Package ‘psborrow2’

April 30, 2024

Type Package

Title Bayesian Dynamic Borrowing Analysis and Simulation

Version 0.0.3.4

Description Bayesian dynamic borrowing is an approach to incorporating external data to supplement a randomized, controlled trial analysis in which external data are incorporated in a dynamic way (e.g., based on similarity of outcomes); see Viele 2013 [doi:10.1002/pst.1589] for an overview.

This package implements the hierarchical commensurate prior approach to dynamic borrowing as described in Hobbes 2011 [doi:10.1111/j.1541-0420.2011.01564.x].

There are three main functionalities. First, ‘psborrow2’ provides a user-friendly interface for applying dynamic borrowing on the study results handles the Markov Chain Monte Carlo sampling on behalf of the user. Second, ‘psborrow2’ provides a simulation framework to compare different borrowing parameters (e.g. full borrowing, no borrowing, dynamic borrowing) and other trial and borrowing characteristics (e.g. sample size, covariates) in a unified way. Third, ‘psborrow2’ provides a set of functions to generate data for simulation studies, and also allows the user to specify their own data generation process. This package is designed to use the sampling functions from 'cmdstanr' which can be installed from https://mc-stan.org/r-packages/.

BugReports https://github.com/Genentech/psborrow2/issues

License Apache License 2.0

Encoding UTF-8

Depends R (>= 4.1.0)

RoxygenNote 7.3.1

Config/testthat/edition 3

Imports checkmate, glue, methods, graphics, posterior, generics, Matrix, mvtnorm, future, simsurv

Suggests cmdstanr, survival, flexsurv, testthat (>= 3.0), usethis (>= 2.1.5), vdiffr, tibble, xml2, knitr, rmarkdown, bayesplot, matrixcalc, WeightIt, MatchIt, BayesPPD, ggsurvfit, gbm, ggplot2, cobalt, table1, gt, gtsummary
Additional_repositories https://mc-stan.org/r-packages/

Language en-US

SystemRequirements cmdstan

Collate `generics.R` `prior_class.R` `covariate_class.R`
 `add_covariates.R` `prior_normal.R` `treatment_class.R`
 `borrowing_class.R` `outcome_class.R` `analysis_class.R`
 `borrowing_details.R` `borrowing_full.R`
 `borrowing_hierarchical_commensurate.R` `borrowing_none.R`
 `check_data_matrix_has_columns.R` `cmdstan.R`
 `create_analysis_obj.R` `create_data_matrix.R`
 `treatment_details.R` `sim_treatment_list.R` `helpers.R`
 `outcome_bin_logistic.R` `prior_exponential.R`
 `outcome_surv_weibull_ph.R` `outcome_surv_exponential.R`
 `sim_outcome_list.R` `sim_data_list.R` `simulation_class.R`
 `create_simulation_obj.R` `data.R`
 `make_analysis_object_list.R` `make_model_string_data.R`
 `make_model_string_functions.R` `make_model_string_model.R`
 `make_model_string_parameters.R`
 `make_model_string_transf_params.R` `mcmc_sample.R`
 `mcmc_simulation_result.R` `prior_half_cauchy.R`
 `outcome_cont_normal.R` `package.R`
 `prepare_stan_data_inputs.R` `prior_bernoulli.R` `prior_beta.R`
 `prior_cauchy.R` `prior_gamma.R` `prior_half_normal.R`
 `prior_poisson.R` `sim_covariates.R` `sim_estimate_bias.R`
 `sim_estimate_effect_variance.R` `sim_estimate_mse.R`
 `sim_is_null_effect_covered.R` `sim_is_true_effect_covered.R`
 `sim_samplesize.R` `simulate_data_baseline.R` `simulate_data.R`

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Author Matt Secrest [aut, cre] (<https://orcid.org/0000-0002-0939-4902>),
 Isaac Gravestock [aut],
 Craig Gower-Page [ctb],
 Manoj Khanal [ctb],
 Mingyang Shan [ctb],
 Kexin Jin [ctb],
 Zhi Yang [ctb],
 Genentech, Inc. [cph, fnd]

Maintainer Matt Secrest <secrestm@gene.com>

Repository CRAN

Date/Publication 2024-04-30 21:30:02 UTC
\textbf{R topics documented:}

- add_covariates ... 6
- Analysis-class ... 6
- as_data_frame ... 7
- BaselineDataFrame-class 8
- BaselineDataList-class 8
- BaselineObject-class 9
- baseline_covariates 9
- bernoulli_prior .. 10
- beta_prior ... 10
- BinaryOutcome-class 11
- binary_cutoff ... 12
- bin_var .. 12
- Borrowing-class .. 13
- BorrowingFull-class 14
- BorrowingHierarchicalCommensurate-class 14
- BorrowingNone-class 15
- borrowing_details 15
- borrowing_full .. 16
- borrowing_hierarchical_commensurate 17
- borrowing_none ... 18
- c ... 19
- cauchy_prior ... 19
- check_cmdstanr ... 20
- check_data_matrix_has_columns 20
- check_fixed_external_data 21
- ContinuousOutcome-class 22
- cont_var ... 22
- covariance_matrix 23
- Covariates-class .. 24
- create_alpha_string 24
- create_analysis_obj 25
- create_baseline_object 26
- create_data_matrix 27
- create_data_simulation 28
- create_event_dist 29
- create_simulation_obj 31
- create_tau_string 32
- custom_enrollment 33
- cut_off_funs .. 34
- DataSimCutOff-class 35
- DataSimEnrollment-class 35
- DataSimEvent-class 35
- DataSimFixedExternalData-class 36
- DataSimObject-class 36
- enrollment_constant 37
- eval_constraints .. 37
R topics documented:

example_matrix .. 38
example_surv ... 38
exponential_prior ... 39
exp_surv_dist ... 40
gamma_prior ... 40
generate .. 41
generate.BaselineObject-method 41
generate.DataSimObject-method 42
get_cmd_stan_models .. 43
get_data ... 43
get_quantiles ... 44
get_results ... 44
get_stan_code ... 45
get_vars .. 45
half_cauchy_prior ... 47
half_normal_prior .. 47
logistic_bin_outcome .. 48
make_model_string_model ... 48
MCMCSimulationResult-class .. 49
mcmc_sample ... 50
normal_prior ... 53
Outcome-class .. 53
OutcomeBinaryLogistic-class 54
OutcomeContinuousNormal-class 55
OutcomeSurvExponential-class 55
OutcomeSurvWeibullPH-class 56
outcome_bin_logistic .. 57
outcome_cont_normal ... 58
outcome_surv_exponential .. 59
outcome_surv_weibull_ph ... 60
plot ... 61
plot_pdf .. 63
plot_pmf .. 64
poisson_prior ... 65
possible_data_sim_vars .. 65
Prior-class .. 66
PriorBernoulli-class .. 66
PriorBeta-class .. 67
PriorCauchy-class .. 67
PriorExponential-class ... 68
PriorGamma-class .. 68
PriorHalfCauchy-class ... 69
PriorHalfNormal-class ... 69
PriorNormal-class ... 70
PriorPoisson-class .. 70
prior_bernoulli .. 71
prior_beta .. 71
prior_cauchy .. 72
R topics documented:

prior_exponential .. 73
prior_gamma ... 74
prior_half_cauchy 74
prior_half_normal 75
prior_normal ... 76
prior_poisson .. 77
rename_draws_covariates 77
set_cut_off .. 78
set_dropout .. 79
set_enrollment .. 80
set_transformations 81
set_transformations,BaselineObject-method 81
show_guide ... 82
SimBorrowingList-class 83
SimCovariateList-class 83
SimCovariates-class 83
SimDataList-class 84
SimOutcomeList-class 84
SimSampleSize-class 85
SimTreatmentList-class 85
Simulation-class ... 86
SimVar-class ... 86
SimVarBin-class ... 86
SimVarCont-class .. 87
sim_borrowing_list 88
sim_covariates ... 89
sim_covariates_summ 90
sim_covariate_list 90
sim_data_list ... 91
sim_outcome_list 93
sim_samplesize ... 94
sim_treatment_list 95
TimeToEvent-class 95
Treatment-class ... 96
treatment_details 97
trim_cols .. 97
trim_rows .. 98
UniformPrior-class 98
uniform_prior .. 99
variable_dictionary 100
weib_ph_surv_dist 100
add_covariates

Add Covariates for Model Adjustment

Description

Specify column names for adjustment variables in model matrix and prior distributions for the model parameters for these covariates (i.e., betas)

Usage

```r
add_covariates(covariates, priors)
```

Arguments

- `covariates` character. Names of columns in the data matrix containing covariates to be adjusted for in the outcome model. Note: the external and treatment flags should not go here.
- `priors` Either a single object of class `Prior` specifying the prior distribution to apply to all covariates or a named list of distributions of class `Prior`, one for each covariate

Value

Object of class `Covariates`.

Examples

```r
add_covariates(
  covariates = c("a", "b"),
  priors = list(
    "a" = prior_normal(0, 1),
    "b" = prior_normal(0, 2)
  )
)
```

Analysis-class

Analysis Class

Description

A class for defining Analysis details. Objects of class `Analysis` should not be created directly but by the constructor `create_analysis_obj()`.
Slots

data_matrix matrix. The data matrix, including all covariates to be adjusted for, all relevant outcome variables, and treatment arm and external control arm flags.
covariates Covariate. Object of class Covariate as output by the function covariate_details().
outcome Outcome. Object of class Outcome as output by outcome_surv_exponential(), outcome_surv_weibull_ph(), or outcome_bin_logistic().
borrowing Borrowing. Object of class Borrowing as output by borrowing_full(), borrowing_none(), or borrowing_hierarchical_commensurate().
treatment Treatment. Object of class Treatment as output by treatment_details().
model_string character. The string that contains the full Stan model code to be compiled.
model CmdStanModel. The compiled Stan model as output by cmdstanr::cmdstan_model()
ready_to_sample logical. Is the object ready to sample?

as_data_frame

Coerce a psborrow2 object to a data frame

Description

Creates data.frame objects from various classes in psborrow2

Usage

S3 method for class 'BaselineDataList'
as.data.frame(x, ...)

Arguments

x object of type: BaselineDataList
...
Optional arguments for passed to data.frame

Value

A data.frame
BaselineDataFrame-class

Baseline Data Frame Object

Description

Contains a generated baseline dataset for a single arm.

Value

A `BaselineDataFrame`

Slots

- `cov_names` character contains the names of covariates generated from the multivariate normal distribution
- `means` numeric contains the means of generating distribution for the covariates in `cov_names`
- `variances` numeric contains the marginal variances of generating distribution for the covariates in `cov_names`.

BaselineDataList-class

Baseline Data Frame List

Description

A named list of `BaselineDataFrame`s with generated data for internal_treated/internal_control/external_control groups

Value

A `BaselineDataList`

Slots

- `baseline_object` Simulated covariates definitions as `BaselineObject`. See `create_baseline_object()`
BaselineObject-class BaselineObject class for data simulation

Description

BaselineObject class for data simulation

Slots

 n_trt_int integer. Number of internal treated patients
 n_ctrl_int integer. Number of internal control patients
 n_ctrl_ext integer. Number of external control patients
 covariates list. List of correlated covariates objects, see \code{baseline_covariates()}
 transformations list. List of named transformation functions.

baseline_covariates Specify Correlated Baseline Covariates

Description

Set parameters to generate correlated multivariate normal data for internal and external patients.

Usage

 \code{baseline_covariates(
 names,
 means_int,
 means_ext = means_int,
 covariance_int,
 covariance_ext = covariance_int
)}

Arguments

 names character vector of variable names.
 means_int numeric vector of means for internal patients. Must have same length as \code{names}
 means_ext numeric vector of means for external patients. Must have same length as \code{names}
 covariance_int variance-covariance matrix for generating multivariate normal for internal patients. Must be square matrix with same number of rows and \code{length(names)}
 covariance_ext variance-covariance matrix for generating multivariate normal data for external patients. Must be square matrix with same number of rows and \code{length(names)}
Value

BaselineObject to build simulated dataset

Examples

corr_covs <- baseline_covariates(
 names = c("b1", "b2"),
 means_int = c(5, 25),
 covariance_int = covariance_matrix(diag = c(1, 1), upper_tri = 0.4)
)

beroulli_prior Legacy function for the bernoulli prior

Description

Please use prior_bernoulli() instead.

Usage

bernoulli_prior(...)

Arguments

... Deprecated arguments to bernoulli_prior().

Value

This function does not return a value. When called, it triggers an error message indicating that bernoulli_prior() is deprecated and that prior_bernoulli() should be used instead.

beta_prior Legacy function for the beta prior

Description

Please use prior_beta() instead.

Usage

beta_prior(...)

Arguments

... Deprecated arguments to beta_prior().
Value

This function does not return a value. When called, it triggers an error message indicating that `beta_prior()` is deprecated and that `prior_beta()` should be used instead.

Description

BinaryOutcome class

Slots

- `function_stan_code` character. Code to include in the Stan functions program block.
- `param_stan_code` character. Code to include in the Stan parameters program block.
- `likelihood_stan_code` character. Code defining the likelihood to include in the Stan model program block.
- `data_stan_code` character. Code to include in the Stan data program block.
- `n_param` integer. Number of ancillary parameters for the model to estimate.
- `param_priors` list. Named list of prior distributions on the ancillary parameters in the model.
- `binary_var` character. Variable used for outcome in BinaryOutcome objects.
- `baseline_prior` `Prior`. Object of class `Prior` specifying prior distribution for the baseline outcome.
- `name_beta_trt` named vector for `beta_trt`.
- `name_exp_trt` named vector for exponentiated `beta_trt`.
- `alpha_type` named vector. How to interpret `alpha`.
- `name_addnl_params` named vector for additional parameters.

See Also

Other outcome: `ContinuousOutcome-class`, `Outcome-class`, `OutcomeBinaryLogistic-class`, `OutcomeContinuousNormal-class`, `OutcomeSurvExponential-class`, `OutcomeSurvWeibullPH-class`, `TimeToEvent-class`
binary_cutoff

Binary Cut-Off Transformation

Description

Binary Cut-Off Transformation

Usage

```r
binary_cutoff(name, int_cutoff, ext_cutoff)
```

Arguments

- `name`: variable to transform
- `int_cutoff`: cut-off for internal patients, numeric between 0 and 1
- `ext_cutoff`: cut-off for external patients, numeric between 0 and 1

Value

Transformation function to be used in `create_baseline_object()`. Sets quantile values larger than cut-off value to TRUE otherwise FALSE.

