Package ‘pspatreg’

November 16, 2022

Type Package
Title Spatial and Spatio-Temporal Semiparametric Regression Models
 with Spatial Lags
Version 1.0.6
Date 2022-11-16
Maintainer Roman Minguez <roman.minguez@uclm.es>
Description Estimation and inference of spatial and spatio-temporal
semiparametric models including spatial or spatio-temporal non-parametric
trends, parametric and non-parametric covariates and, possibly, a spatial
lag for the dependent variable and temporal correlation in the noise.
The spatio-temporal trend can be decomposed in ANOVA way including main and
interaction functional terms. Use of SAP algorithm to estimate the spatial
or spatio-temporal trend and non-parametric covariates. The methodology of
these models can be found in next references
Basile, R. et al. (2014), <doi:10.1016/j.jedc.2014.06.011>;
particularly referred to the focus of the package, Minguez, R.,
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 4.1), methods (>= 4.1), stats (>= 4.1), graphics (>=
4.1)
Imports AmesHousing (>= 0.0.4), dplyr (>= 1.0.10), fields (>= 14.1),
ggplot2 (>= 3.3.6), grDevices (>= 4.1), MBA (>= 0.0-9), MASS
(>= 7.3-54), minqa (>= 1.2.5), Matrix (>= 1.4-1), numDeriv (>=
2016.8-1.1), plm (>= 2.6-2), Rdpack (>= 2.4), sf (>= 1.0-8),
spatialreg (>= 1.2-6), spdep (>= 1.2-7), splines (>= 4.2.1),
stringr (>= 1.4.1)
Suggests knitr (>= 1.40), rmarkdown (>= 2.18)
RoxygenNote 7.2.1
VignetteBuilder knitr
topics documented:

Rd_macros Rdpack

URL https://github.com/rominsal/pspatreg

BugReports https://github.com/rominsal/pspatreg/issues

NeedsCompilation no

Author Roman Minguez [aut, cre] (<https://orcid.org/0000-0002-0490-3181>),
 Roberto Basile [aut] (<https://orcid.org/0000-0002-4531-2820>),
 Maria Durban [aut] (<https://orcid.org/0000-0002-4272-7895>),
 Gonzalo Espana-Heredia [aut]

Repository CRAN

Date/Publication 2022-11-16 22:20:02 UTC

R topics documented:

 fit_terms 3
 impactsnopar 5
 impactspar 8
 lwsp_it 11
 map_it 12
 methods_pspatreg 12
 plot_impactsnopar 15
 plot_sp2d 18
 plot_sp3d 20
 plot_sptime 22
 plot_terms 24
 print.summary.impactspar.pspatreg 26
 print.summary.pspatreg 27
 prod_it 28
 pspatfit 29
 pspatreg 41
 pspl_terms 46
 summary.impactspar.pspatreg 51
 summary.pspatreg 53
 unemp_it 54
 Wsp_it 55

Index 56
fit_terms

Compute terms of the non-parametric covariates in the semiparametric regression models.

Description

The `fit_terms` function computes both:

- Non-parametric spatial (2d) or spatio-temporal (3d) trends including the decomposition in main and interaction trends when the model is ANOVA.
- Smooth functions $f(x_i)$ for non-parametric covariates in semiparametric models. It also includes standard errors and the decomposition of each non-parametric term in fixed and random parts.

Usage

`fit_terms(object, variables, intercept = FALSE)`

Arguments

- `object` object fitted using `pspatfit` function.
- `variables` vector including names of non-parametric covariates. To fit the terms of non-parametric spatial (2d) or spatio-temporal (3d) trend this argument must be set equal to 'spttrend'. See examples in this function.
- `intercept` add intercept to fitted term. Default = FALSE.

Value

A list including:

- `fitted_terms` Matrix including terms in columns.
- `se_fitted_terms` Matrix including standard errors of terms in columns.
- `fitted_terms_fixed` Matrix including fixed part of terms in columns.
- `se_fitted_terms_fixed` Matrix including standard errors of fixed part of terms in columns.
- `fitted_terms_random` Matrix including random part of terms in columns.
- `se_fitted_terms_random` Matrix including standard errors of random part of terms in columns.

This object can be used as an argument of `plot_terms` function to make plots of both non-parametric trends and smooth functions of covariates. See examples below.

Author(s)

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
References

See Also

- `pspatfit` estimate spatial or spatio-temporal semiparametric regression models. The model can be of type `ps-sim`, `ps-sar`, `ps-slx`, `ps-sem`, `ps-sdm` or `ps-sarar`.
- `plot_terms` plot smooth functions of non-parametric covariates.

Examples

```r
# Examples using a panel data of rate of unemployment in 103 Italian provinces during the period 1996-2014.
library(pspatreg)
data(unemp_it, package = "pspatreg")
lwsp_it <- spdep::mat2listw(Wsp_it)

# No Spatial Trend: PSAR including a spatial lag of the dependent variable
form1 <- unrate ~ partrate + agri + cons +
         pspl(serv, nknots = 15) +
         pspl(empgrowth, nknots = 20)
gamsar <- pspatfit(form1, data = unemp_it,
                   listw = lwsp_it)
summary(gamsar)

# Fit non-parametric terms
(list_varnopar <- c("serv", "empgrowth")
terms_nopar <- fit_terms(gamsar, list_varnopar)

plot_terms(terms_nopar, unemp_it)
```

Gonzalo Espana-Heredia <gehllanza@gmail.com>
impactsnopar

Compute direct, indirect and total impacts functions for continuous non-parametric covariates in semiparametric spatial regression models.

Description

Compute and plot direct, indirect and total impact functions for non-parametric covariates included in a semiparametric spatial or spatio-temporal econometric model. This model must include a spatial lag of the dependent variable and/or non-parametric covariates, to have indirect impacts different from 0, otherwise, total and direct function impacts are the same. The models can be of type ps-sar, ps-sarar, ps-sdm, ps-sdem or ps-slx.

Usage

```r
impactsnopar(
  obj,
  listw = NULL,
  alpha = 0.05,
  viewplot = TRUE,
  smooth = TRUE,
  span = c(0.1, 0.1, 0.2)
)
```

Arguments

- **obj**
 `pspatfit` object fitted using `pspatfit` function.
- **listw**
 should be a spatial neighbours list object created for example by `nb2listw` from `spdep` package. It can also be a spatial weighting matrix of order (NxN) instead of a listw neighbours list object.
- **alpha**
 numerical value for the significance level of the pointwise confidence interval of the impact functions. Default 0.05.
- **viewplot**
 Default ‘TRUE’ to plot impacts. If FALSE use `plot_impactsnopar` to plot impacts
- **smooth**
 Default ‘TRUE’. Whether to smooth fitted impacts or not.
- **span**
 span for the kernel of the smoothing (see `loess` for details). Default c(0.1, 0.1, 0.2)

Details

To compute the impact functions of the non-parametric covariates, first it is used the function `fit_terms` to get fitted values of the terms and standard errors of the fitted values for each non-parametric covariate. Then, the intervals for the fitted term are computed as

```
fitted_values plus/minus quantile*standard errors
```
where $quantile$ is the corresponding quantile of the N(0,1) distribution. The total impact function is computed as:

$$\text{solve(kronecker}((I_N - \rho \times W_N), \text{It}), \text{fitted_values})$$

where $(I_N - \rho \times W_N)$ matrix is the spatial lag matrix and It is an identity matrix of order equals to the temporal periods (t). Obviously, $t = 1$ for pure spatial econometric models. The upper and lower bounds of the total impact functions are computed using the previous formula but using fitted_values plus/minus $quantile \times \text{standard errors}$ instead of fitted_values.

The direct impacts function is computed using the formula:

$$\text{diag(solve(kronecker}((I_N - \rho \times W_N), \text{I}), \text{diag(fitted_values}))}$$

that is, the fitted values are put in the main diagonal of a diagonal matrix and, afterwards, the spatial lag is applied over this diagonal matrix. Finally, the main diagonal of the resulting matrix is considered the direct impact function. The upper and lower bounds of the direct impact functions are computed using the previous formula but using fitted_values plus/minus $quantile \times \text{standard errors}$ instead of fitted_values.

Eventually, the indirect impacts function are computed as the difference between both total and direct impact functions, that is:

$$\text{indirect impact function} = \text{total impacts function} - \text{direct impacts function}$$

In this way we can get both, the indirect impact functions and upper and lower bounds of the indirect impact functions.

It is important to remark that, usually, the indirect impact functions are very wiggly. To get ride of this problem, the argument smooth (default = ‘TRUE’) allows to smooth the impacts function using the loess function available in stats. This is very convenient when the indirect impacts function is plotted.

