattan",
             "maximum", "canberra", "minkowski", "hamming"),
  p = 2,
  smooth = 0,
  drop0 = FALSE,
  diag = FALSE,
  use_nan = NULL,
  digits = 14
)
```

Arguments

- **x** : matrix or Matrix object. Dense matrices are covered to the CsparseMatrix-class internally.
- **y** : if a matrix or Matrix object is provided, proximity between documents or features in x and y is computed.
margin integer indicating margin of similarity/distance computation. 1 indicates rows or 2 indicates columns.

method method to compute similarity or distance

min_simil the minimum similarity value to be recorded.

rank an integer value specifying top-n most similarity values to be recorded.

drop0 if TRUE, zero values are removed regardless of min_simil or rank.

diag if TRUE, only compute diagonal elements of the similarity/distance matrix; useful when comparing corresponding rows or columns of x and y.

use_nan if TRUE, return NaN if the standard deviation of a vector is zero when method is "correlation"; if all the values are zero in a vector when method is "cosine", "chisquared", "kullback", "jeffreys" or "jensen". Note that use of NaN makes the similarity/distance matrix denser and therefore larger in RAM. If FALSE, return zero in same use situations as above. If NULL, will also return zero but also generate a warning (default).

digits determines rounding of small values towards zero. Use primarily to correct rounding errors in C++. See zapsmall.

p weight for Minkowski distance

smooth adds a fixed value to all the cells to avoid division by zero. Only used when method is "chisquared", "kullback", "jeffreys" or "jensen".

Details

Available methods for similarity:

- cosine: cosine similarity
- correlation: Pearson's correlation
- jaccard: Jaccard coefficient
- ejaccard: the real value version of jaccard
- dice: Dice coefficient
- edice: the real value version of dice
- hamann: Hamann similarity
- faith: Faith similarity
- simple matching: the percentage of common elements

Available methods for distance:

- euclidean: Euclidean distance
- chisquared: chi-squared distance
- kullback: Kullback–Leibler divergence
- jeffreys: Jeffreys divergence
- jensen: Jensen–Shannon divergence
- manhattan: Manhattan distance
- maximum: the largest difference between values
• canberra: Canberra distance
• minkowski: Minkowski distance
• hamming: Hamming distance

See the vignette for how the similarity and distance are computed: vignette("measures", package = "proxyC")

See Also
zapsmall

Examples

mt <- Matrix::rsparsematrix(100, 100, 0.01)
simil(mt, method = "cosine")[1:5, 1:5]
mt <- Matrix::rsparsematrix(100, 100, 0.01)
dist(mt, method = "euclidean")[1:5, 1:5]
Index

colSds, 2
colZeros, 2
CsparseMatrix-class, 3
dist(simil), 3
Matrix, 2, 3
matrix, 2, 3

rowSds(colSds), 2
rowZeros(colZeros), 2

setThreadOptions, 3
simil, 3
zapsmall, 4