Examples

```r
# Creates a simple function, where 'data' is a 'BaselineDataFrame':
function(data) {
  ext <- data$ext == 0
  q <- get_quantiles(data, name)
  ifelse(ext, q > int_cutoff, q > ext_cutoff)
}
```

bin_var

Create binary covariate

Description

Create an object of class `SimVarBin` to hold proportions of binary variables specified in a simulation study.

Usage

```r
bin_var(
  prob_internal,  # probability of 1 for internal patients
  prob_external,  # probability of 1 for external patients
  mu_internal_before_bin = 0,  # mean of internal patients before binning
  mu_external_before_bin = 0  # mean of external patients before binning
)
```
Arguments

- `prob_internal` numeric. Proportion for the internal arms.
- `prob_external` numeric. Proportion for the external arm.
- `mu_internal_before_bin` numeric. Mean value of the covariate before binarization for the internal arms. The default is 0. See details for more information.
- `mu_external_before_bin` numeric. Mean value of the covariate before binarization for the external arm. The default is 0. See details for more information.

Details

This function contains information necessary to create binary covariates as part of a simulation study. The binary covariates are created by binarizing multivariate normal distributions to achieve the probabilities specified in `prob_internal` and `prob_external`. The user may choose to change the default mean value of each variable prior to binarization by specifying `mu_internal_before_bin` or `mu_external_before_bin` to ensure the correct scales are used in the covariance matrix, though the ultimate proportions will depend on `prob_internal` and `prob_external`. The default values for `mu_internal_before_bin` and `mu_external_before_bin` are 0, and it is not recommended to change these without good reason.

Value

Object of class `SimVarBin`.

See Also

Other simvar: `cont_var()`

Examples

```r
cv1 <- bin_var(0.50, 0.80)
cv2 <- bin_var(.95, .92)
```

Description

A class for defining borrowing details. Objects of class `Borrowing` should not be created directly but by the constructors `borrowing_hierarchical(commensurate)`, `borrowing_none()`, `borrowing_full()`.

Slots

- `data_stan_code` string. Code to include in the Stan data program block.
- `method_name` string. The name of the method.
- `ext_flag_col` character. Name of the external flag column in the matrix.
BorrowingHierarchicalCommensurate-class

See Also

Prior constructor functions: `borrowing_full()`, `borrowing_hierarchical_commensurate()`, `borrowing_none()`

Other borrowing classes: `BorrowingFull-class`, `BorrowingHierarchicalCommensurate-class`, `BorrowingNone-class`

BorrowingFull-class BorrowingFull class

Description

A class for defining details for "Full Borrowing" methods. Objects of class `BorrowingFull` should not be created directly but by the constructor `borrowing_full()`.

Slots

- `data_stan_code` string. Code to include in the Stan data program block.
- `method_name` string. The name of the method.
- `ext_flag_col` character. Name of the external flag column in the matrix.
- `name_tau` named vector for hierarchical commensurability parameter hyperprior.

See Also

Other borrowing classes: `Borrowing-class`, `BorrowingHierarchicalCommensurate-class`, `BorrowingNone-class`

BorrowingHierarchicalCommensurate-class

BorrowingHierarchicalCommensurate class

Description

A class for defining details of dynamic borrowing using the hierarchical Bayesian model with a commensurability parameter. Objects of class `BorrowingHierarchicalCommensurate` should not be created directly but by the constructor `borrowing_hierarchical_commensurate()`.

Slots

- `data_stan_code` string. Code to include in the Stan data program block.
- `method_name` string. The name of the method.
- `ext_flag_col` character. Name of the external flag column in the matrix.
- `tau_prior` Prior. Prior for the commensurability parameter.

See Also

Other borrowing classes: `Borrowing-class`, `BorrowingFull-class`, `BorrowingNone-class`
BorrowingNone-class

Description

A class for defining details for "No borrowing" methods. Objects of class BorrowingNone should not be created directly but by the constructor borrowing_none().

Slots

data_stan_code string. Code to include in the Stan data program block.
method_name string. The name of the method.
ext_flag_col character. Name of the external flag column in the matrix.

See Also

Other borrowing classes: Borrowing-class, BorrowingFull-class, BorrowingHierarchicalCommensurate-class

borrowing_details Legacy function for specifying borrowing details

Description

Please use one of borrowing_hierarchical_commensurate(), borrowing_none(), or borrowing_full() instead.

Usage

borrowing_details(...)

Arguments

... Deprecated arguments to borrowing_details.

Value

This function does not return a value. When called, it triggers an error message indicating that borrowing_details() is deprecated and that one of borrowing_hierarchical_commensurate(), borrowing_none(), or borrowing_full() should be used instead.
borrowing_full

Description

Full borrowing

Usage

```r
borrowing_full(ext_flag_col)
```

Arguments

- `ext_flag_col` character. Name of the external flag column in the matrix.

Details

Method:

This method does not distinguish between internal and external arms, effectively pooling patients.

External Control:

The `ext_flag_col` argument refers to the column in the data matrix that contains the flag indicating a patient is from the external control cohort.

Value

Object of class `BorrowingFull`.

See Also

Other borrowing: `borrowing_none()`

Examples

```r
fb <- borrowing_full("ext")
```
borrowing_hierarchical_commensurate

Hierarchical commensurate borrowing

Description

Hierarchical commensurate borrowing

Usage

borrowing_hierarchical_commensurate(ext_flag_col, tau_prior)

Arguments

<table>
<thead>
<tr>
<th>ext_flag_col</th>
<th>character. Name of the external flag column in the matrix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>tau_prior</td>
<td>Prior. Prior for the commensurability parameter.</td>
</tr>
</tbody>
</table>

Details

Method:
In Bayesian dynamic borrowing using the hierarchical commensurate prior approach, external control information is borrowed to the extent that the outcomes (i.e., log hazard rates or log odds) are similar between external and internal control populations. See Viele 2014 doi:10.1002/pst.1589 and Hobbs 2011 doi:10.1111/j.1541-0420.2011.01564.x for details.

External Control:
The ext_flag_col argument refers to the column in the data matrix that contains the flag indicating a patient is from the external control cohort.

Tau Prior:
The tau_prior argument specifies the hyperprior on the precision parameter commonly referred to as the commensurability parameter. See Viele 2014 doi:10.1002/pst.1589 for more details. This hyperprior determines (along with the comparability of the outcomes between internal and external controls) how much borrowing of the external control group will be performed. Example hyperpriors include largely uninformative inverse gamma distributions [e.g., prior_gamma(alpha = 0.001, beta = .001)] as well as more informative distributions [e.g., prior_gamma(alpha = 1, beta = .001)], though any distribution $x \in (0, \infty)$ can be used. Distributions with more density at higher values of x (i.e., higher precision) will lead to more borrowing.

Value

Object of class BorrowingHierarchicalCommensurate.
References

Examples
db <- borrowing_hierarchical_commensurate(
 ext_flag_col = "ext",
 tau_prior = prior_gamma(0.0001, 0.0001)
)

borrowing_none

No borrowing

Description
No borrowing

Usage
borrowing_none(ext_flag_col)

Arguments
ext_flag_col character. Name of the external flag column in the matrix.

Details

Method:
This method evaluates only the internal comparison, ignoring historical controls. Note that this method will filter the model matrix based on values in ext_flag_col.

External Control:
The ext_flag_col argument refers to the column in the data matrix that contains the flag indicating a patient is from the external control cohort.

Value
Object of class BorrowingNone.

See Also
Other borrowing: borrowing_full()
Examples

db <- borrowing_none(
 ext_flag_col = "ext"
)

Combine objects in psborrow2

Description

Creates data.frame objects from various classes in psborrow2

Usage

S4 method for signature 'SimDataList'
c(x, ...)

Arguments

x object of type: SimDataList
...
additional objects to combine

Value

A combined object
list of SimDataList objects.

cauchy_prior Legacy function for the cauchy prior

Description

Please use prior_cauchy() instead.

Usage

dcauchy_prior(...)

Arguments

... Deprecated arguments to cauchy_prior().

Value

This function does not return a value. When called, it triggers an error message indicating that cauchy_prior() is deprecated and that prior_cauchy() should be used instead.
check_cmdstanr

Check Stan

Description
Check whether cmdstanr is available and prints version and logistic example.

Usage
check_cmdstanr(check_sampling = FALSE)
check_cmdstan()

Arguments
check_sampling Compile and sample from the "logistic" example model.

Value
check_cmdstanr() prints results from checks.
check_cmdstan() returns TRUE if CmdStan seems to be installed, otherwise FALSE

Functions
- check_cmdstan(): Check if the CmdStan command line tools are available.

Examples
check_cmdstanr()

check_data_matrix_has_columns

Check Data Matrix for Required Columns

Description
Check that an Analysis object's data_matrix has all the required variables.

Usage
check_data_matrix_has_columns(object)

Arguments
object Analysis. Object to check.
check_fixed_external_data

Create a Fixed External Data Object

Description

Create a Fixed External Data Object

Usage

```
check_fixed_external_data(data, req_cols)
```

Arguments

- `data` A `data.frame` containing external control data
- `req_cols` A character vector of required covariate columns

Value

A DataSimObject with updated enrollment_internal and enrollment_external slots.

Value

`stop()` if some columns are missing.

Examples

```r
anls <- create_analysis_obj(
  data_matrix = example_matrix,
  covariates = add_covariates(
    covariates = c("cov1", "cov2"),
    priors = prior_normal(0, 1000)
  ),
  outcome = outcome_surv_exponential(
    "time",
    "cnsr",
    baseline_prior = prior_normal(0, 1000)
  ),
  borrowing = borrowing_hierarchical_commensurate(
    "ext",
    prior_exponential(.001)
  ),
  treatment = treatment_details(
    "trt",
    prior_normal(0, 1000)
  )
)

check_data_matrix_has_columns(anls)
```
ContinuousOutcome-class

Description

ContinuousOutcome class

Slots

- `function_stan_code` character. Code to include in the Stan functions program block.
- `param_stan_code` character. Code to include in the Stan parameters program block.
- `likelihood_stan_code` character. Code defining the likelihood to include in the Stan model program block.
- `data_stan_code` character. Code to include in the Stan data program block.
- `n_param` integer. Number of ancillary parameters for the model to estimate.
- `param_priors` list. Named list of prior distributions on the ancillary parameters in the model.
- `continuous_var` character. Variable used for outcome in ContinuousOutcome objects.
- `baseline_prior` `Prior`. Object of class `Prior` specifying prior distribution for the baseline outcome.
- `name_beta_trt` Named vector for beta_trt.
- `name_exp_trt` Named vector for exponentiated beta_trt
- `alpha_type` How to interpret alpha.
- `name_addnl_params` Named vector for additional parameters.

See Also

Other outcome: `BinaryOutcome-class, Outcome-class, OutcomeBinaryLogistic-class, OutcomeContinuousNormal-class, OutcomeSurvExponential-class, OutcomeSurvWeibullPH-class, TimeToEvent-class`

cont_var

Create continuous covariate

Description

Create an object of class `SimVarCont` to hold mean values of continuous variables specified in a simulation study.

Usage

`cont_var(mu_internal, mu_external)`
covariance_matrix

Arguments

- `mu_internal` numeric. Mean covariate value for the internal arms.
- `mu_external` numeric. Mean covariate value for the external arm.

Value

Object of class `SimVarCont`.

See Also

Other simvar: `bin_var()`

Examples

```r
cv1 <- cont_var(0.5, 1)
cv2 <- cont_var(10, 10)
```

covariance_matrix

Create Covariance Matrix

Description

Create Covariance Matrix

Usage

```r
covariance_matrix(diag, upper_tri)
```

Arguments

- `diag` Diagonal entries of the covariance matrix
- `upper_tri` Upper triangle entries of the matrix, specified column wise.

Value

A symmetric matrix with `diag` values on the main diagonal and `upper_tri` values in the lower and upper triangles.

Examples

```r
m1 <- covariance_matrix(c(1, 1, 1, 1), c(.8, .3, .8, 0, 0, 0))
m1
mvtorm::rmvnorm(5, mean = c(0, 0, 0, 0), sigma = m1)

# No correlation
covariance_matrix(c(1, 2, 3))
```
Covariates-class Covariate Class

Description

A class for defining covariate details. Objects of class Covariate should not be created directly but by the constructor `add_covariates()`.

Slots

covariates character. Names of columns in the data matrix containing covariates to be adjusted for in the outcome model. Note: the external and treatment flags should not go here.
priors. Either a single object of class Prior specifying the prior distribution to apply to all covariates or a named list of distributions of class Prior, one for each covariate
name_betas. Names for the beta parameters in the STAN model.

create_alpha_string Create alpha string

Description

Create alpha string

Usage

create_alpha_string(borrowing_object, outcome_object)

S4 method for signature 'Borrowing'
create_alpha_string(borrowing_object, outcome_object)

S4 method for signature 'BorrowingHierarchicalCommensurate'
create_alpha_string(borrowing_object, outcome_object)

Arguments

borrowing_object
 borrowing object

outcome_object
 outcome object
create_analysis_obj

Compile MCMC sampler using STAN and create analysis object

Description

Compile MCMC sampler using STAN and create analysis object

Usage

create_analysis_obj(
 data_matrix, # matrix. The data matrix, including all covariates to be adjusted for, all relevant
 outcome, # outcome variables, and treatment arm and external control arm flags.
 borrowing, # Borrowing. Object of class Borrowing as output by borrowing_full(), borrowing_none(),
 treatment, # and borrowing_hierarchical_commensurate().
 covariates = NULL, # Covariates. Object of class Covariates as output by the function add_covariates().
 quiet = FALSE # logical. Whether to suppress messages (TRUE) or not (FALSE, the default)
)

Arguments

data_matrix # matrix. The data matrix, including all covariates to be adjusted for, all relevant
outcome # outcome variables, and treatment arm and external control arm flags.
borrowing # Borrowing. Object of class Borrowing as output by borrowing_full(), borrowing_none(),
treatment # and borrowing_hierarchical_commensurate().
covariates # Covariates. Object of class Covariates as output by the function add_covariates().
quiet # logical. Whether to suppress messages (TRUE) or not (FALSE, the default)

Value

Object of class Analysis.