Value

A list including

- impnopar_tot
- impnopar_dir
- impnopar_ind
- impnopar_tot_up
- impnopar_dir_up
- impnopar_ind_up
- impnopar_tot_low
- impnopar_dir_low
- impnopar_ind_low

Matrix including total impacts in columns.
Matrix including direct impacts in columns.
Matrix including indirect impacts in columns.
Matrix including upper bounds of total impacts in columns.
Matrix including upper bounds of direct impacts in columns.
Matrix including upper bounds of indirect impacts in columns.
Matrix including lower bounds of total impacts in columns.
Matrix including lower bounds of direct impacts in columns.
Matrix including lower bounds of indirect impacts in columns.
Author(s)

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

References

See Also

- `pspatfit` estimate spatial or spatio-temporal semiparametric regression models.
- `impactspar` compute and simulate total, direct and indirect impacts for parametric continuous covariates.
- `fit_terms` compute terms for smooth functions for non-parametric continuous covariates and for non-parametric trends.
- `plot_impactsnopar` plot the non-parametric impacts functions allowing for previous smoothing.

Examples

```
# Examples using spatial data of Ames Houses.
library(pspatreg)
library(spdep)
library(sf)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
```
impactspar

Compute direct, indirect and total impacts for continous parametric covariates.

```r
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <- ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total Bsmt_SF+1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE), ]
form1 <- lnSale_Price ~ Fireplaces + Garage_Cars +
         pspl(lnLot_Area, nknots = 20) +
         pspl(lnTotal_Bsmt_SF, nknots = 20) +
         pspl(lnGr_Liv_Area, nknots = 20)

################ Constructing the spatial weights matrix
coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude)
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5,
                          longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
lw_ames <- nb2listw(k5nb, style = "W",
                    zero.policy = FALSE)
gamsar <- pspatfit(form1, data = ames_sf1,
                   type = "sar", listw = lw_ames,
                   method = "Chebyshev")
summary(gamsar)
nparimpacts <- impactsnopar(gamsar, listw = lw_ames, viewplot = TRUE)

library(pspatreg)
data(unemp_it, package = "pspatreg")
## Wsp_it is a matrix. Create a neighboord list
lwsp_it <- spdep::mat2listw(Wsp_it)
###### No Spatial Trend: PSAR including a spatial
###### lag of the dependent variable
form1 <- unrate ~ partrate + agri + cons + empgrowth +
         pspl(serv, nknots = 15)
gamsar <- pspatfit(form1,
                  data = unemp_it,
                  type = "sar",
                  listw = lwsp_it)
summary(gamsar)

#### Non-Parametric Total, Direct and Indirect impacts
imp_nparvar <- impactsnopar(gamsar,
                            listw = lwsp_it,
                            viewplot = TRUE)
```
impactspar

Description

Compute direct, indirect and total impacts for parametric covariates included in a semiparametric spatial or spatio-temporal model. The models can be of type \textit{ps-sar}, \textit{ps-sarar}, \textit{ps-sdm}, \textit{ps-sdem} or \textit{ps-slx}.

Usage

\begin{verbatim}
impactspar(obj, ..., tr = NULL, R = 1000, listw = NULL, tol = 1e-06, Q = NULL)
\end{verbatim}

Arguments

- \texttt{obj} A ‘pspatreg’ object created by \texttt{pspatfit}.
- \ldots Arguments passed through to methods in the \texttt{coda} package
- \texttt{tr} A vector of traces of powers of the spatial weights matrix created using \texttt{trW}, for approximate impact measures; if not given, \texttt{listw} must be given for exact measures (for small to moderate spatial weights matrices); the traces must be for the same spatial weights as were used in fitting the spatial regression, and must be row-standardised
- \texttt{R} If given, simulations are used to compute distributions for the impact measures, returned as \texttt{mcmc} objects; the objects are used for convenience but are not output by an MCMC process
- \texttt{listw} If \texttt{tr} is not given, a spatial weights object as created by \texttt{nb2listw}; they must be the same spatial weights as were used in fitting the spatial regression, but do not have to be row-standardised
- \texttt{tol} Argument passed to \texttt{mvrnorm}: tolerance (relative to largest variance) for numerical lack of positive-definiteness in the coefficient covariance matrix
- \texttt{Q} default \texttt{NULL}, else an integer number of cumulative power series impacts to calculate if \texttt{tr} is given

Details

This function is similar to the \texttt{impacts} method used in \texttt{spatialreg} package. The function \texttt{impactspar} obtains the three type of impacts (total, direct and indirect) together with a measure of statistical significance, according to the randomization approach described in LeSage and Pace (2009). Briefly, they suggest to obtain a sequence of \texttt{nsim} random matrices using a multivariate normal distribution $N(0; Sigma)$, being \textit{Sigma} the estimated covariance matrix of the fitted \textit{beta} for parametric covariates and spatial parameters of the model. These random matrices, combined with the values of the fitted \textit{beta} for parametric covariates and the estimated values of the spatial parameters, are used to obtain simulated values. The function \texttt{impactspar} obtains the standard deviations using the \texttt{nsim} simulated impacts in the randomization procedure, which are used to test the significance of the estimated impacts for the original data. Finally, if the spatial model is type = "slx" or "sdem", then there is no need to simulate to make inference of the impacts. The standard errors of the impacts are computed directly using the \textit{Sigma} matrix of the estimated covariances of \textit{beta} and spatial parameters.
Value

An object of class impactspar.pspatreg. Can be printed with summary.

If type = "sar", "sdm", "sarar", the object returned is a list with 4 objects including the type of model and three matrices including the simulated total, direct and indirect impacts:

- **type**: Type of spatial econometric model.
- **mimpactstot**: Matrix including simulated total impacts for each variable in rows.
- **mimpactsdir**: Matrix including simulated direct impacts for each variable in rows.
- **mimpactsind**: Matrix including simulated indirect impacts for each variable in rows.

If type = "slx", "sdem" the object returned is a list with 5 objects including the type of model and four matrices including the computed total, direct and indirect impacts, the standard errors, the z-values and p-values of each type of impact:

- **type**: Type of spatial econometric model.
- **mimpact**: Matrix including computed total, direct and indirect impacts for each variable in rows.
- **semimpact**: Matrix including standard errors of total, direct and indirect impacts for each variable in rows.
- **zvalmimpact**: Matrix including z-values of total, direct and indirect impacts for each variable in rows.
- **pvalmimpact**: Matrix including p-values of total, direct and indirect impacts for each variable in rows.

References

See Also

- **pspatfit** estimate spatial or spatio-temporal semiparametric ps-sar, ps-sem, ps-sarar, ps-slx or ps-durbin regression models.
- **impactsnopar** compute total, direct and indirect impact functions for non-parametric continuous covariates.
- **fit_terms** compute smooth term functions for non-parametric continuous covariates.
- **impacts** similar function in spdep package to compute impacts in spatial parametric econometric models.

Examples

```r
################################################
#### Examples using a panel data of rate of unemployment for 103 Italian provinces in period 1996-2014.
library(pspatreg)
data(unemp_it, package = "pspatreg")
## Wsp_it is a matrix. Create a neighboord list
lwsp_it <- spdep::mat2listw(Wsp_it)
## short sample for spatial pure case (2d)
#### No Spatial Trend: PSAR including a spatial
```
lag of the dependent variable

```
form1 <- unrate ~ partrate + agri + cons + empgrowth + pspl(serv, nknots = 15)
### example with type = "sar"
gamsar <- pspatfit(form1,  
                   data = unemp_it,  
                   type = "sar",  
                   listw = lwsp_it)
summary(gamsar)
```

Parametric Total, Direct and Indirect Effects

```
imp_parvar <- impactspar(gamsar, listw = lwsp_it)
summary(imp_parvar)
```

example with type = "slx"

```
gamslx <- pspatfit(form1,  
                   data = unemp_it,  
                   type = "slx",  
                   listw = lwsp_it)
summary(gamslx)
```

Parametric Total, Direct and Indirect Effects

```
imp_parvarslx <- impactspar(gamslx, listw = lwsp_it)
summary(imp_parvarslx)
```

`lwsp_it`
Spatial weight matrix for Italian provinces

Description

A spatial weight matrix row-standardized for Italian NUTS-3 provinces

Usage

`lwsp_it`

Format

A row-standardized squared matrix with 107 rows and columns. The rows and columns follow the same order than provinces included in `unemp_it` data frame.