Examples

if (check_cmdstan()) {
 anls <- create_analysis_obj(
 data_matrix = example_matrix,
 outcome = outcome_surv_exponential("time", "cnsr",
 baseline_prior = prior_normal(0, 1000)
),
 borrowing = borrowing_hierarchical_commensurate("ext",
 prior_exponential(.001)
)
}
create_baseline_object

Create Baseline Data Simulation Object

Description

Create Baseline Data Simulation Object

Usage

create_baseline_object(
 n_trt_int,
 n_ctrl_int,
 n_ctrl_ext,
 covariates,
 transformations
)

Arguments

n_trt_int Number of internal treated patients
n_ctrl_int Number of internal control patients
n_ctrl_ext Number of external control patients
covariates List of correlated covariates objects, see baseline_covariates()
transformations List of named transformation functions.

Details

Transformation functions are evaluated in order and create or overwrite a column in the data.frame with that name. The function should take a data.frame (specifically a BaselineDataFrame object from generate(BaselineObject)) and return a vector with length identical to the total number of patients. The @BaselineObject slot may be accessed directly or with get_quantiles() to create transformations. See binary_cutoff()
Value

A BaselineObject

Examples

bl_no_covs <- create_baseline_object(
 n_trt_int = 100,
 n_ctrl_int = 50,
 n_ctrl_ext = 100
)

bl_biomarkers <- create_baseline_object(
 n_trt_int = 100,
 n_ctrl_int = 50,
 n_ctrl_ext = 100,
 covariates = baseline_covariates(
 c("b1", "b2", "b3"),
 means_int = c(0, 0, 0),
 covariance_int = covariance_matrix(c(1, 1, 1), c(.8, .3, .8))
),
 transformations = list(
 exp_b1 = function(data) exp(data$b1),
 b2 = binary_cutoff("b2", int_cutoff = 0.7, ext_cutoff = 0.5)
)
)

create_data_matrix Create Data Matrix

Description

Creates a matrix suitable for create_analysis_obj(). Creates dummy variables for factors and allows transformations of covariates specified with a formula.

Usage

create_data_matrix(
 data,
 outcome,
 trt_flag_col,
 ext_flag_col,
 covariates = NULL,
 weight_var = NULL
)
create_data_simulation

Arguments

- **data** data.frame. Data containing all variables.
- **outcome** character. The outcome variable for binary outcomes or the time and censoring variables.
- **trt_flag_col** character. The treatment indicator variable.
- **ext_flag_col** character. The external cohort indicator.
- **covariates** character or formula. The covariates for model adjustment.
- **weight_var** character. An optional weight variable.

Value

Invisibly returns a matrix containing all variables to pass to `create_analysis_obj()`. Prints names of covariates columns to use with `add_covariates()`.

Examples

```r
dat <- survival::diabetic
dat$ext <- dat$trt == 0 & dat$id > 1000
data_mat <- create_data_matrix(
  dat, 
  outcome = c("time", "status"),
  trt_flag_col = "trt",
  ext_flag_col = "ext",
  covariates = ~ age + laser + log(risk)
)
data_mat
```

create_data_simulation

Data Simulation

Description

Data Simulation

Usage

```r
create_data_simulation(
  baseline,
  coefficients = numeric(),
  treatment_hr = 1,
  drift_hr = 1,
  event_dist,
  fixed_external_data
)
```
create_event_dist

Specify a Time to Event Distribution

Description

Uses simsurv::simsurv to generate time to event data. See simsurv help for more details.

Arguments

- **baseline** `BaselineObject` from create_baseline_object()
- **coefficients** Named vector of coefficients for linear predictor. Must correspond to variables in baseline object
- **treatment_hr** Default treatment hazard ratio for simulations. Alternative simulation settings can be specified in generate.
- **drift_hr** Default drift hazard ratio between internal and external arms. Alternative simulation settings can be specified in generate.
- **event_dist** Specify time to event distribution with SimDataEvent object from create_event_dist()
- **fixed_external_data** A data.frame containing external control data. It must contain columns eventtime, status and all of the variables named in coefficients. If present, trt must be 0 and ext must be 1 for all rows.

Value

DataSimObject

Examples

```r
baseline_obj <- create_baseline_object(
  n_trt_int = 100,
  n_ctrl_int = 50,
  n_ctrl_ext = 10,
  covariates = baseline_covariates(
    names = c("age", "score"),
    means_int = c(55, 5),
    means_ext = c(60, 5),
    covariance_int = covariance_matrix(c(5, 1))
  )
)
sim_obj <- create_data_simulation(
  baseline_obj,
  coefficients = c(age = 0.001, score = 1.5),
  event_dist = create_event_dist(dist = "exponential", lambdas = 1 / 36)
)
data_sim_list <- generate(sim_obj, treatment_hr = c(0.5, 1), drift_hr = 0.5)
```
create_event_dist

Usage

create_event_dist(
 dist = NULL,
 lambdas = NULL,
 gammas = NULL,
 mixture = FALSE,
 pmix = 0.5,
 hazard = NULL,
 loghazard = NULL,
 cumhazard = NULL,
 logcumhazard = NULL,
 ...
)

null_event_dist()

Arguments

dist Specify the distribution "exponential"
lambdas Scale parameter
gammas Second parameter needed for Weibull or Gompertz distributions
mixture Use mixture model?
pmix Proportion of mixtures
hazard A user defined hazard function
loghazard Alternatively, a user defined log hazard function
cumhazard Alternatively, a user defined cumulative hazard function
logcumhazard Alternatively, a user defined log cumulative hazard function
... Other simsurv parameters

Value

A SimDataEvent object

null_event_dist returns an object with no parameters specified that does not simulate event times.

Examples

weibull_surv <- create_event_dist(dist = "weibull", lambdas = 1 / 200, gammas = 1)
exp_event_dist <- create_event_dist(dist = "exponential", lambdas = 1 / 36)
null_event_dist()
create_simulation_obj

Compile MCMC sampler using STAN and create simulation object

Description

Compile MCMC sampler using STAN and create simulation object

Usage

create_simulation_obj(
 data_matrix_list,
 covariate = NULL,
 outcome,
 borrowing,
 treatment,
 quiet = TRUE
)

Arguments

data_matrix_list
 SimDataList. The list of lists of data matrices created with sim_data_list().
covariate
 SimCovariateList or Covariate or NULL. List of Covariate objects created with sim_covariate(), a single Covariate object created by add_covariates(), or NULL (no covariate adjustment).
outcome
 SimOutcomeList or Outcome. List of Outcome objects created with sim_outcome(), or single Outcome object (e.g., created by outcome_surv_exponential()).
borrowing
 SimBorrowingList or Borrowing. List of Borrowing objects created with sim_borrowing(), or a single Borrowing object created by borrowing_full(), borrowing_none(), or borrowing_hierarchical_commensurate().
treatment
 SimTreatmentList or Treatment. List of Treatment objects created with sim_treatment() or a single Treatment object created by treatment_details().
quiet
 logical. Whether to print messages (quiet = FALSE) or not (quiet = TRUE, the default)

Value

Object of class Simulation.

Examples

base_mat <- matrix(
 c(
 rep(0, 200), rep(0, 200), rep(1, 200),
 rep(1, 200), rep(0, 200), rep(0, 200),
 rep(0, 600)
)
add_binary_endpoint <- function(odds_ratio, base_matrix = base_mat) {
 linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
 prob <- 1 / (1 + exp(-linear_predictor))

 bin_endpoint <- rbinom(NROW(base_matrix), 1, prob)

 cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}

data_list <- list(
 list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
 list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)

guide <- data.frame(
 trueOR = c(1.5, 2.5),
 driftOR = c(1.0, 1.0),
 index = 1:2
)

sdl <- sim_data_list(
 data_list = data_list,
 guide = guide,
 effect = "trueOR",
 drift = "driftOR",
 index = "index"
)

if (check_cmdstan()) {
 sim_object <- create_simulation_obj(
 data_matrix_list = sdl,
 outcome = outcome_bin_logistic("ep", prior_normal(0, 1000)),
 borrowing = sim_borrowing_list(list(
 full_borrowing = borrowing_full("ext"),
 bdb = borrowing_hierarchical_commensurate("ext", prior_exponential(0.0001))
)),
 treatment = treatment_details("trt", prior_normal(0, 1000))
)
}
custom_enrollment

Description
Create tau string

Usage
```
custom_enrollment(fun, label)
```

- **fun**: A function that takes one argument `n` the number of enrollment times to observe and returns a vector of times.
- **label**: A user-friendly label

Value

A `DataSimEnrollment` object

Examples
```
custom_enrollment(
    fun = function(n) rpois(n, lambda = 5),
    label = "Poisson enrollment distribution"
)
```
Cut Off Functions

Usage

- `cut_off_none()`: No cut off is specified
- `cut_off_after_first(time)`: Cut off at time after first enrolled patient
- `cut_off_after_last(time)`: Cut off at time after last enrolled patient
- `cut_off_after_events(n)`: Cut off after the time of the n-th event

Arguments

- `time`: Time to cut off
- `n`: Number of events

Value

A DataSimCutOff object containing a cut-off function

Examples

- `cut_off_none()`
- `cut_off_after_first(time = 36)`
- `cut_off_after_last(time = 36)`
- `cut_off_after_events(n = 20)`
DataSimCutOff-class
Cut Off Object

Description
Cut Off Object

Slots
cut_off_fun A function that takes a `data.frame` with columns of enrollment time, survival time and outcome. The function returns a modified `data.frame` after applied the cut-off rule.

DataSimEnrollment-class
Enrollment Object

Description
Enrollment Object

Slots
fun A function that takes one argument `n` the number of enrollment times to observe and returns a vector of times.
label A user-friendly label

DataSimEvent-class
Event Time Distribution Object

Description
Event Time Distribution Object

Slots
params Parameters used for simulating event times with `simsurv::simsurv()`.
label Description of the distribution.
DataSimFixedExternalData-class

Fixed External Control Data Object

Description

Fixed External Control Data Object

Value

A `FixedExternalData`

Slots

- `data` data.frame containing external control data
- `n` Number of observations

DataSimObject-class

Data Simulation Object Class

Description

Data Simulation Object Class

Value

A `DataSimObject`

Slots

- `baseline` BaselineObject from `create_baseline_object`
- `coefficients` Named numeric vector of beta coefficients for survival model. See `beta` at `?simsurv::simsurv`
- `treatment_hr` numeric treatment effect as a hazard ration. log(treatment_hr) is included in `beta` with coefficients and log(drift_hr). This default is overridden by `generate` arguments
- `drift_hr` numeric hazard ratio between internal and external arms. Included as log(drift_hr).
- `fixed_external_data` data.frame for external data. Currently unused.
- `event_dist` DataSimEvent parameters for outcome distribution from `create_event_dist()`
- `enrollment` DataSimEnrollment object.
- `cut_off` DataSimCutOff
enrollment_constant Constant Enrollment Rates

Description

Constant Enrollment Rates

Usage

enrollment_constant(rate, for_time = rep(1, length(rate)))

Arguments

rate Number of patients to enroll per unit time
for_time Number of time periods for each rate. Must be equal length to rate

Value

An object of class DataSimEnrollment to be passed to create_data_simulation()

Examples

10 patients/month for 6 months, then 5/month for 6 months
enroll_obj <- enrollment_constant(rate = c(10, 5), for_time = c(6, 6))
enroll_obj@fun(n = 80)

eval_constraints Evaluate constraints

Description

Evaluate constraints when these are called

Usage

eval_constraints(object)

S4 method for signature 'Prior'
eval_constraints(object)

Arguments

object Prior object
Description

A matrix containing data from a clinical trial with a treatment arm and a control arm, as well as data from an external control. In this simulated dataset, the true hazard ratio (HR) for the time-to-event endpoint comparing the experimental treatment to the control treatment is 0.70. The true odds ratio (OR) for the binary response endpoint comparing the experimental treatment to the control treatment is 1.20.

Usage

eexample_matrix

Format

A data frame with 500 rows and 11 columns. The distributions of patients is: 50 internal control patients, 100 internal experimental patients, 350 external control patients.

- **id**: patient identifier
- **ext**: 0/1, flag for external controls
- **trt**: 0/1, flag for treatment arm
- **cov1**: 0/1, baseline covariate
- **cov2**: 0/1, baseline covariate
- **cov3**: 0/1, baseline covariate
- **cov4**: 0/1, baseline covariate
- **time**: numeric >0, survival time
- **status**: 0/1, indicator for event status (1 = had event, 0 = did not have event)
- **cnsr**: 0/1, censoring indicator (1 = was censored, 0 = was not censored). This value is 1 - status.
- **resp**: 0/1, indicator for response outcome (1 = had a response, 0 = did not have a response)

Description

A data frame containing simulated data from a clinical trial with a treatment arm (n=200) and a control arm (n=158), as well as data from an external control (n=242).

Usage

eexample_surv
exponential_prior

Format

A data frame with 600 rows and 6 variables:

- **trt** 0/1, flag for treatment arm
- **ext** 0/1, flag for external controls
- **eventtime** numeric >0, survival time
- **status** 0/1, event indicator
- **censor** 0/1, censoring indicator
- **cov1** 0/1, binary baseline covariate 1
- **cov2** integer in [0, 15], baseline covariate 2
- **cov3** continuous numeric, baseline covariate 3

exponential_prior

Legacy function for the exponential prior

Description

Please use `prior_exponential()` instead.

Usage

```r
exponential_prior(...)```

Arguments

```r
...```

Deprecated arguments to `exponential_prior()`.

Value

This function does not return a value. When called, it triggers an error message indicating that `exponential_prior()` is deprecated and that `prior_exponential()` should be used instead.
exp_surv_dist Legacy function for the exponential survival distribution

Description
Please use outcome_surv_exponential() instead.

Usage
exp_surv_dist(...)

Arguments
... Deprecated arguments to exp_surv_dist().

Value
This function does not return a value. When called, it triggers an error message indicating that exp_surv_dist() is deprecated and that outcome_surv_exponential() should be used instead.

gamma_prior Legacy function for the gamma prior

Description
Please use prior_gamma() instead.

Usage
gamma_prior(...)

Arguments
... Deprecated arguments to gamma_prior().

Value
This function does not return a value. When called, it triggers an error message indicating that gamma_prior() is deprecated and that prior_gamma() should be used instead.
generate

Generate Data from Object

Description
Generate Data from Object

Usage
generate(x, ...)

Arguments
x object
... Other arguments passed to methods

Value
Object of class SimDataList.

generate,BaselineObject-method

Generate Data for a BaselineObject

Description
Generate Data for a BaselineObject

Usage
S4 method for signature 'BaselineObject'
generate(x, ...)

Arguments
x a BaselineObject object created by create_baseline_object
... additional parameters are ignored

Value
A BaselineDataFrame object
Examples

```r
generate(bl_biomarkers)
```

Description

Generate Data for a DataSimObject

Usage

```r
## S4 method for signature 'DataSimObject'
generate(x, n = 1, treatment_hr = NULL, drift_hr = NULL)
```

Arguments

- `x`: a DataSimObject object created by `create_data_simulation`
- `n`: number of data sets to simulate
- `treatment_hr`: vector of numeric treatment effects
- `drift_hr`: vector of numeric drift effects

Value

A SimDataList object for use with `create_simulation_obj()`.

Examples

```r
baseline_obj <- create_baseline_object(  
  n_trt_int = 100,  
  n_ctrl_int = 50,  
  n_ctrl_ext = 10,  
  covariates = baseline_covariates(    
    c("b1", "b2", "b3"),  
    means_int = c(0, 0, 0),  
    covariance_int = covariance_matrix(c(1, 1, 1), c(.8, .3, .8))    
  ),  
  transformations = list(    
    exp_b1 = function(data) exp(data$b1),  
    b2 = binary_cutoff("b2", int_cutoff = 0.7, ext_cutoff = 0.5)    
  )  
)
```
```r
names = c("age", "score"),
means_int = c(55, 5),
means_ext = c(60, 5),
covariance_int = covariance_matrix(c(5, 1))
)
)
sim_obj <- create_data_simulation(
  baseline_obj,
  coefficients = c(age = 0.001, score = 1.5),
  event_dist = create_event_dist(dist = "exponential", lambdas = 1 / 36)
)
data_sim_list <- generate(sim_obj, treatment_hr = c(0, 1), drift_hr = 0.5)
```

get_cmd_stan_models

Get CmdStanModel objects for MCMCSimulationResults

Description

Show the CmdStanModel objects from MCMCSimulationResults objects.

Usage

```r
get_cmd_stan_models(object)
```

Arguments

- **object** MCMCSimulationResults object

Value

List of lists of CmdStanModel objects for each model.

get_data

Get Simulated Data from SimDataList object

Description

Retrieves the simulated data from a SimDataList object by index.

Usage

```r
get_data(object, index = 1, dataset = 1)
```

```r
## S4 method for signature 'SimDataList'
get_data(object, index = NULL, dataset = NULL)
```
get_results

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>SimDataList object</td>
</tr>
<tr>
<td>index</td>
<td>the index of the scenario (see guide with print(SimDataList))</td>
</tr>
<tr>
<td>dataset</td>
<td>the dataset out of n_datasets_per_param</td>
</tr>
</tbody>
</table>

Value

Simulated data as a data frame if the index is specified, else as a list

get_quantiles

Get Quantiles of Random Data

Description

Helper for use within transformation functions for create_baseline_object().

Usage

get_quantiles(object, var)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>a BaselineDataFrame</td>
</tr>
<tr>
<td>var</td>
<td>character string name of the variable</td>
</tr>
</tbody>
</table>

Value

A numeric vector containing quantiles based on the data generating distribution.

get_results

Get results for MCMCSimulationResults objects

Description

Get the results data.frame from MCMCSimulationResults objects.

Usage

get_results(object)

S4 method for signature 'MCMCSimulationResult'
get_results(object)
get_stan_code

Arguments

object MCMCSimulationResults object

Value
data.frame with simulation results.

get_stan_code
Get method for Stan model

Description
Get method for Stan model

Usage
get_stan_code(object)

S4 method for signature 'Analysis'
get_stan_code(object)

Arguments

object Analysis object

Value
String containing the Stan model

get_vars
Get Variables

Description
Gets the data variable names from an object.
Usage

get_vars(object)

S4 method for signature 'Covariates'
get_vars(object)

S4 method for signature 'Treatment'
get_vars(object)

S4 method for signature 'Borrowing'
get_vars(object)

S4 method for signature 'TimeToEvent'
get_vars(object)

S4 method for signature 'BinaryOutcome'
get_vars(object)

S4 method for signature 'ContinuousOutcome'
get_vars(object)

S4 method for signature 'Analysis'
get_vars(object)

S4 method for signature 'NULL'
get_vars(object)

S4 method for signature 'SimTreatmentList'
get_vars(object)

S4 method for signature 'SimOutcomeList'
get_vars(object)

S4 method for signature 'SimBorrowingList'
get_vars(object)

S4 method for signature 'SimCovariateList'
get_vars(object)

S4 method for signature 'Simulation'
get_vars(object)

S4 method for signature 'BaselineObject'
get_vars(object)

Arguments

object Object
Value

A character vector containing variable names

Examples

get_vvars(treatment_details(
 trt_flag_col = "treat_fl",
 trt_prior = prior_normal(0, 1000)
))

half_cauchy_prior

Legacy function for the half-cauchy prior

Description

Please use prior_half_cauchy() instead.

Usage

half_cauchy_prior(...)

Arguments

... Deprecated arguments to half_cauchy_prior().

Value

This function does not return a value. When called, it triggers an error message indicating that half_cauchy_prior() is deprecated and that prior_half_cauchy() should be used instead.

half_normal_prior

Legacy function for the normal half prior

Description

Please use prior_half_normal() instead.

Usage

half_normal_prior(...)

Arguments

... Deprecated arguments to half_normal_prior().

Value

This function does not return a value. When called, it triggers an error message indicating that half_normal_prior() is deprecated and that prior_half_normal() should be used instead.
logistic_bin_outcome *Legacy function for binary logistic regression*

Description

Please use outcome_bin_logistic() instead.

Usage

logistic_bin_outcome(...)

Arguments

...

Deprecated arguments to logistic_bin_outcome.

Value

This function does not return a value. When called, it triggers an error message indicating that logistic_bin_outcome() is deprecated and that outcome_bin_logistic() should be used instead.

make_model_string_model

Create Stan Code for Model

Description

Create Stan Code for Model

Usage

make_model_string_model(borrowing, outcome, analysis_obj)

```
## S4 method for signature 'ANY,ANY,Analysis'
make_model_string_model(borrowing, outcome, analysis_obj)
```

```
## S4 method for signature 'BorrowingFull,ANY,Analysis'
make_model_string_model(borrowing, outcome, analysis_obj)
```

```
## S4 method for signature 'BorrowingNone,ANY,Analysis'
make_model_string_model(borrowing, outcome, analysis_obj)
```

```
## S4 method for signature 'BorrowingHierarchicalCommensurate,ANY,Analysis'
make_model_string_model(borrowing, outcome, analysis_obj)
```
Arguments

borrowing borrowing object
outcome outcome object
analysis_obj analysis object

Value

glue character containing the Stan code for the data block.

Examples

```r
anls_obj <- create_analysis_obj(
  data_matrix = example_matrix,
  outcome = outcome_surv_exponential(  
    "time",  
    "cnsr",  
    baseline_prior = prior_normal(0, 1000)
  ),
  borrowing = borrowing_hierarchiical_commensurate(  
    "ext",  
    prior_exponential(.001)
  ),
  treatment = treatment_details(  
    "trt",  
    prior_normal(0, 1000)
  ),
  covariates = add_covariates(  
    covariates = c("cov1", "cov2"),
    priors = prior_normal(0, 1000)
  )
)
make_model_string_model(anls_obj@borrowing, anls_obj@outcome, anls_obj)
```

Description

A class for defining Simulation study results. Objects of class MCMCSimulationResult should not be created directly but by mcmc_sample().

Slots

- **results** data.frame. The results of the simulation study summarized in a data.frame
- **cmd_stan_models** list. List of lists of CmdStanmodels corresponding to the different parameters in Simulation@guide and different datasets in Simulation@data_matrix_list.
mcmc_sample

Sample from Stan model

Description

Method to sample from compiled Stan model and return a CmdStanMCMC object with draws.

Usage

mcmc_sample(x, ...)

S4 method for signature 'ANY'
mcmc_sample(x, ...)

S4 method for signature 'Analysis'
mcmc_sample(
x,
iter_warmup = 1000L,
iter_sampling = 10000L,
chains = 4L,
verbose = FALSE,
...
)

S4 method for signature 'Simulation'
mcmc_sample(
x,
prior_quantiles = c(0.025, 0.975),
iter_warmup = 1000L,
iter_sampling = 10000L,
chains = 4L,
verbose = FALSE,
keep_cmd_stan_models = FALSE,
...
)

Arguments

x

object to sample, such as Analysis (created with create_analysis_obj()) or Simulation.

... additional arguments passed to the $sample() method of a cmdstanr Stan model. See https://mc-stan.org/cmdstanr/reference/model-method-sample.html

iter_warmup

integer. The number of warm up iterations to run per chain. The default is 1000.

iter_sampling

integer. The number of post-warm up iterations to run per chain. The default is 10000.

chains

integer. The number of Markov chains to run. The default is 4.
mcmc_sample

- verbose: logical. Whether to print sampler updates (TRUE) or not (FALSE)
- posterior.quantiles: numeric vector of length two. The posterior quantiles used for summarizing simulation results. The default is c(0.025, 0.975) See details.
- keep_cmd_stan_models: logical. Whether to keep the CmdStanModel objects from the mcmc_sampler (TRUE, discouraged in most scenarios) or not (FALSE). The default is FALSE.

Details

Simulation objects:
This function takes draws from an MCMC sampler and summarizes results.

Value
An object of class CmdStanMCMC
An object of class MCMCSimulationResult

Examples

```r
## Analysis objects
if (check_cmdstan()) {
  anls <- create_analysis_obj(
    data_matrix = example_matrix,
    covariates = add_covariates(
      covariates = c("cov1", "cov2"),
      priors = prior_normal(0, 1000)
    ),
    outcome = outcome_surv_weibull_ph(
      "time",
      "cnsr",
      shape_prior = prior_normal(0, 1000),
      baseline_prior = prior_normal(0, 1000)
    ),
    borrowing = borrowing_hierarchical_commensurate(
      "ext",
      prior_exponential(.001)
    ),
    treatment = treatment_details("trt", prior_normal(0, 1000))
  )

  mcmc_results <- mcmc_sample(anls, chains = 1, iter_warmup = 500L, iter_sampling = 1000L)
}

## Simulation objects
base_mat <- matrix(
  c(
    rep(0, 200), rep(0, 200), rep(1, 200),
    rep(1, 200), rep(0, 200), rep(0, 200),
    rep(0, 600)
  ),
  nrow = 22)
```

ncol = 3,
 dimnames = list(NULL, c("ext", "trt", "driftOR")))
)

add_binary_endpoint <- function(odds_ratio,
 base_matrix = base_mat) {
 linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
 prob <- 1 / (1 + exp(-linear_predictor))

 bin_endpoint <- rbinom(
 NROW(base_matrix),
 1,
 prob)

 cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}

data_list <- list(
 list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
 list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)

guide <- data.frame(
 trueOR = c(1.5, 2.5),
 driftOR = c(1.0, 1.0),
 index = 1:2)

sdl <- sim_data_list(
 data_list = data_list,
 guide = guide,
 effect = "trueOR",
 drift = "driftOR",
 index = "index"
)

if (check_cmdstan()) {
 sim_object <- create_simulation_obj(
 data_matrix_list = sdl,
 outcome = outcome_bin_logistic("ep", prior_normal(0, 1000)),
 borrowing = sim_borrowing_list(list(
 full_borrowing = borrowing_full("ext"),
 bdb = borrowing_hierarchical_commensurate("ext", prior_exponential(0.0001))
)),
 treatment = treatment_details("trt", prior_normal(0, 1000))
)
 mcmc_sample(sim_object, chains = 1, iter_warmup = 500L, iter_sampling = 1000L)
}
Not run:
library(future)
Use two separate R processes
normal_prior

plan("multisession", workers = 2)

and two parallel threads in each.
mcmc_sample(sim_object, chains = 1, iter_warmup = 500L, iter_sampling = 1000L, parallel_chains = 2)

Tidy up processes when finished
plan("sequential")

End(Not run)

normal_prior

Legacy function for the normal prior

Description

Please use `prior_normal()` instead.