Source

Italian National Institute of Statistics (ISTAT) https://www.istat.it
map_it

Description
An sf object including a map of Italian NUTS-3 provinces

Usage
map_it

Format
An sf object with 103 rows and 2 columns:
COD_PRO province (NUTS-3) coded as a number.
geometry geometry (polygons) of the sf object.

Source
Italian National Institute of Statistics (ISTAT) https://www.istat.it

methods_pspatreg

Description
The anova function provides tables of fitted 'pspatreg' models including information criteria (AIC and BIC), log-likelihood and degrees of freedom of each fitted model. The argument 'lrtest' allows to perform LR tests between nested models. The print function is used to print short tables including the values of beta and spatial coefficients as well as p-values of significance test for each coefficient. This can be used as an alternative to summary.pspatreg when a brief output is needed. The rest of methods works in the usual way.

Usage
```r  
# S3 method for class 'pspatreg'
anova(object, ..., lrtest = TRUE)  
```

```r  
# S3 method for class 'pspatreg'
coef(object, ...)  
```

```r  
# S3 method for class 'pspatreg'
fitted(object, ...)  
```

```r  
# S3 method for class 'pspatreg'
```
logLik(object, ..., REML = FALSE)

S3 method for class 'pspatreg'
residuals(object, ...)

S3 method for class 'pspatreg'
vcov(object, ..., bayesian = TRUE)

S3 method for class 'pspatreg'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

object a ‘pspatreg’ object created by `pspatfit`.
...
 further arguments passed to or from other methods.
lrtest logical value to compute likelihood ratio test for nested models in ‘anova’ method. Default = ‘TRUE’
REML logical value to get restricted log-likelihood instead of the usual log-likelihood. Default = ‘FALSE’
bayesian logical value to get bayesian or frequentist covariance matrix for parametric terms. Default = ‘FALSE’
x similar to object argument for `print()` and `plot` functions.
digits number of digits to show in printed tables. Default: max(3L, getOption("digits") - 3L).

Value

anova: An object of class `anova`. Can be printed with `summary`. If argument `lrtest = TRUE` (default), the object returned includes an LR test for nested models. In this case, a warning message is printed to emphasize that the LR test remains valid only for nested models.
coef: A numeric vector including spatial parameters and parameters corresponding to parametric covariates. Also includes fixed parameters for non-parametric covariates. Can be printed with `print`.
fitted: A numeric vector including fitted values for the dependent variable.
logLik: An object of class `logLik`. Can be printed with `print`. If argument `REML = FALSE` (default), the object returns the value of log-likelihood function in the optimum. If argument `REML = TRUE`, the object returns the value of restricted log-likelihood function in the optimum.
residuals: A numeric vector including residuals of the model.
vcov: A matrix including the covariance matrix for the estimated parameters. If argument `bayesian = TRUE` (default), the covariance matrix is computed using bayesian method. If argument `bayesian = FALSE`, the covariance matrix is computed using sandwich method. See Fahrmeir et al. (2021) for details.
print: No return value

Author(s)
Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

References

Examples
library(pspatreg)
Examples using spatial data of Ames Houses.
Getting and preparing the data
library(spdep)
library(sf)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <- ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF+1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE),]
GAM pure with pspatreg
form1 <- lnSale_Price ~ Fireplaces + Garage_Cars +
 pspl(lnLot_Area, nknots = 20) +
 pspl(lnTotal_Bsmt_SF, nknots = 20) +
 pspl(lnGr_Liv_Area, nknots = 20)
gampure <- pspatfit(form1, data = ames_sf1)
summary(gampure)

Constructing the spatial weights matrix
coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude)
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5,
 longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
lw_ames <- nb2listw(k5nb, style = "W",
 zero.policy = FALSE)

GAM + SAR Model
gamsar <- pspatfit(form1, data = ames_sf1,
 type = "sar", listw = lw_ames,
 method = "Chebyshev")
summary(gamsar)
Compare Models

```r
anova(gampure, gamsar, lrtest = FALSE)
## logLikelihood
logLik(gamsar)
## Restricted logLikelihood
logLik(gamsar, REML = TRUE)
## Parametric and spatial coefficients
print(gamsar)
coef(gamsar)
## Frequentist (sandwich) covariance matrix
## (parametric terms)
vcov(gamsar, bayesian = FALSE)
## Bayesian covariance matrix (parametric terms)
vcov(gamsar)
```

Fitted Values and Residuals

```r
plot(gamsar$fitted.values, ames_sf1$lnSale_Price, xlab = "fitted values", ylab = "unrate", type = "p", cex.lab = 1.3, cex.main = 1.3, main = "Fitted Values gamsar model")
plot(gamsar$fitted.values, gamsar$residuals, xlab = "fitted values", ylab = "residuals", type = "p", cex.lab = 1.3, cex.main = 1.3, main = "Residuals geospsar model")
```

plot_impactsnopar
Plot direct, indirect and total impacts functions for continuous non-parametric covariates in semiparametric spatial regression models.

Description

Plot direct, indirect and total impacts functions for non-parametric covariates included in a semi-parametric spatial or spatio-temporal SAR model. This model must include a spatial lag of the dependent variable (SAR) to have indirect effects different from 0, otherwise, total and direct function effects are the same. The effect functions can be smoothed to overcome the instabilities created by the premultiplication of matrix \((I - \rho W)^{-1}\).

Usage

```r
plot_impactsnopar(
    impactsnopar,
    data,
    smooth = TRUE,
    span = c(0.1, 0.1, 0.2),
)```

```
dynamic = FALSE,
nt = NULL
```

### Arguments

- `impactsnopar` object returned from `impactsnopar` function.
- `data` dataframe with the data.
- `smooth` logical value to choose smoothing of the effects function prior to plot. Default TRUE.
- `span` span for the kernel of the smoothing (see `loess` for details). Default c(0.1, 0.1, 0.2).
- `dynamic` Logical value to set a dynamic model. Dynamic models include a temporal lag of the dependent variable in the right-hand side of the equation. Default = 'FALSE'.
- `nt` Number of temporal periods. It is needed for dynamic models.

### Value

plot of the direct, indirect and total impacts function for each non-parametric covariate included in the object returned from `impactsnopar`.

### Author(s)

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

### References


### See Also

- `impactsnopar` compute total, direct and indirect effect functions for non-parametric continuous covariates.
- `fit_terms` compute smooth functions for non-parametric continuous covariates.
- `plot_terms` plot the terms of non-parametric covariates.
Examples

##############################################################
# Examples using spatial data of Ames Houses.
##############################################################
# Getting and preparing the data
library(pspatreg)
library(spdep)
library(sf)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <-ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF+1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE),]
form1 <- lnSale_Price ~ Fireplaces + Garage_Cars +
        pspl(lnLot_Area, nknots = 20) +
        pspl(lnTotal_Bsmt_SF, nknots = 20) +
        pspl(lnGr_Liv_Area, nknots = 20)

########### Constructing the spatial weights matrix
coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude)
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5,
                             longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
lw_ames <- nb2listw(k5nb, style = "W",
                    zero.policy = FALSE)
gamsar <- pspatfit(form1, data = ames_sf1,
                   type = "sar", listw = lw_ames,
                   method = "Chebyshev")
summary(gamsar)
nparimpacts <- impactsnopar(gamsar, listw = lw_ames, viewplot = FALSE)
plot_impactsnopar(nparimpacts, data = ames_sf1, smooth = TRUE)

###### Examples using a panel data of rate of
###### unemployment for 103 Italian provinces in period 1996-2014.
library(pspatreg)
data(unemp_it)
## Wsp_it is a matrix. Create a neighboord list
lwsp_it <- spdep::mat2listw(Wsp_it)
## short sample for spatial pure case (2d)
######## No Spatial Trend: PSAR including a spatial
######## lag of the dependent variable
form1 <- unrate ~ partrate + agri + cons + empgrowth +
        pspl(serv, nknots = 15)
gamsar <- pspatfit(form1, data = unemp_it,
                   type = "sar", listw = lwsp_it)
summary(gamsar)

######## Non-Parametric Total, Direct and Indirect impacts
imp_nparvar <- impactsnopar(gamsar, alpha = 0.05, 
  listw = lwsp_it,
  viewplot = TRUE)

### This returns the same result but using plot_impactsnopar()
imp_nparvar <- impactsnopar(gamsar, listw = lwsp_it, alpha = 0.05, 
  viewplot = FALSE)
plot_impactsnopar(imp_nparvar, data = unemp_it,
  smooth = TRUE)

---

**plot_sp2d**

*Plot and mapping spatial trends.*

**Description**

Make plots and maps of the spatial trends in 2d of the objects fitted with `pspatfit` function.

**Usage**