Usage

```r
normal_prior(...)```

### Arguments

...  

Deprecated arguments to `normal_prior()`.

### Value

This function does not return a value. When called, it triggers an error message indicating that `normal_prior()` is deprecated and that `prior_normal()` should be used instead.

---

**Outcome-class**  
**Outcome class**

### Description

Outcome class

### See Also

Other outcome: `BinaryOutcome-class`, `ContinuousOutcome-class`, `OutcomeBinaryLogistic-class`, `OutcomeContinuousNormal-class`, `OutcomeSurvExponential-class`, `OutcomeSurvWeibullPH-class`, `TimeToEvent-class`
OutcomeBinaryLogistic-class

Description

A class for defining a logistic regression with a binary outcome to be translated to Stan code. Objects of class OutcomeBinaryLogistic should not be created directly but by the constructor `outcome_bin_logistic()`.

Slots

- `function_stan_code` character. Stan function code block containing text to interpolate into Stan model. Empty string for `OutcomeBinaryLogistic`.
- `param_stan_code` character. Stan parameter code block containing text to interpolate into Stan model. Empty string for `OutcomeBinaryLogistic`.
- `likelihood_stan_code` character. Stan model likelihood code block containing text to interpolate into Stan model.
- `n_param` integer. Number of ancillary parameters for the model to estimate (0).
- `param_priors` list. Named list of prior distributions on the ancillary parameters in the model. Empty for `OutcomeBinaryLogistic`.
- `binary_var` character. Variable used for outcome in `OutcomeBinaryLogistic` objects.
- `baseline_prior` Prior. Object of class Prior specifying prior distribution for the baseline outcome.
- `name_beta_trt` Named vector for beta_trt.
- `name_exp_trt` Named vector for exponentiated beta_trt
- `alpha_type` How to interpret alpha.
- `name_addnl_params` Named vector for additional parameters.

See Also

Other outcome: `BinaryOutcome-class`, `ContinuousOutcome-class`, `Outcome-class`, `OutcomeContinuousNormal-class`, `OutcomeSurvExponential-class`, `OutcomeSurvWeibullPH-class`, `TimeToEvent-class`
OutcomeContinuousNormal-class

Description

A class for defining a regression with a normal outcome to be translated to Stan code. Objects of class OutcomeContinuousNormal should not be created directly but by the constructor `outcome_cont_normal()`.

Slots

- `function_stan_code` character. stan function code block containing text to interpolate into stan model. Empty string for OutcomeContinuousNormal.
- `param_stan_code` character. stan parameter code block containing text to interpolate into stan model. Empty string for OutcomeContinuousNormal.
- `likelihood_stan_code` character. stan model likelihood code block containing text to interpolate into stan model.
- `n_param` integer. Number of ancillary parameters for the model to estimate (0).
- `param_priors` list. Named list of prior distributions on the ancillary parameters in the model. Empty for OutcomeContinuousNormal.
- `continuous_var` character. Variable used for outcome in OutcomeContinuousNormal objects.
- `baseline_prior` Prior. Object of class Prior specifying prior distribution for the baseline outcome.
- `name_beta_trt` Named vector for beta_trt.
- `name_exp_trt` Named vector for exponentiated beta_trt
- `alpha_type` How to interpret alpha.
- `name_addnl_params` Named vector for additional parameters.

See Also

Other outcome: BinaryOutcome-class, ContinuousOutcome-class, Outcome-class, OutcomeBinaryLogistic-class, OutcomeSurvExponential-class, OutcomeSurvWeibullPH-class, TimeToEvent-class

OutcomeSurvExponential-class

Description

A class for defining a time-to-event survival analysis with an exponential survival distribution. Objects of class OutcomeSurvExponential should not be created directly but by the constructor `outcome_surv_exponential()`.
Slots

- `function_stan_code` character. Stan function code block containing text to interpolate into Stan model. Empty string for `OutcomeSurvExponential`.
- `param_stan_code` character. Stan parameter code block containing text to interpolate into Stan model. Empty string for `OutcomeSurvExponential`.
- `likelihood_stan_code` character. Stan model likelihood code block containing text to interpolate into Stan model.
- `n_param` integer. Number of ancillary parameters for the model to estimate (0).
- `param_priors` list. Named list of prior distributions on the ancillary parameters in the model. Empty for `OutcomeSurvExponential`.
- `time_var` character. Variable used for time in `TimeToEvent` objects.
- `cens_var` character. Variable used for censoring in `TimeToEvent` objects.
- `baseline_prior` Prior. Object of class `Prior` specifying prior distribution for the baseline outcome.
- `name_beta_trt` Named vector for `beta_trt`.
- `name_exp_trt` Named vector for exponentiated `beta_trt`.
- `alpha_type` How to interpret `alpha`.
- `name_addnl_params` Named vector for additional parameters.

See Also

Other outcome: `BinaryOutcome-class`, `ContinuousOutcome-class`, `Outcome-class`, `OutcomeBinaryLogistic-class`, `OutcomeContinuousNormal-class`, `OutcomeSurvWeibullPH-class`, `TimeToEvent-class`

OutcomeSurvWeibullPH-class

OutcomeSurvWeibullPH Class

Description

A class for defining a time-to-event survival analysis with a Weibull proportional hazards survival distribution. Objects of class `OutcomeSurvWeibullPH` should not be created directly but by the constructor `outcome_surv_weibull_ph()`.

Slots

- `function_stan_code` character. Stan function code block containing text to interpolate into Stan model.
- `param_stan_code` character. Stan parameter code block containing text to interpolate into Stan model.
- `likelihood_stan_code` character. Stan model likelihood code block containing text to interpolate into Stan model.
outcome_bin_logistic

- n_param integer. Number of ancillary parameters for the model to estimate (1).
- param_priors list. Named list of prior distributions on the ancillary parameters in the model.
- time_var character. Variable used for time in TimeToEvent objects.
- cens_var character. Variable used for censoring in TimeToEvent objects.
- baseline_prior Prior. Object of class Prior specifying prior distribution for the baseline outcome.
- name_beta_trt. Named vector for beta_trt.
- name_exp_trt. Named vector for exponentiated beta_trt
- alpha_type. How to interpret alpha.
- name_addnl_params. Named vector for additional parameters.

See Also

Other outcome: BinaryOutcome-class, ContinuousOutcome-class, Outcome-class, OutcomeBinaryLogistic-class, OutcomeContinuousNormal-class, OutcomeSurvExponential-class, TimeToEvent-class

outcome_bin_logistic  Bernoulli distribution with logit parametrization

Description

Bernoulli distribution with logit parametrization

Usage

outcome_bin_logistic(binary_var, baseline_prior, weight_var = "")

Arguments

binary_var character. Name of binary (1/0 or TRUE/FALSE) outcome variable in the model matrix
baseline_prior Prior. Object of class Prior specifying prior distribution for the baseline outcome. See Details for more information.
weight_var character. Optional name of variable in model matrix for weighting the log likelihood.

Details

Baseline Prior:
The baseline_prior argument specifies the prior distribution for the baseline log odds. The interpretation of the baseline_prior differs slightly between borrowing methods selected.
- **Dynamic borrowing using** borrowing_hierarchical_commensurate(): the baseline_prior for Bayesian Dynamic Borrowing refers to the log odds of the external control arm.
- **Full borrowing or No borrowing using** borrowing_full() or borrowing_none(): the baseline_prior for these borrowing methods refers to the log odds for the internal control arm.
Value

Object of class `OutcomeBinaryLogistic`.

See Also

Other outcome models: `outcome_cont_normal()`, `outcome_surv_exponential()`, `outcome_surv_weibull_ph()`

Examples

```r
lg <- outcome_bin_logistic(
 binary_var = "response",
 baseline_prior = prior_normal(0, 1000)
)
```

---

Normal Outcome Distribution

Description

Normal Outcome Distribution

Usage

```r
outcome_cont_normal(
 continuous_var,
 baseline_prior,
 std_dev_prior,
 weight_var = ""
)
```

Arguments

- `continuous_var` character. Name of continuous outcome variable in the model matrix
- `baseline_prior` Prior. Object of class `Prior` specifying prior distribution for the baseline outcome. See Details for more information.
- `std_dev_prior` Prior. Object of class `Prior` specifying prior distribution for the standard deviation of the outcome distribution (i.e. "sigma").
- `weight_var` character. Optional name of variable in model matrix for weighting the log likelihood.

Details

**Baseline Prior:**

The `baseline_prior` argument specifies the prior distribution for the intercept of the linear model. The interpretation of the `baseline_prior` differs slightly between borrowing methods selected.
Dynamic borrowing using `borrowing_hierarchical_commensurate()`: the `baseline_prior` for Bayesian Dynamic Borrowing refers to the intercept of the external control arm.

Full borrowing or No borrowing using `borrowing_full()` or `borrowing_none()`: the `baseline_prior` for these borrowing methods refers to the intercept for the internal control arm.

Value

Object of class `OutcomeContinuousNormal`.

See Also

Other outcome models: `outcome_bin_logistic()`, `outcome_surv_exponential()`, `outcome_surv_weibull_ph()`

Examples

```r
norm <- outcome_cont_normal(
 continuous_var = "tumor_size",
 baseline_prior = prior_normal(0, 100),
 std_dev_prior = prior_half_cauchy(1, 5)
)
```

```r
outcome_surv_exponential(time_var, cens_var, baseline_prior, weight_var = "")
```

Arguments

- `time_var` character. Name of time variable column in model matrix
- `cens_var` character. Name of the censorship variable flag in model matrix
- `baseline_prior` Prior. Object of class `Prior` specifying prior distribution for the baseline outcome. See `Details` for more information.
- `weight_var` character. Optional name of variable in model matrix for weighting the log likelihood.
Details

Baseline Prior:
The baseline_prior argument specifies the prior distribution for the baseline log hazard rate. The interpretation of the baseline_prior differs slightly between borrowing methods selected.

- Dynamic borrowing using borrowing_hierarchical_commsurate(): the baseline_prior for Bayesian Dynamic Borrowing refers to the log hazard rate of the external control arm.
- Full borrowing or No borrowing using borrowing_full() or borrowing_none(): the baseline_prior for these borrowing methods refers to the log hazard rate for the internal control arm.

Value

Object of class OutcomeSurvExponential.

See Also

Other outcome models: outcome_bin_logistic(), outcome_cont_normal(), outcome_surv_weibull_ph()

Examples

```r
es <- outcome_surv_exponential(
 time_var = "time",
 cens_var = "cens",
 baseline_prior = prior_normal(0, 1000)
)
```

Description

Weibull survival distribution (proportional hazards formulation)

Usage

```r
outcome_surv_weibull_ph(
 time_var,
 cens_var,
 shape_prior,
 baseline_prior,
 weight_var = ""
)
```
Arguments

- **time_var**: character. Name of time variable column in model matrix.
- **cens_var**: character. Name of the censorship variable flag in model matrix.
- **shape_prior**: Prior class object for the Weibull shape parameter. Default is `prior_exponential(beta = 0.0001)`.
- **baseline_prior**: Prior. Object of class `Prior` specifying prior distribution for the baseline outcome. See Details for more information.
- **weight_var**: character. Optional name of variable in model matrix for weighting the log likelihood.

Details

**Baseline Prior:**

The `baseline_prior` argument specifies the prior distribution for the baseline log hazard rate. The interpretation of the `baseline_prior` differs slightly between borrowing methods selected.

- **Dynamic borrowing using `borrowing_hierarchical_commensurate()`**: the `baseline_prior` for Bayesian Dynamic Borrowing refers to the log hazard rate of the external control arm.
- **Full borrowing or No borrowing using `borrowing_full()` or `borrowing_none()`**: the `baseline_prior` for these borrowing methods refers to the log hazard rate for the internal control arm.

Value

Object of class `OutcomeSurvWeibullPH`.

See Also

Other outcome models: `outcome_bin_logistic()`, `outcome_cont_normal()`, `outcome_surv_exponential()`

Examples

```r
ws <- outcome_surv_weibull_ph(
 time_var = "time",
 cens_var = "cens",
 shape_prior = prior_exponential(1),
 baseline_prior = prior_normal(0, 1000)
)
```

---

Plot Prior Objects

**Description**

Plot prior distributions as densities. Continuous distributions are plotted as curves and discrete distributions as bar plots.
Usage

## S4 method for signature 'Prior,missing'
plot(
  x,
  y,
  default_limits,
  dist_type = c("continuous", "discrete"),
  density_fun,
  add,
  ...
)

## S4 method for signature 'PriorNormal,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorExponential,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorHalfCauchy,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorBernoulli,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorBeta,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorCauchy,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorGamma,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorHalfNormal,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'PriorPoisson,missing'
plot(x, y, add = FALSE, ...)

## S4 method for signature 'UniformPrior,missing'
plot(x, y, add = FALSE, ...)

Arguments

x object inheriting from Prior

y Not used.

default_limits Numeric range to plot distribution over.
dist_type      Plot a continuous or discrete distribution.
density_fun    Function which takes a vector of values and returns a vector of density values.
add            logical. Add density to existing plot.
...            Optional arguments for plotting.

Details
Plot ranges are selected by default to show 99% of the density for unbounded distributions. The limits can be changed by specifying `xlim = c(lower, upper)`.

Colors, line types, and other typical `par()` parameters can be used.

Value
No return value, this function generates a plot in the current graphics device.

Examples

```
plot(prior_normal(1, 2))
plot(prior_exponential(0.1))
plot(prior_half_cauchy(0, 1), xlim = c(-20, 20))
plot(prior_half_cauchy(0, 2), xlim = c(-20, 20), col = 2, add = TRUE)
plot(prior_bernoulli(0.4), xlim = c(0, 15))
plot(prior_beta(2, 2))
plot(prior_cauchy(0, 1), xlim = c(-20, 20))
plot(prior_cauchy(0, 2), xlim = c(-20, 20), col = 2, add = TRUE)
plot(prior_gamma(0.1, 0.1))
plot(prior_half_normal(0, 1), xlim = c(-20, 20))
plot(prior_half_normal(0, 2), xlim = c(-20, 20), col = 2, add = TRUE)
plot(prior_poisson(5), xlim = c(0, 15))
plot(uniform_prior(1, 2), xlim = c(0, 3))
```

plot_pdf

**Plot Probability Density Function Values**

Description
Plot Probability Density Function Values

Usage

```
plot_pdf(x, y, ...)
```

Arguments
```
x values
y probability density values y = f(x)
... passed to `plot()`
```

Plots the density values as a curve with the lower vertical limit set to 0.
plot_pmf

Plot Probability Mass Function Values

Description
Plot Probability Mass Function Values

Usage
plot_pmf(x, y, ..., col = "grey", add = FALSE)

Arguments
x values
y probability mass values $y = f(x)$
... passed to plot() and rect()
col Fill color of bars.
add Add bars to existing plot.
Plots the probability values as a barplot.

Value
No return value, this function generates a plot in the current graphics device.

Examples
x <- seq(0, 5)
y <- dpois(x, lambda = 2)
plot_pmf(x, y)
poisson_prior

Legacy function for the poisson prior

Description

Please use prior_poisson() instead.

Usage

poisson_prior(...)

Arguments

...  Deprecated arguments to poisson_prior().

Value

This function does not return a value. When called, it triggers an error message indicating that poisson_prior() is deprecated and that prior_poisson() should be used instead.

possible_data_sim_vars

Get All Variable Names in Simulated Data Model Matrix

Description

Get All Variable Names in Simulated Data Model Matrix

Usage

possible_data_sim_vars(object)

Arguments

object  BaselineObject

Value

A vector of variable names
### Prior-class

**Description**

A class for defining priors to be translated to Stan code. Objects of class `Prior` should not be created directly but by one of the specific prior class constructors.

**Slots**

- `stan_code` character. Stan implementation of the prior, with placeholders for parameters surrounded with `{{` and `}}` to be replaced with `glue::glue()`.
- `n_param` integer. Number of prior parameters.
- `constraint` character. Support of prior distribution expressed as a Stan constraint, e.g. "<lower=0, upper=1>".

**See Also**

- Prior constructor functions: `prior_bernoulli()`, `prior_beta()`, `prior_cauchy()`, `prior_half_cauchy()`, `prior_gamma()`, `prior_normal()`, `prior_poisson()`, `uniform_prior()`
- Other prior classes: `PriorBernoulli-class`, `PriorBeta-class`, `PriorCauchy-class`, `PriorExponential-class`, `PriorGamma-class`, `PriorHalfCauchy-class`, `PriorHalfNormal-class`, `PriorNormal-class`, `PriorPoisson-class`, `UniformPrior-class`

### PriorBernoulli-class

**Description**

A class for defining bernoulli priors to be translated to Stan code. Objects of class `PriorBernoulli` should not be created directly but by the constructor `prior_bernoulli()`.

**Slots**

- `stan_code` character. Stan implementation of the prior, with placeholders for bernoulli stan function parameters surrounded with `{{` and `}}` to be replaced with `glue::glue()`.
- `n_param` integer. Number of prior parameters (1).
- `constraint` character. Support of prior distribution, "<lower=0, upper=1>".
- `theta` numeric. Probability (in [0, 1]).

**See Also**

- Other prior classes: `Prior-class`, `PriorBeta-class`, `PriorCauchy-class`, `PriorExponential-class`, `PriorGamma-class`, `PriorHalfCauchy-class`, `PriorHalfNormal-class`, `PriorNormal-class`, `PriorPoisson-class`, `UniformPrior-class`
PriorBeta-class

Description

A class for defining beta priors to be translated to Stan code. Objects of class PriorBeta should not be created directly but by the constructor prior_beta().

Slots

stan_code character. Stan implementation of the prior, with placeholders for beta stan function parameters surrounded with {{ and }} to be replaced with glue::glue().

n_param integer. Number of prior parameters (2).

constraint character. Support of prior distribution, "<lower=0, upper=1>".

alpha numeric. Shape (>=0).

beta numeric. Shape (>=0).

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorCauchy-class, PriorExponential-class, PriorGamma-class, PriorHalfCauchy-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class, UniformPrior-class

PriorCauchy-class

Description

A class for defining the cauchy priors to be translated to Stan code. Objects of class PriorCauchy should not be created directly but by the constructor prior_cauchy().

Slots

stan_code character. Stan implementation of the prior, with placeholders for cauchy stan function parameters surrounded with {{ and }} to be replaced with glue::glue().

n_param integer. Number of prior parameters (2).

constraint character. Support of prior distribution, (all values allowed in cauchy distribution).

mu numeric. Location.

sigma numeric. Scale (>0).

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorBeta-class, PriorExponential-class, PriorGamma-class, PriorHalfCauchy-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class, UniformPrior-class
PriorExponential-class

PriorExponential Class

Description

A class for defining exponential priors to be translated to Stan code. Objects of class PriorExponential should not be created directly but by the constructor prior_exponential().

Slots

stan_code character. Stan implementation of the prior, with placeholders for exponential Stan function parameters surrounded with {{ and }} to be replaced with glue::glue().
n_param integer. Number of prior parameters (1).
constraint character. Support of prior distribution, "<lower=0>".
beta numeric. Inverse scale (>0).

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorBeta-class, PriorCauchy-class, PriorExponential-class, PriorGamma-class, PriorHalfCauchy-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class, UniformPrior-class

PriorGamma-class

PriorGamma Class

Description

A class for defining gamma priors to be translated to Stan code. Objects of class PriorGamma should not be created directly but by the constructor prior_gamma().

Slots

stan_code character. Stan implementation of the prior, with placeholders for gamma Stan function parameters surrounded with {{ and }} to be replaced with glue::glue().
n_param integer. Number of prior parameters (2).
constraint character. Support of prior distribution, "<lower=0>".
alpha numeric. Shape (>0).
beta numeric. Inverse scale (>=0).

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorBeta-class, PriorCauchy-class, PriorExponential-class, PriorGamma-class, PriorHalfCauchy-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class, UniformPrior-class
PriorHalfCauchy-class

Description

A class for defining half cauchy priors to be translated to Stan code. Objects of class PriorHalfCauchy should not be created directly but by the constructor prior_half_cauchy().

Slots

stan_code character. Stan implementation of the prior, with placeholders for the half cauchy stan function parameters surrounded with \{\} and \} to be replaced with glue::glue().
n_param integer. Number of prior parameters (2).
constraint character. Support of prior distribution. In a half cauchy prior, constraint is mu numeric. Location.
sigma numeric. Scale (>0).

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorBeta-class, PriorCauchy-class, PriorExponential-class, PriorGamma-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class, UniformPrior-class

PriorHalfNormal-class

Description

A class for defining half normal priors to be translated to Stan code. Objects of class PriorHalfNormal should not be created directly but by the constructor prior_half_normal().

Slots

stan_code character. Stan implementation of the prior, with placeholders for the half normal stan function parameters surrounded with \{\} and \} to be replaced with glue::glue().
n_param integer. Number of prior parameters (2).
constraint character. Support of prior distribution. In a half normal prior, constraint is mu numeric. Location.
sigma numeric. Scale (>0).

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorBeta-class, PriorCauchy-class, PriorExponential-class, PriorGamma-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class, UniformPrior-class
**PriorNormal-class**  

**Description**  
A class for defining normal priors to be translated to Stan code. Objects of class `PriorNormal` should not be created directly but by the constructor `prior_normal()`.

**Slots**  
- `stan_code` character. Stan implementation of the prior, with placeholders for normal stan function parameters surrounded with `{{` and `}}` to be replaced with `glue::glue()`.
- `n_param` integer. Number of prior parameters (2).
- `constraint` character. Support of prior distribution, (all values allowed in normal distribution).
- `mu` numeric. Location.
- `sigma` numeric. Scale (>0).

**See Also**
- Other prior classes: `Prior-class`, `PriorBernoulli-class`, `PriorBeta-class`, `PriorCauchy-class`, `PriorExponential-class`, `PriorGamma-class`, `PriorHalfCauchy-class`, `PriorHalfNormal-class`, `PriorPoisson-class`, `UniformPrior-class`

---

**PriorPoisson-class**  

**Description**  
A class for defining poisson priors to be translated to Stan code. Objects of class `PriorPoisson` should not be created directly but by the constructor `prior_poisson()`.

**Slots**  
- `stan_code` character. Stan implementation of the prior, with placeholders for poisson stan function parameters surrounded with `{{` and `}}` to be replaced with `glue::glue()`.
- `n_param` integer. Number of prior parameters (1).
- `constraint` character. Support of prior distribution, "<lower=0>".
- `lambda` numeric. Rate (>0).

**See Also**
- Other prior classes: `Prior-class`, `PriorBernoulli-class`, `PriorBeta-class`, `PriorCauchy-class`, `PriorExponential-class`, `PriorGamma-class`, `PriorHalfCauchy-class`, `PriorHalfNormal-class`, `PriorNormal-class`, `UniformPrior-class`
**prior_bernoulli**  

Prior bernoulli distribution

**Usage**

```r
prior_bernoulli(theta)
```

**Arguments**

- `theta` numeric. Probability (in [0, 1]).

**Details**


**Value**

Object of class `PriorBernoulli`.

**See Also**

Other priors: `prior_beta()`, `prior_cauchy()`, `prior_exponential()`, `prior_gamma()`, `prior_half_cauchy()`, `prior_half_normal()`, `prior_normal()`, `prior_poisson()`, `uniform_prior()`

**Examples**

```r
bp <- prior_bernoulli(0.23)
```

---

**prior_beta**  

Prior beta distribution

**Usage**

```r
prior_beta(alpha, beta)
```

**Description**

Prior beta distribution

**Usage**

```r
prior_beta(alpha, beta)
```
Arguments

- alpha: numeric. Shape (>=0).
- beta: numeric. Shape (>=0).

Details


Value

Object of class `PriorBeta`

See Also

Other priors: `prior_bernoulli()`, `prior_cauchy()`, `prior_exponential()`, `prior_gamma()`, `prior_half_cauchy()`, `prior_half_normal()`, `prior_normal()`, `prior_poisson()`, `uniform_prior()`

Examples

```r
bp <- prior_beta(9, 235)
```

---

**prior_cauchy**

Prior cauchy distribution

Description

Prior cauchy distribution

Usage

`prior_cauchy(mu, sigma)`

Arguments

- mu: numeric. Location.
- sigma: numeric. Scale (>0).

Details


Value

Object of class `PriorCauchy`.
prior_exponential

See Also

Other priors: prior_bernoulli(), prior_beta(), prior_exponential(), prior_gamma(), prior_half_cauchy(), prior_half_normal(), prior_normal(), prior_poisson(), uniform_prior()

Examples

cp <- prior_cauchy(1, 1)

ep <- prior_exponential(1)
prior_gamma  

Prior gamma distribution

Usage

prior_gamma(alpha, beta)

Arguments

  alpha  
  numeric. Shape (>0).

  beta  
  numeric. Inverse scale (>=0).

Details


Value

Object of class PriorGamma.

See Also

Other priors: prior_bernoulli(), prior_beta(), prior_cauchy(), prior_exponential(), prior_half_cauchy(), prior_half_normal(), prior_normal(), prior_poisson(), uniform_prior()

Examples

```r
gp <- prior_gamma(0.001, 0.001)
```

prior_half_cauchy  

Prior half-cauchy distribution

Usage

prior_half_cauchy(mu, sigma)
prior_half_normal

Arguments

mu numeric. Location.
sigma numeric. Scale (>0).

Details


Value

Object of class PriorHalfCauchy.

See Also

Other priors: prior_bernoulli(), prior_beta(), prior_cauchy(), prior_exponential(), prior_gamma(), prior_half_normal(), prior_normal(), prior_poisson(), uniform_prior()

Examples

hcp <- prior_half_cauchy(1, 1)

prior_half_normal Prior half-normal distribution

Description

Prior half-normal distribution

Usage

prior_half_normal(mu, sigma)

Arguments

mu numeric. Location.
sigma numeric. Scale (>0).

Details


Value

Object of class PriorHalfNormal.
prior_normal

See Also

Other priors: `prior_bernoulli()`, `prior_beta()`, `prior_cauchy()`, `prior_exponential()`, `prior_gamma()`, `prior_half_cauchy()`, `prior_normal()`, `prior_poisson()`, `uniform_prior()``

Examples

```r
hcp <- prior_half_normal(1, 1)
```

---

**prior_normal**

Prior normal distribution

**Description**

Prior normal distribution

**Usage**

`prior_normal(mu, sigma)`

**Arguments**

- `mu` numeric. Location.
- `sigma` numeric. Scale (>0).

**Details**


**Value**

Object of class `PriorNormal`.

**See Also**

Other priors: `prior_bernoulli()`, `prior_beta()`, `prior_cauchy()`, `prior_exponential()`, `prior_gamma()`, `prior_half_cauchy()`, `prior_half_normal()`, `prior_poisson()`, `uniform_prior()``

**Examples**

```r
np <- prior_normal(1, 1)
```
prior_poisson

Prior poisson distribution

Usage

prior_poisson(lambda)

Arguments

lambda numeric. Rate (>0).

Details


Value

Object of class PriorPoisson.

See Also

Other priors: prior_bernoulli(), prior_beta(), prior_cauchy(), prior_exponential(), prior_gamma(), prior_half_cauchy(), prior_half_normal(), prior_normal(), uniform_prior()

Examples

pp <- prior_poisson(100)

rename_draws_covariates

Rename Covariates in draws Object

Description

Rename Covariates in draws Object

Usage

rename_draws_covariates(draws, analysis)
Arguments

- draws: draws created from sampled analysis object. See example.
- analysis: Analysis as created by `create_analysis_obj()`.

Value

A `draws[posterior::draws]` object with covariate names.

Examples

```r
if (check_cmdstan()) {
 analysis_object <- create_analysis_obj(
 data_matrix = example_matrix,
 covariates = add_covariates(
 covariates = c("cov1", "cov2"),
 priors = prior_normal(0, 1000)
),
 outcome = outcome_surv_exponential(
 "time",
 "cnsr",
 baseline_prior = prior_normal(0, 1000)
),
 borrowing = borrowing_hierarchical_commensurate(
 "ext",
 prior_exponential(.001)
),
 treatment = treatment_details(
 "trt",
 prior_normal(0, 1000)
)
)
 samples <- mcmc_sample(analysis_object, 200, 400, 1)
 draws <- samples$draws()
 renamed_draws <- rename_draws_covariates(draws, analysis_object)
 summary(renamed_draws)
}
```

---

**set_cut_off**

*Set Clinical Cut Off Rule*

**Description**

Set Clinical Cut Off Rule

**Usage**

```r
set_cut_off(object, internal = cut_off_none(), external = cut_off_none())
```
**Arguments**

object | DataSimObject  
internal | DataSimCutOff object specified by one of the cut off functions: cut_off_after_events(), cut_off_after_first(), cut_off_after_last(), cut_off_none().  
external | DataSimCutOff for the external data.

**Value**

A DataSimObject with updated cut_off_internal and cut_off_external slots.

**Examples**

```
data_sim <- create_data_simulation(
 create_baseline_object(10, 10, 10),
 event_dist = create_event_dist(dist = "exponential", lambdas = 1 / 36)
)
set_cut_off(
data_sim,
cut_off_after_events(n = 10),
cut_off_after_first(time = 30)
)
```

---

**set_dropout**

*Set Drop Out Distribution*

**Description**

Set Drop Out Distribution

**Usage**

```
set_dropout(object, internal_treated, internal_control, external_control)
```

**Arguments**

object | DataSimObject  
internal_treated | DataSimEvent object specifying distribution for internal treated patients.  
internal_control | DataSimEvent object specifying distribution for internal control patients.  
external_control | DataSimEvent object specifying distribution for external control patients.

**Details**

DataSimEvent objects can be specified with create_event_dist(). Currently no beta parameters can be used in drop out distributions (unlike for the survival outcome).
**set_enrollment**

**Value**

A DataSimObject with updated internal_treated, internal_control and external_control slots.

**Examples**

```r
data_sim <- create_data_simulation(
 create_baseline_object(10, 10, 10),
 event_dist = create_event_dist(dist = "exponential", lambdas = 1 / 36)
)
set_dropout(
data_sim,
 internal_treated = create_event_dist(dist = "exponential", lambdas = 1 / 55),
 internal_control = create_event_dist(dist = "exponential", lambdas = 1 / 50),
 external_control = create_event_dist(dist = "exponential", lambdas = 1 / 40)
)
```

**Description**

Set Enrollment Rates for Internal and External Trials

**Usage**

`set_enrollment(object, internal, external = internal)`

**Arguments**

- `object` A DataSimObject from `create_data_simulation`
- `internal` DataSimEnrollment object to define the enrollment times for internal data
- `external` DataSimEnrollment object to define the enrollment times for external data. Defaults to be the same as internal.

**Value**

A DataSimObject with updated enrollment_internal and enrollment_external slots.

**Examples**

```r
data_sim <- create_data_simulation(
 create_baseline_object(10, 10, 10),
 event_dist = create_event_dist(dist = "exponential", lambdas = 1 / 36)
)
set_enrollment(
data_sim,
 internal = enrollment_constant(rate = c(10, 5), for_time = c(6, 6)),
 external = enrollment_constant(rate = c(5), for_time = c(20))
)```
set_transformations

Set transformations in BaselineObject objects

Description

Set transformations in BaselineObject objects

Usage

set_transformations(object, ..., overwrite = FALSE)

Arguments

object BaselineObject object
... Additional arguments passed to methods
overwrite logical. Overwrite existing transformations?