```r
plot_sp2d(
 object,
 data,
 coordinates = NULL,
 npoints = 300,
 cexpoints = 0.25,
 addcontour = TRUE,
 addpoints = TRUE,
 addmain = TRUE,
 addint = TRUE
)
```

**Arguments**

- `object`  
  object returned from `pspatfit`
- `data`  
  either sf or dataframe with the data.
- `coordinates`  
  coordinates matrix if data is not an sf object.
- `npoints`  
  number of points to use in the interpolation.
- `cexpoints`  
  size of the points. Default = 0.25
- `addcontour`  
  Logical value to add contour lines.
- `addpoints`  
  Logical value to add spatial points to the graphics.
- `addmain`  
  Add f1_main and f2_main plots in psanova case.
- `addint`  
  Add f12_int in psanova case.

**Value**

plots and maps of the spatial trends
Author(s)

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

References


Examples

```r
library(pspatreg)
EXAMPLE 2D WITH AMES DATA
getting and preparing the data
library(spdep)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <- ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF+1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE),]

formula of the model in Ames
form2d <- lnSale_Price ~ Fireplaces + Garage_Cars +
 pspl(lnLot_Area, nknots = 20) +
 pspl(lnTotal_Bsmt_SF, nknots = 20) +
 pspl(lnGr_Liv_Area, nknots = 20) +
 pspt(Longitude, Latitude,
 nknots = c(10, 10),
 psanova = FALSE)

formula of the model in Ames with spatial terms
form2d_s <- lnSale_Price ~ Fireplaces + Garage_Cars +
 pspl(lnLot_Area, nknots = 20) +
 pspl(lnTotal_Bsmt_SF, nknots = 20) +
 pspl(lnGr_Liv_Area, nknots = 20) +
 pspt(Longitude, Latitude,
 nknots = c(10, 10),
 psanova = FALSE)

formula of the model in Ames with spatial terms and spatial interaction
form2d_s_int <- lnSale_Price ~ Fireplaces + Garage_Cars +
 pspl(lnLot_Area, nknots = 20) +
 pspl(lnTotal_Bsmt_SF, nknots = 20) +
 pspl(lnGr_Liv_Area, nknots = 20) +
 pspt(Longitude, Latitude,
 nknots = c(10, 10),
 psanova = FALSE)

constructing the spatial weights matrix
coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude)
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5,
 longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
```
lw_ames <- nb2listw(k5nb, style = "W",
    zero.policy = FALSE)

######## fit the model
sp2dsar <- pspatfit(form2d, data = ames_sf1,
    listw = lw_ames,
    method = "Chebyshev",
    type = "sar")
summary(sp2dsar)

######## plot spatial trend for spatial point coordinate
plot_sp2d(sp2dsar, data = ames_sf1)

```
MODEL WITH ANOVA DECOMPOSITION
form2d_psanova <- lnSale_Price ~ Fireplaces + Garage_Cars +
pspl(lnLot_Area, nknots = 20) +
pspl(lnTotal_Bsmt_SF, nknots = 20) +
pspl(lnGr_Liv_Area, nknots = 20) +
pspt(Longitude, Latitude,
 nknots = c(10, 10),
 psanova = TRUE)

sp2danovasar <- pspatfit(form2d_psanova,
 data = ames_sf1,
 listw = lw_ames,
 method = "Chebyshev",
 type = "sar")
summary(sp2danovasar)
```

```
PLOT ANOVA DECOMPOSITION MODEL
plot_sp2d(sp2danovasar, data = ames_sf1,
 addmain = TRUE, addint = TRUE)
```

---

**plot_sp3d**

*Plot and mapping spatio-temporal trends.*

**Description**

Make plots and maps of the spatio-temporal trends in 3d of the objects fitted with `pspatfit` function.

**Usage**

```
plot_sp3d(object, data, time_var, time_index, addmain = TRUE, addint = TRUE)
```

**Arguments**

- `object` object returned from `pspatfit`
- `data` sf object.
time_var  name of the temporal variable in data.
time_index vector of time points to plot.
addmain  Add f1_main and f2_main plots in psanova case.
addint   Add f12_int in psanova case.

Value
plots and maps of the spatial trends

Author(s)
Roman Minguez  <roman.minguez@uclm.es>
Roberto Basile  <roberto.basile@univaq.it>
Maria Durban   <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

References

Examples
library(pspatreg)
library(sf)
data(unemp_it, package = "pspatreg")
lwsp_it <- spdep::mat2listw(Wsp_it)
unemp_it_sf <- st_as_sf(dplyr::left_join(
  unemp_it, map_it, 
  by = c("prov" = "COD_PRO")))

#### FORMULA of the model
form3d_psanova_restr <- unrate ~ partrate + agri + cons +
  pspl(serv, nknots = 15) +
  pspl(empgrowth, nknots = 20) +
  pspt(long, lat, year, 
  nknots = c(18, 18, 8),
  psanova = TRUE, 
  nest_sp1 = c(1, 2, 3),
  nest_sp2 = c(1, 2, 3),
plot_sptime

```
plot_sptime <- pspatfit(form3d_psanova_restr,
 data = unemp_it_sf)

summary(plot_sptime)

Plot of spatio-temporal trend, main effects
and interaction effect for a year
plot_sp3d(plot_sptime, data = unemp_it_sf,
 time_var = "year",
 time_index = c(2019),
 addmain = TRUE, addint = TRUE)

Plot of temporal trend for each province
plot_sptime(plot_sptime,
 data = unemp_it,
 time_var = "year",
 reg_var = "prov")
```

---

**plot_sptime**  
*Plot of time trends for spatio-temporal models in 3d.*

**Description**

Make plots of the temporal trends for each region fitted with `pspatfit` function.

**Usage**

```r
plot_sptime(object, data, time_var, reg_var)
```

**Arguments**

- **object**: object returned from `pspatfit`
- **data**: either sf or dataframe with the data.
- **time_var**: name of the temporal variable in data.
- **reg_var**: name of the regional variable in data.

**Value**

time series plots of the temporal trend for each region
Author(s)

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

References


Examples

```r
library(pspatreg)
data(unemp_it, package = "pspatreg")
lwsp_it <- spdep::mat2listw(Wsp_it)

FORMULA OF THE MODEL
form3d_psanova <- unrate ~ partrate + agri + cons +
 psp1(serv, nknots = 15) +
 psp1(empgrowth, nknots = 20) +
 pspt(long, lat, year,
 nknots = c(18, 18, 8),
 psanova = TRUE,
 nest_sp1 = c(1, 2, 3),
 nest_sp2 = c(1, 2, 3),
 nest_time = c(1, 2, 2))

FIT the model
sp3danova <- pspatfit(form3d_psanova,
 data = unemp_it,
 listw = lwsp_it,
 method = "Chebyshev")

summary(sp3danova)

Plot of temporal trend for each province
plot_sptime(sp3danova,
 data = unemp_it,)
```
time_var = "year",
reg_var = "prov")

plot_terms(fitterms, data, type = "global",
alpha = 0.05, listw = NULL,
dynamic = FALSE, nt = NULL,
decomposition = FALSE)

Arguments

fitterms: object returned from `fit_terms` function.
data: dataframe or sf with the data.
type: type of term plotted between "global" (Default), "fixed" or "random".
alpha: numerical value for the significance level of the pointwise confidence intervals of the nonlinear terms. Default 0.05.
listw: used to compute spatial lags for Durbin specifications. Default = ‘NULL’
dynamic: Logical value to set a dynamic model. Dynamic models include a temporal lag of the dependent variable in the right-hand side of the equation. Default = ‘FALSE’.
nt: Number of temporal periods. It is needed for dynamic models.
decomposition: Plot the decomposition of term in random and fixed effects.

Value

list with the plots of the terms for each non-parametric covariate included in the object returned from `fit_terms`.

Author(s)
plot_terms

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

References


See Also

• fit_terms compute smooth functions for non-parametric continuous covariates.
• impactsnpar plot the effects functions of non-parametric covariates.
• vis.gam plot the terms fitted by gam function in mgcv package.

Examples

# Examples using spatial data of Ames Houses.
# Getting and preparing the data
library(pspatreg)
library(spdep)
library(sf)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <- ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF + 1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE), ]
form1 <- lnSale_Price ~ Fireplaces + Garage_Cars +
          pspl(lnLot_Area, nknots = 20) +
          pspl(lnTotal_Bsmt_SF, nknots = 20) +
          pspl(lnGr_Liv_Area, nknots = 20)

########### Constructing the spatial weights matrix
coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude)
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5,
                         longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
lw_ames <- nb2listw(k5nb, style = "W",
                     zero.policy = FALSE)
gamsar <- pspatfit(form1, data = ames_sf1,
```r
print.summary.impactspar.pspatreg

Print method for objects of class summary.impactspar.pspatreg

Description

Print method for objects of class summary.impactspar.pspatreg

Usage

S3 method for class 'summary.impactspar.pspatreg'
print(x, digits = max(3L,getOption("digits") - 3L), ...)