Value

BaselineObject object with transformations

set_transformations,BaselineObject-method

Set Transformations in Baseline Objects

Description

Set Transformations in Baseline Objects

Usage

S4 method for signature 'BaselineObject'
set_transformations(object, ..., overwrite = FALSE)

Arguments

object BaselineObject created by create_baseline_object.
... named transformation functions. See details for more information.
overwrite If TRUE overwrite existing transformation list and only include newly specified transformations.
Transformation functions are evaluated in order and create or overwrite a column in the data.frame with that name. The function should have signature `function(data)`, taking a `data.frame` (specifically a `BaselineDataFrame` object from `generate(BaselineObject)`) and return a vector with length identical to the total number of patients. The `@BaselineObject` slot of the `BaselineDataFrame` may be accessed directly or with `get_quantiles()` to create transformations. See `binary_cutoff()`.

Value

An updated `BaselineObject`

Examples

```r
baseline <- create_baseline_object(
  100, 50, 100,
  covariates = baseline_covariates(
    names = "age", means_int = 55,
    covariance_int = covariance_matrix(5)
  )
)
set_transformations(baseline, age_scaled = function(data) scale(data$age))
```

Description

Show the guide in Simulation objects.

Usage

```r
show_guide(object)
```

Arguments

- `object` Simulation object

Value

A `data.frame` showing all simulation scenarios.
SimBorrowingList-class

SimBorrowingList Class

Description

A class for borrowing details as part of a simulation study. Objects of class SimBorrowingList should not be created directly but by the constructor sim_borrowing_list().

Slots

borrowing_list named list of object of class Borrowing, one object for each parameter variation.

SimCovariateList-class

SimCovariateList Class

Description

A class for covariate details as part of a simulation study. Objects of class SimCovariateList should not be created directly but by the constructor sim_covariate_list().

Slots

covariate_list named list of object of class Covariate, one object for each parameter variation.

SimCovariates-class

SimCovariates Class

Description

A class for specifying covariate distributions and covariance for simulation studies.

Slots

covariates list. List of covariate mean values or probabilities as generated through bin_var() (class SimVarBin or cont_var() (class SimVarCont).
covariance_internal matrix. Covariance matrix before binarization for internal patients.
covariance_external matrix. Covariance matrix before binarization for external patients.
SimDataList-class SimDataList Class

Description

A class for defining generated data for use as part of a simulation study. Objects of class SimDataList should not be created directly but by the constructor sim_data_list().

Slots

data_list list of lists of matrices. The lists at the highest level differ in that the parameters used to generate the data. The matrices at lowest level are different iterations of the same data generation parameters.

guide data frame. guide contains information on the parameters that differ at the highest level of data_list.

effect character. The column in guide that corresponds to the true treatment effect estimate (hazard ratio or odds ratio).

drift character. The column in guide that corresponds to the drift between external and internal control arms. A drift >1 means the external arm experiences greater effects.

index character. The column in guide that corresponds to the index of the parameter situations in data_list.

SimOutcomeList-class SimOutcomeList Class

Description

A class for outcome details as part of a simulation study. Objects of class SimOutcomeList should not be created directly but by the constructor sim_outcome_list().

Slots

outcome_list named list of object of class Outcome, one object for each parameter variation.
SimSampleSize-class

SimSampleSize Class

Description

A class for creating matrices for simulation studies containing flags specifying whether the patient is from the concurrent trial or not (ext = 0 for concurrent trial, ext = 1 for historical data) and whether the patient is on the experimental therapy or not (trt = 0 for no experimental therapy, trt = 1 for experimental therapy).

Slots

n_internal_control integer. Number of patients to be simulated in the internal control arm.
n_external_control integer. Number of patients to be simulated in the external control arm.
n_internal_experimental integer. Number of patients to be simulated in the internal experimental arm.
mat matrix. Matrix with two columns, ext (flag for being from external data source) and trt (flag for receiving experimental treatment)

SimTreatmentList-class

SimTreatmentList Class

Description

A class for treatment details as part of a simulation study. Objects of class SimTreatmentList should not be created directly but by the constructor sim_treatment_list().

Slots

treatment_list named list of object of class Treatment, one object for each parameter variation.
SimVarBin-class

Description

A constructor for making objects of class SimVarBin. Objects of class SimVarBin are used to hold proportions of binary variables specified in a simulation study.

SimVar-class

Description

A parent class for defining covariates to be created in the simulation study calls to add_covariates().

SimVarBin-class

Description

A constructor for making objects of class SimVarBin. Objects of class SimVarBin are used to hold proportions of binary variables specified in a simulation study.

Simulation-class

Description

A class for defining Simulation study details. Objects of class Simulation should not be created directly but by the constructor create_simulation_obj().

Slots

data_matrix_list SimDataList. The list of lists of data matrices created with sim_data_list().
outcome SimOutcomeList. List of Outcome objects created with sim_outcome_list().
borrowing SimBorrowingList. List of Borrowing objects created with sim_borrowing_list().
covariate SimCovariateList or NULL. List of Covariate objects created with sim_covariate_list() or NULL (no covariate adjustment).
treatment SimTreatmentList. List of Treatment objects created with sim_treatment_list().
guide data.frame. Data.frame containing information on all combinations evaluated.
n_combos integer. Number of combinations of parameters to be evaluated.
n_analyses integer. Number of analyses (combos x datasets to be performed).
‘analysis_obj_list‘ list. List of analysis objects indexed according to guide.
Slots

prob_internal numeric. Proportion for the internal arms.
prob_external numeric. Proportion for the external arm.
mu_internal_before_bin numeric. Mean value of covariate before binarization for the internal arms.
mu_external_before_bin numeric. Mean value of covariate before binarization for the external arm.
printval_int numeric. Value to print to summarize internal arms.
printval_ext numeric. Value to print to summarize external arm.
type_string character. 'binary'

See Also

Other simvar classes: SimVarCont-class
sim_borrowing_list

Input borrowing details for a simulation study

Description

A function for defining which borrowing scenarios should be evaluated as part of a simulation study.

Usage

```r
sim_borrowing_list(borrowing_list)
```

Arguments

- `borrowing_list`: named list of objects of class `Borrowing` created by `borrowing_full()`, `borrowing_none()`, or `borrowing_hierarchical_commensurate()`.

Value

Object of class `SimBorrowingList`.

See Also

Other simulation classes: `sim_covariate_list()`, `sim_data_list()`, `sim_outcome_list()`, `sim_treatment_list()`

Examples

```r
borrow_scenarios <- sim_borrowing_list(  
  list(  
    "No borrowing" = borrowing_none("ext"),  
    "Full borrowing" = borrowing_full("ext"),  
    "BDB, uninformative prior" = borrowing_hierarchical_commensurate(  
      "ext",  
      prior_gamma(0.001, 0.001)  
    ),  
    "BDB, informative prior" = borrowing_hierarchical_commensurate(  
      "ext",  
      prior_gamma(1, 0.001)  
    )  
  )
)
```
sim_covariates

Specify covariates for simulation study

Description

Provide details on the desired covariate distributions and covariance for for a simulation study.

Usage

```r
sim_covariates(
  covariates,
  covariance_internal,
  covariance_external = covariance_internal
)
```

Arguments

- `covariates` list. Named list of covariate mean values or probabilities as generated through `bin_var()` (class `SimVarBin`) or `cont_var()` (class `SimVarCont`). See details for more information.
- `covariance_internal` matrix. Covariance matrix before binarization for internal patients.
- `covariance_external` matrix. Covariance matrix before binarization for external patients. Defaults to the internal covariance.

Details

This function is intended to specify the number of covariates and relationships between them for the purposes of designing a simulation study in `psborrow2`. Because the outcome model does not necessarily need to adjust for covariates, this function is not necessary in `create_simulation_obj()`. The relationship between the treatment and the outcome is specified elsewhere (i.e, in `sim_survival()` or `sim_binary_event()`).

We need a few things to

Value

Object of class `SimCovariates`

See Also

Other simulation: `sim_samplesize()`
Examples

```r
set.seed(123)
covmat <- matrix(rWishart(1, 2, diag(2)), ncol = 2)

covset1 <- sim_covariates(
  covariates = list(
    cov1 = bin_var(0.5, 0.5),
    cov2 = cont_var(100, 130)
  ),
  covariance_internal = covmat
)
```

`sim_covariate_list`
Input covariate adjustment details for a simulation study

Description

A function for defining which covariate adjustment scenarios should be evaluated as part of a simulation study.

Usage

```r
sim_covariate_list(covariate_list)
```
Arguments

covariate_list named list of objects of class Covariate created by add_covariates().

Details

This function allows the user to specify covariate adjustment details that will be included as part of a simulation study. It is often of interest to compare several adjustment methods to no adjustment. To specify no adjustment, pass NULL as a list item to covariate_list.

Value

Object of class SimCovariateList.

See Also

Other simulation classes: sim_borrowing_list(), sim_data_list(), sim_outcome_list(), sim_treatment_list()

Examples

covariates <- sim_covariate_list(
 list(
 "No adjustment" = NULL,
 "Covariates 1 and 2" = add_covariates(c("cov1", "cov2"); prior_normal(0, 1000))
)
)

sim_data_list *Input generated data for a simulation study*

Description

A function for defining generated data for use as part of a simulation study.

Usage

sim_data_list(data_list, guide, effect, drift, index)

Arguments

data_list list of lists of matrices. The lists at the highest level differ in that the parameters used to generate the data. The matrices at lowest level are different iterations of the same data generation parameters. See details.

guide data.frame. guide contains information on the parameters that differ at the highest level of data_list. See details.

effect character. The column in guide that corresponds to the true treatment effect estimate (hazard ratio or odds ratio).
drift character. The column in guide that corresponds to the true drift effect estimate (hazard ratio or odds ratio). A drift > 1 means the external arm experiences greater effects.

index character. The column in guide that corresponds to the index column.

Details
In this function, you are providing generated data for analysis in a simulation study in psborrow2. Note that this function does not do any data generation on your behalf; it assumes that you have generated the data already. For a full working example, refer to the relevant vignette: vignette('simulation_study', package = 'psborrow2').

More information on the inputs is provided below.

Matrix requirements in data_list:
Each matrix embedded in data_list must have:
1. a flag for whether the patient is an external control
2. a flag for whether the patient is in the experimental treatment arm
3. outcome information (time and censorship for survival, flag for outcome in binary endpoints)

Optionally, the matrices may also contain covariates. See examples.

data_list:
Each set of distinct data generation parameters should be represented by a single list of matrices. Because multiple scenarios may want to be compared, a list of list of matrices is preferred. See examples.

guide:
The guide should be a data.frame with one row per scenario. As a consequence of this, the length of the list should equal the number of rows in the guide. See examples.

Value
Object of class SimDataList.

See Also
Other simulation classes: sim_borrowing_list(), sim_covariate_list(), sim_outcome_list(), sim_treatment_list()

Examples
```r
base_mat <- matrix(
  c(
    rep(0, 200), rep(0, 200), rep(1, 200),
    rep(1, 200), rep(0, 200), rep(0, 200),
    rep(0, 600)
  ),
  ncol = 3,
  dimnames = list(NULL, c("ext", "trt", "driftOR"))
)
```
add_binary_endpoint <- function(odds_ratio,
 base_matrix = base_mat) {
 linear_predictor <- base_matrix[, "trt"] * log(odds_ratio)
 prob <- 1 / (1 + exp(-linear_predictor))

 bin_endpoint <- rbinom(
 NROW(base_matrix),
 1,
 prob
)

 cbind(base_matrix, matrix(bin_endpoint, ncol = 1, dimnames = list(NULL, "ep")))
}

data_list <- list(
 list(add_binary_endpoint(1.5), add_binary_endpoint(1.5)),
 list(add_binary_endpoint(2.5), add_binary_endpoint(2.5))
)

guide <- data.frame(
 trueOR = c(1.5, 2.5),
 driftOR = c(1.0, 1.0),
 ind = c(1, 2)
)

sdl <- sim_data_list(
 data_list = data_list,
 guide = guide,
 effect = "trueOR",
 drift = "driftOR",
 index = "ind"
)

sim_outcome_list
Input outcome details for a simulation study

Description

A function for defining which outcome scenarios should be evaluated as part of a simulation study.

Usage

`sim_outcome_list(outcome_list)`

Arguments

- `outcome_list`: named list of objects of class `Outcome` created by `outcome_details()`.
Value

Object of class SimOutcomeList.

See Also

Other simulation classes: sim_borrowing_list(), sim_covariate_list(), sim_data_list(), sim_treatment_list()

Examples

```r
outcome_scenarios <- sim_outcome_list(
  list(
    "Exponential" = outcome_surv_exponential("time", "cnsr", prior_normal(0, 10000))
  )
)
```

sim_samplesize

Set simulation study parameters for sample size

Description

Set simulation study parameters for sample size

Usage

```r
sim_samplesize(n_internal_control, n_external_control, n_internal_experimental)
```

Arguments

- `n_internal_control`
 - integer. Number of patients to be simulated in the internal control arm.
- `n_external_control`
 - integer. Number of patients to be simulated in the external control arm.
- `n_internal_experimental`
 - integer. Number of patients to be simulated in the internal experimental arm.