Arguments

x object of class summary.impactspar.pspatreg.
digits number of digits to show in printed tables. Default: max(3L,getOption("digits") - 3L).
... further arguments passed to or from other methods.
```
Value

No return value, called for side effects.

Author(s)

Roman Minguez  <roman.minguez@uclm.es>
Roberto Basile   <roberto.basile@univaq.it>
Maria Durban    <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

See Also

• impactspar  Compute direct, indirect and total impacts for continuous parametric covariates.
• summary.impactspar.pspatreg  Summary method for summary.pspatreg objects.

Examples

# See examples for \code{\link{impactspar}} function.

print.summary.pspatreg

Print method for objects of class summary.pspatreg.

Description

Print method for objects of class summary.pspatreg.

Usage

## S3 method for class 'summary.pspatreg'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x  object of class summary.pspatreg.

digits number of digits to show in printed tables. Default: max(3L, getOption("digits")
         - 3L).

...  further arguments passed to or from other methods.

Value

No return value, called for side effects.

Author(s)
See Also

- `summary.pspatreg` Summary method for `pspatreg` objects.

Examples

```r
See examples for \code{\link{pspatfit}} function.
```

### prod_it

**Productivity growth and internal net migration - Italian provinces**

**Description**

A spatial dataframe including a map of Italian NUTS-3 provinces and cross-sectional dataset on provincial labor productivity growth rates, internal net migration rates, and other economic variables.

**Usage**

`prod_it`

**Format**

An sf object with 107 rows and 9 columns:

- **COD_PROV**: province (NUTS-3) coded as a number.
- **DEN_PROV**: province (NUTS-3) coded as a name.
- **longitude**: longitude of the centroid of the province.
- **latitude**: latitude of the centroid of the province.
- **lnPROD_0**: log of labor productivity in 2002 (measured as gross value added per worker).
- **growth_PROD**: Average annual growth rate of labor productivity over the period 2002-2018.
- **lnoccgr**: Average annual growth rate of employment over the period 2002-2018.
- **net**: Average annual provincial internal net migration rate (computed as the difference between internal immigration and emigration flows of the working-age population, i.e. people aged 15-65, divided by the total population).
- **geometry**: geometry (polygons) of the sf object.

**Source**

Italian National Institute of Statistics (ISTAT) [https://www.istat.it](https://www.istat.it)
Estimate spatial or spatio-temporal semiparametric regression models from a spatial econometric perspective.

Description

Estimate geoadditive spatial or spatio-temporal semiparametric regression models of type \textit{ps-sar}, \textit{ps-sem}, \textit{ps-sarar}, \textit{ps-sdm}, \textit{ps-sdem} or \textit{ps-slx}. These type of specifications are very general and they can include parametric and non-parametric covariates, spatial or spatio-temporal non-parametric trends and spatial lags of the dependent and independent variables and/or the noise of the model. The non-parametric terms (either trends or covariates) are modeled using P-Splines. The non-parametric trend can be decomposed in an ANOVA way including main and interactions effects of 2nd and 3rd order. The estimation method can be restricted maximum likelihood (REML) or maximum likelihood (ML).

Usage

```r
pspatfit(
 formula,
 data,
 na.action,
 listw = NULL,
 type = "sim",
 method = "eigen",
 Durbin = NULL,
 zero.policy = NULL,
 interval = NULL,
 trs = NULL,
 cor = "none",
 dynamic = FALSE,
 demean = FALSE,
 eff_demean = "individual",
 index = NULL,
 control = list()
)
```

Arguments

- `formula`: A formula similar to GAM specification including parametric and non-parametric terms. Parametric covariates are included in the usual way and non-parametric P-spline smooth terms are specified using `pspl(.)` and `pspt(.)` for the non-parametric covariates and spatial or spatio-temporal trend, respectively. More details in Details and Examples.
- `data`: A data frame containing the parametric and non-parametric covariates included in the model. Also, if a `pspt(.)` term is included in formula, the data frame must include the spatial and temporal coordinates specified in `pspt(.)`. In this case
coordinates must be ordered choosing time as fast index and spatial coordinates as low indexes. See `head(unemp_it)` as an example.

**na.action**
A function (default options("na.action"), can also be ‘na.omit’ or ‘na.exclude’ with consequences for residuals and fitted values. It may be necessary to set ‘zero.policy’ to ‘TRUE’ because this subsetting may create no-neighbour observations.

**listw**
Default = ‘NULL’. This will create a model with no spatial dependency. To include spatial dependency, listw should be a spatial neighbours list object created for example by `nb2listw` from **spdep** package; if `nb2listw` not given, set to the same spatial weights as the listw argument. It can also be a spatial weighting matrix of order (NxN) instead of a listw neighbours list object.

**type**
Type of spatial model specification following the usual spatial econometric terminology. Default = "sim" this creates a model with no type of spatial dependency. Types of spatial models available (similar to **spsur** package): "sar", "sem", "sdm", "sdem", "sarar", or "slx". When creating a "slx", "sdem" or "sdm" model, it is necessary to include the formula of the Durbin part in the `Durbin` argument in the same way than **spsur** or **spatialreg** packages. There are examples on how to create these models in Examples section.

**method**
Similar to the corresponding parameter of **lagsarlm** function in **spatialreg** package. "eigen" (default) - the Jacobian is computed as the product of (1 - rho*eigenvalue) using `eigenw` from package spatialreg. For big samples (> 500) method = "eigen" is not recommended. Use "spam" or "Matrix" for strictly symmetric weights lists of styles "B" and "C", or made symmetric by similarity (Ord, 1975, Appendix C) if possible for styles "W" and "S", using code from the spam or Matrix packages to calculate the determinant; "Matrix" and "spam_update" provide updating Cholesky decomposition methods; "LU" provides an alternative sparse matrix decomposition approach. In addition, there are "Chebyshev" and Monte Carlo "MC" approximate log-determinant methods; the Smirnov/Anselin (2009) trace approximation is available as "moments". Three methods: "SE_classic", "SE_whichMin", and "SE_interp" are provided experimentally, the first to attempt to emulate the behaviour of Spatial Econometrics toolbox ML fitting functions. All use grids of log determinant values, and the latter two attempt to ameliorate some features of "SE_classic".

**Durbin**
Default = ‘NULL’. If model is of type = "sdm", "sdem" or "slx" then this argument should be a formula of the subset of explanatory variables to be spatially lagged in the right hand side part of the model. See **spsurml** for a similar argument.

**zero.policy**
Similar to the corresponding parameter of **lagsarlm** function in **spatialreg** package. If ‘TRUE’ assign zero to the lagged value of zones without neighbours, if ‘FALSE’ assign ‘NA’ - causing pspatfit() to terminate with an error. Default = ‘NULL’.

**interval**
Search interval for autoregressive parameter. Default = ‘NULL’.

**trs**
Similar to the corresponding parameter of **lagsarlm** function in **spatialreg** package. Default ‘NULL’, if given, a vector of powered spatial weights matrix traces output by `trW`.

**cor**
Type of temporal correlation for temporal data. Possible values are "none" (default) or "ar1".
**pspatfit**

**dynamic**
Logical value to set a dynamic model. Dynamic models include a temporal lag of the dependent variable in the right-hand side of the equation. Default = ‘FALSE’.

**demean**
Logical value to include a demeaning for panel data. Default = ‘FALSE’. The demeaning is done previously to the estimation for both parametric and non-parametric terms. It is not possible to set demean = TRUE when spatio-temporal trends are included.

**eff_demean**
Type of demeaning for panel data. Possible values are "individual" (default), "time" or "twoways".

**index**
Vector of variables indexing panel data. First variable corresponds to individuals and second variable corresponds to temporal coordinate (fast index). It follows the same rules than `plm` function in package `plm`.

**control**
List of extra control arguments. See Control Arguments section below.

**Details**

Function to estimate the model:

\[
y = (\rho * W_N \otimes I_T)y + f(s_1, s_2, \tau_t) + X\beta + (W_N \otimes I_T)X\theta + \sum_{i=1}^{k} g(z_i) + \sum_{i=1}^{k} g((\gamma_i * W_N \otimes I_T)z_i) + \epsilon
\]

where:

- \( f(s_1, s_2, \tau_t) \) is a smooth spatio-temporal trend of the spatial coordinates \( s_1, s_2 \) and of the temporal coordinates \( \tau_t \).
- \( X \) is a matrix including values of parametric covariates.
- \( g(z_i) \) are non-parametric smooth functions of the covariates \( z_i \).
- \( W_N \) is the spatial weights matrix.
- \( \rho \) is the spatial spillover parameter.
- \( I_T \) is an identity matrix of order \( T \) (\( T=1 \) for pure spatial data).
- \( \epsilon \sim N(0, R) \) where \( R = \sigma^2 I_T \) if errors are uncorrelated or it follows an AR(1) temporal autoregressive structure for serially correlated errors.

**Including non-parametric terms**
The non-parametric terms are included in `formula` using `pspt(.)` for spatial or spatio-temporal trends and `pspl(.)` for other non-parametric smooth additive terms. For example, if a model includes:

- An spatio-temporal trend with variables `long` and `lat` as spatial coordinates, and `year` as temporal coordinate.
- Two non-parametric covariates named `empgrowth` and `serv`.
- Three parametric covariates named `partrate`, `agri` and `cons`.

Then, the formula should be written as (choosing default values for each term):

\[
unrate \sim partrate + agri + cons + pspl(serv) + pspl(empgrowth) + pspt(long,lat,year)
\]

For a spatial trend case, the term `pspt(.)` does not include a temporal coordinate, that is, in the previous example would be specified as `pspt(long,lat)`.
How to use \texttt{pspl()} and \texttt{pspt()} Note that both in \texttt{pspl(\cdot)} and \texttt{pspt(\cdot)}, we have to include the number of knots, named \texttt{nknots}, which is the dimension of the basis used to represent the smooth term. The value of \texttt{nknots} should not be less than the dimension of the null space of the penalty for the term, see \texttt{null.space.dimension} and \texttt{choose.k} from \texttt{mgcv} package to know how to choose \texttt{nknots}.

In \texttt{pspl(\cdot)} the default is \texttt{nknots = 10}, see the help of \texttt{pspl} function. In this term we can only include single variables, so if we want more than one non-parametric variable we will use a \texttt{pspl(\cdot)} term for each nonparametric variable.

On the other hand, \texttt{pspt(\cdot)} is used for spatial smoothing (when temporal coordinate is ‘NULL’) or spatio-temporal smoothing (when a variable is provided for the temporal coordinate). The default for the temporal coordinate is \texttt{time = NULL}, see the help of \texttt{pspt}, and the default number of knots are \texttt{nknots = c(10, 10, 5)}. If only include spatial smoothing, \texttt{nknots} will be a length 2 vector indicating the basis for each spatial coordinate. For spatio-temporal smoothing, it will be a length 3 vector.

ANOVA descomposition In many situations the spatio-temporal trend, given by \(f(s_1, s_2, \tau_t)\), can be very complex and the use of a multidimensional smooth function may not be flexible enough to capture the structure in the data. Furthermore, the estimation of this trend can become computationally intensive especially for large databases.

To solve this problem, Lee and Durban (2011) proposed an ANOVA-type decomposition of this spatio-temporal trend where spatial and temporal main effects, and second- and third-order interaction effects can be identified as:

\[
f(s_1, s_2, \tau_t) = f_1(s_1) + f_2(s_2) + f_1(\tau_t) + f_{1,2}(s_1, s_2) + f_{1,t}(s_1, \tau_t) + f_{2,t}(s_2, \tau_t) + f_{1,2,t}(s_1, s_2, \tau_t)
\]

In this equation the decomposition of the spatio-temporal trend is as follows:

- Main effects given by the functions \(f_1(s_1), f_2(s_2)\) and \(f_1(\tau_t)\).
- Second-order interaction effects given by the functions \(f_{1,2}(s_1, s_2), f_{1,t}(s_1, \tau_t)\) and \(f_{2,t}(s_2, \tau_t)\).
- Third-order interaction effect given by the function \(f_{1,2,t}(s_1, s_2, \tau_t)\).

In this case, each effect can have its own degree of smoothing allowing a greater flexibility for the spatio-temporal trend. The ANOVA decomposition of the trend can be set as an argument in \texttt{pspt(\cdot)} terms choosing \texttt{psanova = TRUE}.

For example to choose an ANOVA decomposition in the previous case we can set:

\[
\text{pspt(long, lat, year, nknots = c(18, 18, 8), psanova = TRUE)}
\]

In most empirical cases main effects functions are more flexible than interaction effects functions and therefore, the number of knots in B-Spline bases for interaction effects do not need to be as big as the number of knots for main effects. Lee et al., (2013) proposed a nested basis procedure in which the number of knots for the interaction effects functions are reduced using divisors such that the space spanned by B-spline bases used for interaction effects are a subset of the space spanned by B-spline bases used for main effects. The divisors can be specified as an argument in \texttt{pspt(\cdot)} terms.

To do this, there are three arguments available inside \texttt{pspt()} to define the divisors. These arguments are named \texttt{nest_sp1}, \texttt{nest_sp2} and \texttt{nest_time}, respectively. The value for these arguments are vector parameters including divisors of the \texttt{nknots} values.
For example, if we set `nest_sp1 = c(1,2,2)` between the arguments of `pspl(.)`, we will have all knots for main effect of $s_1$, $18/2=9$ knots for each second-order effect including $s_1$, and $8/2=4$ knots for the third order effect including $s_1$. It is important that the vector of numbers will be integer divisors of the values in `nknots`. See section `Examples` for more details.

Eventually, any effect function can be excluded of the ps-anova spatio-temporal trend. To exclude main effects, the arguments `f1_main`, `f2_main` or `ft_main` have to be set to ‘FALSE’ (default=‘TRUE’). We can also exclude the second- and third-order effects functions setting to ‘FALSE’ the arguments `f12_int`, `f1t_int`, `f2t_int` or `f12t_int` in `pspl(.)`.

All the terms included in the model are jointly fitted using Separation of Anisotropic Penalties (SAP) algorithm (see Rodriguez-Alvarez et al., (2015)) which allows to the mixed model reparametization of the model. For type of models ”sar”, ”sem”, ”sdm”, ”sdem”, ”sarar” or cor = ”ar1”, the parameters $\rho$, $\lambda$ and $\phi$ are numerically estimated using `bobyqa` function implemented in package `minqa`. In these cases, an iterative process between SAP and numerical optimization of $\rho$, $\lambda$ and $\phi$ is applied until convergence. See details in Minguez et al., (2018).

**Plotting non-parametric terms** To plot the non-linear functions corresponding to non-parametric terms we need to compute the fitted values, and standard errors, using `fit_terms()` function and, afterwards, use `plot_terms()` function to plot the non-linear functions.

An example of how plot the functions of non-parametric terms given by ”var1” and ”var2” variables is given by the next lines of code (it is assumed that a previous model has been fitted using `pspatfit(.)` and saved as an object named `model`):

```r
list_varnopar <- c("var1", "var2")
terms_nopar <- fit_terms(model, list_varnopar)
plot_terms(terms_nopar, data)
```

The data argument of `plot_terms()` usually corresponds to the dataframe used to fitted the model although a different database can be used to plot the non-parametric terms.

**Spatial impacts** For the spatial models given by type = ”sar”, ”sdm”, ”sdem”, ”sarar” or ”slx” it is possible to compute spatial spillovers as usual in spatial econometric specifications. Nevertheless, in this case we need to distinguish between parametric and non-parametric covariates when computing spatial impacts.

- spatial impacts for parametric covariates

In this case, the spatial impacts are computed in the usual way using simulation. See LeSage and Page (2009) for computational details. The function `impactspar()` computes the direct, indirect and total impacts for parametric covariates and return and object similar to the case of `spatialreg` and `spsur` packages. The inference for ”sar”, ”sdm”, and ”sarar” types is based on simulations and for ”slx” and ”sdem” types the standard errors or total impacts are computed using the variance-covariance matrix of the fitted model. The `summary()` method can be used to present the the complete table of spatial impacts in this parametric case. See the help of `impactspar` to know the additional arguments of the function. A little example is given in the next lines of code:

```r
imp_parvar <- impactspar(MODEL, listw = W)
summary(imp_parvar)
```
spatial impacts for non-parametric covariates

In this case direct, indirect and total spatial impacts functions are obtained using impactsnopar. The details of computation and inference can be obtained from the help of impactsnopar. The argument viewplot of impactsnopar have to be set as ‘TRUE’ to plot the spatial impacts functions. Another way to get the same plots is using plot_impactsnopar function with the output of impactsnopar. Next lines give an example of both cases:

```r
imp_nparvar <- impactsnopar(MODEL, listw = W, viewplot = TRUE)
imp_nparvar <- impactsnopar(MODEL, listw = W, viewplot = FALSE)
plot_impactsnopar(imp_nparvar, data = DATA)
```

**Value**

A list object of class pspatreg

- `call` Matched call.
- `terms` The terms object used.
- `contrasts` (only where relevant) the contrasts used for parametric covariates.
- `xlevels` (only where relevant) a record of the levels of the parametric factors used in fitting.
- `data` dataframe used as database.
- `nsp` number of spatial observations.
- `nt` number of temporal observations. It is set to nt=1 for spatial data.
- `nfull` total number of observations.
- `edftot` Equivalent degrees of freedom for the whole model.
- `edfspt` Equivalent degrees of freedom for smooth spatio-temporal or spatial trend.
- `edfnopar` Equivalent degrees of freedom for non-parametric covariates.
- `psanova` TRUE if spatio-temporal or spatial trend is PS-ANOVA.
- `type` Value of type argument in the call to pspatfit.
- `listw` Value of listw argument in the call to pspatfit.
- `Durbin` Value of Durbin argument in the call to pspatfit.
- `cor` Value of cor argument in the call to pspatfit.
- `dynamic` Value of dynamic argument in the call to pspatfit.
- `demean` Value of demean argument in the call to pspatfit.
- `eff_demean` Value of eff_demean argument in the call to pspatfit.
- `index` Value of index argument in the call to pspatfit.
- `bfixed` Estimated betas corresponding to fixed effects in mixed model.
- `se_bfixed` Standard errors of fixed betas.
- `brandom` Estimated betas corresponding to random effects in mixed model.
- `se_brandom` Standard errors of random betas.
- `vcov_fr` Covariance matrix of fixed and random effects using frequentist or sandwich method.
- `vcov_by` Covariance matrix of fixed and random effects using bayesian method.
- `rho` Estimated rho for spatial lag of the dependent variable.
- `se_rho` Standard error of rho.
- `delta` Estimated delta for spatial error models.
- `se_delta` Standard error of delta.
- `phi` Estimated phi. If cor=”none” always phi = 0.
- `se_phi` Standard error of phi.
- `fitted.values` Vector of fitted values of the dependent variable.
se_fitted.values  Vector of standard errors of fitted.values.
fitted.values_Ay Vector of fitted values of the spatial lag of dependent variable: \((\rho \ast W_N \otimes I_T)y\).
se_fitted.values_Ay Vector of standard errors of fitted.values_Ay.
residuals  Vector of residuals.
df.residual Equivalent degrees of freedom for residuals.
sig2  Residual variance computed as SSR/df.residual.
llik  Log-likelihood value.
llik_reml Restricted log-likelihood value.
aic  Akaike information criterion.
bic  Bayesian information criterion.
sp1  First spatial coordinate.
sp2  Second spatial coordinate.
time  Time coordinate.
y  Dependent variable.
X  Model matrix for fixed effects.
Z  Model matrix for random effects.

Control Arguments

optim  method of estimation: "llik_reml" (default) or "llik".
typese  method to compute standard errors. "sandwich" or "bayesian" (default). See Fahrmeir et al, pp. 375 for details.
vary_init  Initial value of the noise variance in the model. Default = ‘NULL’.
trace  A logical value set to TRUE to show intermediate results during the estimation process. Default = FALSE.
tol1  Numerical value for the tolerance of convergence of penalization parameters during the estimation process. Default = 1e-3.
tol2  Numerical value for the tolerance of convergence of total estimated degrees of freedom ("edftot") during the estimation process.
tol3  Numerical value for the tolerance of convergence of spatial and correlation parameters during the estimation process.
maxit  An integer value for the maximum number of iterations until convergence. Default = 200.
rho_init  An initial value for rho parameter. Default 0.
delta_init  An initial value for delta parameter. Default 0.
phi_init  An initial value for phi parameter. Default 0.
1mult  default 2; used for preparing the Cholesky decompositions for updating in the Jacobian function
super  if ‘NULL’ (default), set to ‘FALSE’ to use a simplicial decomposition for the sparse Cholesky decomposition and
cheb_q  default 5; highest power of the approximating polynomial for the Chebyshev approximation
MC_p  default 16; number of random variates
MC_m  default 30; number of products of random variates matrix and spatial weights matrix
spamPivot  default "MMD", alternative "RCM"
in_coef  default 0.1, coefficient value for initial Cholesky decomposition in "spam_update"
type  default "MC", used with method "moments"; alternatives "mult" and "moments", for use if trs is missing
correct  default ‘TRUE’, used with method "moments" to compute the Smirnov/Anselin correction term
trunc  default ‘TRUE’, used with method "moments" to truncate the Smirnov/Anselin correction term
SE_method  default "LU", may be "MC"
nrho  default 200, as in SE toolbox; the size of the first stage lndet grid; it may be reduced to for example 40
interpn  default 2000, as in SE toolbox; the size of the second stage lndet grid
SElndet  default ‘NULL’, may be used to pass a pre-computed SE toolbox style matrix of coefficients and their lndet values
LU_order  default ‘FALSE’; used in "LU_prepermutate", note warnings given for lu method
pre_eig  default ‘NULL’; may be used to pass a pre-computed vector of eigenvalues
Author(s)

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espar-Heredia <gehllanz@gmail.com>

References


See Also

• `impactspar` compute total, direct and indirect effect functions for parametric continuous covariates.
• **impactsnopar** compute total, direct and indirect effect functions for non-parametric continuous covariates.

• **fit_terms** compute smooth functions for non-parametric continuous covariates.

• **gam** well-known alternative of estimation of semiparametric models in **mgcv** package.

**Examples**

```
Examples using spatial data of Ames Houses.

Getting and preparing the data
library(spdep)
library(sf)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <- ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF+1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE),]

GAM pure with pspatreg
form1 <- lnSale_Price ~ Fireplaces + Garage_Cars +
pspl(lnLot_Area, nknots = 20) +
pspl(lnTotal_Bsmt_SF, nknots = 20) +
pspl(lnGr_Liv_Area, nknots = 20)
gampure <- pspatfit(form1, data = ames_sf1)
summary(gampure)