Value

Object of class SimSampleSize

See Also

Other simulation: sim_covariates()

Examples

```r
ss <- sim_samplesize(200, 200, 500)
```
sim_treatment_list

Input treatment details for a simulation study

Description

A function for defining which treatment scenarios should be evaluated as part of a simulation study.

Usage

```r
sim_treatment_list(treatment_list)
```

Arguments

- `treatment_list` named list of objects of class `Treatment` created by `treatment_details()`.

Value

Object of class `SimTreatmentList`.

See Also

Other simulation classes: `sim_borrowing_list()`, `sim_covariate_list()`, `sim_data_list()`, `sim_outcome_list()`

Examples

```r
treatment_scenarios <- sim_treatment_list(
  list(
      "Standard" = treatment_details("trt", prior_normal(0, 1000))
  )
)
```

TimeToEvent-class

TimeToEvent class

Description

TimeToEvent class
Slots

function_stan_code character. Code to include in the Stan functions program block.

param_stan_code character. Code to include in the Stan parameters program block.

likelihood_stan_code character. Code defining the likelihood to include in the Stan model program block.

data_stan_code character. Code to include in the Stan data program block.

n_param integer. Number of ancillary parameters for the model to estimate.

param_priors list. Named list of prior distributions on the ancillary parameters in the model.

time_var character. Variable used for time in TimeToEvent objects.

cens_var character. Variable used for censoring in TimeToEvent objects.

baseline_prior Prior. Object of class Prior specifying prior distribution for the baseline outcome.

name_beta_trt. Named vector for beta_trt.

name_exp_trt. Named vector for exponentiated beta_trt

alpha_type. How to interpret alpha.

name_addnl_params. Named vector for additional parameters.

See Also

Other outcome: BinaryOutcome-class, ContinuousOutcome-class, Outcome-class, OutcomeBinaryLogistic-class, OutcomeContinuousNormal-class, OutcomeSurvExponential-class, OutcomeSurvWeibullPH-class

<table>
<thead>
<tr>
<th>Treatment-class</th>
<th>Treatment Class</th>
</tr>
</thead>
</table>

Description

A class for defining treatment details. Objects of class Treatment should not be created directly but by the constructor treatment_details().

Slots

trt_flag_col character. Character specifying the name of the column in the model matrix that corresponds to the treatment flag (1/0 or TRUE/FALSE). This identifies patients as belonging to the experimental treatment arm.

trt_prior Prior. Object of class Prior specifying the prior distribution of the log effect estimate (log hazard ratio for time to event endpoints and log odds ratio for binary endpoints).
treatment_details

Specify Treatment Details

Description

Specify the treatment arm column name in the model matrix and set a prior distribution for the treatment effect (log hazard ratio or log odds ratio).

Usage

treatment_details(trt_flag_col, trt_prior)

Arguments

- `trt_flag_col` character. The name of the column in the model matrix that corresponds to the treatment flag (1/0 or TRUE/FALSE). This identifies patients as belonging to the experimental treatment arm.
- `trt_prior` Object of class `Prior` specifying the prior distribution of the log effect estimate (log hazard ratio for time to event endpoints and log odds ratio for binary endpoints).

Value

Object of class `Treatment`.

Examples

```r
sta <- treatment_details(
  trt_flag_col = "trt",
  trt_prior = prior_normal(0, 1000)
)
```

trim_cols

Trim columns from Data Matrix Based on Borrowing object type

Description

Trim columns from Data Matrix Based on Borrowing object type

Usage

trim_cols(borrowing_object, analysis_object)

S4 method for signature 'Borrowing'
trim_cols(borrowing_object, analysis_object)

S4 method for signature 'BorrowingHierarchicalCommensurate'
trim_cols(borrowing_object, analysis_object)
Arguments

borrowing_object
borrowing object

analysis_object
analysis object

trim_rows
Trim Rows from Data Matrix Based on Borrowing object type

Description
Trim Rows from Data Matrix Based on Borrowing object type

Usage

trim_rows(borrowing_object, analysis_object)

S4 method for signature 'Borrowing'
trim_rows(borrowing_object, analysis_object)

S4 method for signature 'BorrowingNone'
trim_rows(borrowing_object, analysis_object)

Arguments

borrowing_object
borrowing object

analysis_object
analysis object

UniformPrior-class
UniformPrior Class

Description
A class for defining uniform priors to be translated to Stan code. Objects of class UniformPrior should not be created directly but by the constructor uniform_prior().

Slots

stan_code character. Stan implementation of the prior, with placeholders for uniform stan function parameters surrounded with {{ and }} to be replaced with glue::glue().

n_param integer. Number of prior parameters (2).

constraint character. Support of prior distribution, "<lower=alpha, upper=beta>".

alpha numeric. Lower bound.

beta numeric. Upper bound (>$alpha).
uniform_prior

See Also

Other prior classes: Prior-class, PriorBernoulli-class, PriorBeta-class, PriorCauchy-class, PriorExponential-class, PriorGamma-class, PriorHalfCauchy-class, PriorHalfNormal-class, PriorNormal-class, PriorPoisson-class

uniform_prior Prior uniform distribution

Description

Prior uniform distribution

Usage

uniform_prior(alpha, beta)

Arguments

alpha numeric. Lower bound.
beta numeric. Upper bound (>alpha).

Details

Value

Object of class UniformPrior.

See Also

Other priors: prior_bernoulli(), prior_beta(), prior_cauchy(), prior_exponential(), prior_gamma(), prior_half_cauchy(), prior_half_normal(), prior_normal(), prior_poisson()

Examples

up <- uniform_prior(0, 1)
variable_dictionary

Create Variable Dictionary

Description
Create Variable Dictionary

Usage
variable_dictionary(analysis_obj)

Arguments
analysis_obj Analysis. Object to describe variable names.

Value
A data.frame with the names of Stan variables and the descriptions.

weib_ph_surv_dist

Legacy function for the Weibull proportional Hazards survival distribution

Description
Please use outcome_surv_weibull_ph() instead.

Usage
weib_ph_surv_dist(...)

Arguments
... Deprecated arguments to weib_ph_surv_dist().

Value
This function does not return a value. When called, it triggers an error message indicating that weib_ph_surv_dist() is deprecated and that outcome_surv_weibull_ph() should be used instead.
Index

* borrowing classes
 Borrowing-class, 13
 BorrowingFull-class, 14
 BorrowingHierarchicalCommensurate-class, 14
 BorrowingNone-class, 15
* borrowing
 borrowing_full, 16
 borrowing_none, 18
* datasets
 example_matrix, 38
 example_surv, 38
* outcome models
 outcome_bin_logistic, 57
 outcome_cont_normal, 58
 outcome_surv_exponential, 59
 outcome_surv_weibull_ph, 60
* outcome
 BinaryOutcome-class, 11
 ContinuousOutcome-class, 22
 Outcome-class, 53
 OutcomeBinaryLogistic-class, 54
 OutcomeContinuousNormal-class, 55
 OutcomeSurvExponential-class, 55
 OutcomeSurvWeibullPH-class, 56
 TimeToEvent-class, 95
* prior classes
 Prior-class, 66
 PriorBernoulli-class, 66
 PriorBeta-class, 67
 PriorCauchy-class, 67
 PriorExponential-class, 68
 PriorGamma-class, 68
 PriorHalfCauchy-class, 69
 PriorHalfNormal-class, 69
 PriorNormal-class, 70
 PriorPoisson-class, 70
 UniformPrior-class, 98
* priors
 prior_bernoulli, 71
 prior_beta, 71
 prior_cauchy, 72
 prior_exponential, 73
 prior_gamma, 74
 prior_half_cauchy, 74
 prior_half_normal, 75
 prior_normal, 76
 prior_poisson, 77
 uniform_prior, 99
* simulation classes
 sim_borrowing_list, 88
 sim_covariate_list, 90
 sim_data_list, 91
 sim_outcome_list, 93
 sim_treatment_list, 95
* simulation
 sim_covariates, 89
 sim_samplesize, 94
* simvar classes
 SimVarBin-class, 86
 SimVarCont-class, 87
* simvar
 bin_var, 12
 cont_var, 22
 .analysis_obj (Analysis-class), 6
 .baseline_data_list (BaselineDataList-class), 8
 .baseline_dataframe (BaselineDataFrame-class), 8
 .baseline_object (BaselineObject-class), 9
 .bin_var (SimVarBin-class), 86
 .borrowing_full (BorrowingFull-class), 14
 .borrowing_hierarchical_commensurate (BorrowingHierarchicalCommensurate-class), 14
 .borrowing_none (BorrowingNone-class),

101
get_vars, TimeToEvent-method (get_vars), 45
get_vars, Treatment-method (get_vars), 45

half_cauchy_prior, 47
half_normal_prior, 47

logistic_bin_outcome, 48

make_model_string_model, 48
make_model_string_model, ANY, ANY, Analysis-method
(making_model_string_model), 48
make_model_string_model, BorrowingFull, ANY, Analysis-method
(making_model_string_model), 48
make_model_string_model, BorrowingHierarchicalCommensurate, ANY, Analysis-method
(making_model_string_model), 48
make_model_string_model, BorrowingNone, ANY, Analysis-method
(making_model_string_model), 48

mcmc_sample, 50
mcmc_sample, Analysis-method
(mcmc_sample), 50
mcmc_sample, ANY-method (mcmc_sample), 50
mcmc_sample, Simulation-method
(mcmc_sample), 50

MCMCSimulationResult-class, 49

normal_prior, 53
null_event_dist (create_event_dist), 29

Outcome, 25
Outcome-class, 53
outcome_bin_logistic, 57, 59–61
outcome_bin_logistic(), 25, 54
outcome_cont_normal, 58, 58, 60, 61
outcome_cont_normal(), 55
outcome_surv_exponential, 58, 59, 59, 61
outcome_surv_exponential(), 25, 55
outcome_surv_weibull_ph, 58–60, 60
outcome_surv_weibull_ph(), 25, 56
OutcomeBinaryLogistic, 58
OutcomeBinaryLogistic-class, 54
OutcomeContinousNormal, 59
OutcomeContinousNormal-class, 55
OutcomeSurvExponential, 60
OutcomeSurvExponential-class, 55
OutcomeSurvWeibullPH, 61
OutcomeSurvWeibullPH-class, 56
par(), 63
plot(), 61
plot(), 63, 64
plot, Prior, missing-method (plot), 61
plot, PriorBernoulli, missing-method (plot), 61
plot, PriorBeta, missing-method (plot), 61
plot, PriorCauchy, missing-method (plot), 61
plot, PriorExponential, missing-method (plot), 61
plot, PriorGamma, missing-method (plot), 61
plot, PriorHalfCauchy, missing-method (plot), 61
plot, PriorHalfNormal, missing-method (plot), 61
plot, PriorNormal, missing-method (plot), 61
plot, PriorPoisson, missing-method (plot), 61
plot, UniformPrior, missing-method (plot), 61
plot_pdf, 63
plot_pmf, 64

poisson_prior, 65
possible_data_sim_vars, 65
posterior::draws, 78
Prior-class, 66
prior_bernoulli, 71, 72–77, 99
prior_bernoulli(), 66
prior_beta, 71, 71, 73–77, 99
prior_beta(), 66, 67
prior_cauchy, 71, 72, 72, 73–77, 99
prior_cauchy(), 66, 67
prior_exponential, 71–73, 73, 74–77, 99
prior_exponential(), 68
prior_gamma, 71–73, 74, 75–77, 99
prior_gamma(), 66, 68
prior_half_cauchy, 71–74, 74, 76, 77, 99
prior_half_cauchy(), 66, 69
prior_half_normal, 71–75, 75, 76, 77, 99
prior_half_normal(), 69
prior_normal, 71–76, 76, 77, 99
prior_normal(), 66, 70
prior_poisson, 71–76, 77, 99
prior_poisson(), 66, 70
PriorBernoulli, 71
PriorBernoulli-class, 66

glue::glue(), 66–70, 98

logistic_bin_outcome, 48
PriorBeta, 72
PriorBeta-class, 67
PriorCauchy, 72
PriorCauchy-class, 67
PriorExponential, 73
PriorExponential-class, 68
PriorGamma, 74
PriorGamma-class, 68
PriorHalfCauchy, 75
PriorHalfCauchy-class, 69
PriorHalfNormal, 75
PriorHalfNormal-class, 69
PriorNormal, 76
PriorNormal-class, 70
PriorPoisson, 77
PriorPoisson-class, 70
rect(), 64
rename_draws_covariates, 77
set_cut_off, 78
set_dropout, 79
set_enrollment, 80
set_transformations, 81
set_transformations, BaselineObject-method, 81
show_guide, 82
show_guide, Simulation-method
(show_guide), 82
sim_borrowing_list, 88, 91, 92, 94, 95
sim_covariate_list, 88, 90, 92, 94, 95
sim_covariates, 89, 94
sim_covariates_summ, 90
sim_data_list, 88, 91, 92, 94, 95
sim_outcome_list, 88, 91, 92, 93, 95
sim_samplesize, 89, 94
sim_treatment_list, 88, 91, 92, 94, 95
SimBorrowingList, 88
SimBorrowingList-class, 83
SimCovariateList, 91
SimCovariateList-class, 83
SimCovariates-class, 83
SimDataList, 19, 41, 42, 92
SimDataList-class, 84
SimOutcomeList, 94
SimOutcomeList-class, 84
SimSampleSize-class, 85
simsurv::simsurv, 29
simsurv::simsurv(), 35
SimTreatmentList, 95
SimTreatmentList-class, 85
Simulation, 31
Simulation-class, 86
SimVar-class, 86
SimVarBin, 13
SimVarBin-class, 86
SimVarCont, 23
SimVarCont-class, 87
TimeToEvent-class, 95
Treatment, 25, 97
Treatment-class, 96
treatment_details, 97
treatment_details(), 25, 96
trim_cols, 97
trim_cols, Borrowing-method (trim_cols), 97
trim_cols, BorrowingHierarchicalCommensurate-method (trim_cols), 97
trim_rows, 98
trim_rows, Borrowing-method (trim_rows), 98
trim_rows, BorrowingNone-method (trim_rows), 98
uniform_prior, 71–77, 99
uniform_prior(), 66, 98
UniformPrior, 99
UniformPrior-class, 98
variable_dictionary, 100
weib_ph_surv_dist, 100