GAM + SAR Model
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5,
 longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
lw_ames <- nb2listw(k5nb, style = "W",
 zero.policy = FALSE)
gamsar <- pspatfit(form1, data = ames_sf1,
 k5nb, lw_ames)
```
pspatfit

type = "sar", listw = lw_ames,
method = "Chebyshev"

summary(gamsar)

####### Non-Parametric Total, Direct and Indirect impacts
### with impactsnopar(viewplot = TRUE)
nparimpacts <- impactsnopar(gamsar,
listw = lw_ames,
viewplot = TRUE)

####### Non-Parametric Total, Direct and Indirect impacts
### with impactsnopar(viewplot = FALSE) and using plot_impactsnopar()
nparimpacts <- impactsnopar(gamsar, listw = lw_ames, viewplot = FALSE)
plot_impactsnopar(nparimpacts, data = ames_sf1, smooth = TRUE)

####### Parametric Total, Direct and Indirect impacts
parimpacts <- impactspar(gamsar, listw = lw_ames)
summary(parimpacts)

#### Models with 2d spatial trend
form2 <- lnSale_Price ~ Fireplaces + Garage_Cars +
  pspplnLot_Area, nknots = 20) +
  pspplnTotal_Bsmt_SF, nknots = 20) +
  psplnGr_Liv_Area, nknots = 20) +
  pspt(Longitude, Latitude,
    nknots = c(10, 10),
    psanova = FALSE)

####### GAM + GEO Model
gamgeo2d <- pspatfit(form2, data = ames_sf1)
summary(gamgeo2d)

gamgeo2dsar <- pspatfit(form2, data = ames_sf1,
  type = "sar",
  listw = lw_ames,
  method = "Chebyshev")

summary(gamgeo2dsar)

####### plot spatial trend for spatial point coordinate
plot_sp2d(gamgeo2dsar, data = ames_sf1)

#### Models with psanova 2d spatial trend
form3 <- lnSale_Price ~ Fireplaces + Garage_Cars +
  psplnLot_Area, nknots = 20) +
  psplnTotal_Bsmt_SF, nknots = 20) +
  psplnGr_Liv_Area, nknots = 20) +
  pspt(Longitude, Latitude,
    nknots = c(10, 10),
    psanova = TRUE)

gamgeo2danovasar <- pspatfit(form3, data = ames_sf1,
  type = "sar",
  listw = lw_ames, method = "Chebyshev")

summary(gamgeo2danovasar)

####### plot spatial trend for spatial point coordinate
plot_sp2d(gamgeo2danovasar, data = ames_sf1,
  addmain = TRUE, addint = TRUE)
## Comparison between models
anova(gampure, gamsar, gamgeo2d, gamgeo2dsar,
gamgeo2danovasar, lrtest = FALSE)

###############################################################
#### Examples using a panel data of rate of unemployment for 103 Italian provinces in 1996-2019.
###############################################################

## load spatial panel and Wsp_it
## 103 Italian provinces. Period 1996-2019
data(unemp_it, package = "pspatreg")
## Wsp_it is a matrix. Create a neighborhood list
lwsp_it <- spdep::mat2listw(Wsp_it)
### Models with spatio-temporal trend
### Spatio-temporal semiparametric ANOVA model without spatial lag
### Interaction terms f12,f1t,f2t and f12t with nested basis
### Remark: nest_sp1, nest_sp2 and nest_time must be divisors of nknots
form4 <- unrate ~ partrate + agri + cons +
  psp1(serv, nknots = 15) +
  psp1(empgrowth, nknots = 20) +
  pspt(long, lat, year,
      nknots = c(18, 18, 12),
      psanova = TRUE,
      nest_sp1 = c(1, 2, 3),
      nest_sp2 = c(1, 2, 3),
      nest_time = c(1, 2, 2))
sptanova <- pspatfit(form4, data = unemp_it)
summary(sptanova)

### Create sf object to make the plot
### of spatio-temporal trends
library(sf)
unemp_it_sf <- st_as_sf(dplyr::left_join(
  unemp_it,
  map_it,
  by = c("prov" = "COD_PRO")))

#### Plot spatio-temporal trends for different years
plot_sp3d(sptanova, data = unemp_it_sf,
  time_var = "year",
  time_index = c(1996, 2005, 2019),
  addmain = FALSE, addint = FALSE)

#### Plot of spatio-temporal trend, main effects and interaction effect for a year
plot_sp3d(sptanova, data = unemp_it_sf,
  time_var = "year",
  time_index = c(2019),
  addmain = TRUE, addint = TRUE)

#### Plot of temporal trends for each province
plot_sptime(sptanova,
  data = unemp_it,
  time_var = "year",
  time_index = c(1996, 2005, 2019),
  addmain = FALSE, addint = FALSE)
reg_var = "prov"")

############################################################
### Spatio-temporal semiparametric ANOVA model without spatial lag
### Now we repeat previous spatio-temporal model but
### restricting some interactions
### Interaction terms f12,f1t and f12t with nested basis
### Interaction term f2t restricted to 0

form5 <- unrate ~ partrate + agri + cons + empgrowth +
      pspl(serv, nknots = 15) +
      pspt(long, lat, year,
           nknots = c(18, 18, 6),
           psanova = TRUE,
           nest_sp1 = c(1, 2, 3),
           nest_sp2 = c(1, 2, 3),
           nest_time = c(1, 2, 2),
           f2t_int = FALSE)

## Add sar specification and ar1 temporal correlation
sptanova2_sar_ar1 <- pspatfit(form5, data = unemp_it,
                              listw = lwsp_it,
                              type = "sar",
                              cor = "ar1")

summary(sptanova2_sar_ar1)

############################################################
### Comparison with parametric panels
### Demeaning (Within Estimators)
formpar <- unrate ~ partrate + agri + cons
# Not demeaning model
param <- pspatfit(formpar, data = unemp_it, listw = lwsp_it)
summary(param)
# Demeaning model
param_dem <- pspatfit(formpar, data = unemp_it, demean = TRUE,
                      index = c("prov", "year"),
                      eff_demean = "individual")

summary(param_dem)
# Compare results with plm package
param_plm <- plm::plm(formula = formpar,
                      data = unemp_it,
                      index = c("prov", "year"),
                      effect = "individual",
                      model = "within")

summary(param_plm)

param_dem_time <- pspatfit(formpar,
                           data = unemp_it,
                           listw = lwsp_it,
                           demean = TRUE,
                           eff_demean = "time",
                           index = c("prov", "year"))

summary(param_dem_time)

param_plm_time <- plm::plm(formula = formpar,
                           data = unemp_it,
                           index = c("prov", "year"),
                           effect = "individual",
                           model = "within")

summary(param_plm_time)
pspatreg

pspatreg: A package to estimate and make inference for spatial and spatio-temporal econometric regression models

Description

pspatreg offers the user a collection of functions to estimate and make inference of geoadditive spatial or spatio-temporal semiparametric regression models of type ps-sim, ps-sar, ps-sem, ps-sarar,
ps-sdm, ps-sdem or ps-slx. These type of specifications are very general and they can include parametric and non-parametric covariates, spatial or spatio-temporal non-parametric trends and spatial lags of the dependent and independent variables and/or the noise of the model. The non-parametric terms (either trends or covariates) are modeled using P-Splines. The non-parametric trend can be decomposed in an ANOVA way including main and interactions effects of 2nd and 3rd order. The estimation method can be restricted maximum likelihood (REML) or maximum likelihood (ML).

Details

Some functionalities that have been included in `pspatreg` package are:

1. Estimation of the semiparametric regression model

   `pspatreg` allows the estimation of geoadditive spatial or spatio-temporal semiparametric regression models which could include:

   - An spatial or spatio-temporal trend, that is, a geoadditive model either for cross-section data or for panel data. This trend can be decomposed in main and interaction functions in an ANOVA way. The spatial (or spatio-temporal) trend gather the potential spatial heterogeneity of the data.
   - Parametric covariates as usual in regression models.
   - Non-parametric covariates in which the functional relationship is estimated from the data. Both the trends and non-parametric covariates are modelled using P-splines.
   - Spatial dependence adding spatial lags of the dependent and independent variables as usual in spatial econometric models. These models gather the potential spatial spillovers.

Once specified, the whole model can be estimated using either restricted maximum-likelihood (REML) or maximum likelihood (ML). The spatial econometric specifications allowed in `pspatreg` are the following ones:

   - `ps-sim`: geoadditive semiparametric model without spatial effects (in addition to the spatial or spatio-temporal trend, if it is included).
     \[
     y = f(s_1, s_2, \tau_t) y + X \beta + \sum_{i=1}^{k} g(z_i) + \epsilon
     \]
     where:
     - \( f(s_1, s_2, \tau_t) \) is a smooth spatio-temporal trend of the spatial coordinates \( s_1, s_2 \) and of the temporal coordinates \( \tau_t \).
     - \( X \) is a matrix including values of parametric covariates.
     - \( g(z_i) \) are non-parametric smooth functions of the covariates \( z_i \).
     - \( \epsilon \sim N(0, R) \) where \( R = \sigma^2 I_T \) if errors are uncorrelated or it follows an AR(1) temporal autoregressive structure for serially correlated errors.

   - `ps-slx`: geoadditive semiparametric model with spatial lags of the regresors (either parametric or non-parametric):
     \[
     y = f(s_1, s_2, \tau_t) + X \beta + (W_N \otimes I_T) X \theta + \sum_{i=1}^{k} g(z_i) + \sum_{i=1}^{k} g((\gamma_i * W_N \otimes I_T) z_i) + \epsilon
     \]
     where:
- $W_N$ is the spatial weights matrix.
- $I_T$ is an identity matrix of order $T$ ($T = 1$ for pure spatial data).

- **ps-sar**: geoadditive semiparametric model with spatial lag of the dependent variable

$$y = (\rho \ast W_N \otimes I_T)y + f(s_1, s_2, \tau_t) + X\beta + \sum_{i=1}^{k} g(z_i) + \epsilon$$

- **ps-sem**: geoadditive semiparametric model with a spatial lag of the noise of the model

$$y = f(s_1, s_2, \tau_t) + X\beta + \sum_{i=1}^{k} g(z_i) + u$$

$$u = (\delta \ast W_N \otimes I_T)u + \epsilon$$

- **ps-sdm**: geoadditive semiparametric model with spatial lags of the endogenous variable and of the regressors (spatial durbin model)

$$y = (\rho \ast W_N \otimes I_T)y + f(s_1, s_2, \tau_t) + X\beta + (W_N \otimes I_T)X\theta + \sum_{i=1}^{k} g(z_i) + \sum_{i=1}^{k} g((\gamma_i \ast W_N \otimes I_T)z_i) + \epsilon$$

- **ps-sdem**: geoadditive semiparametric model with spatial errors and spatial lags of the endogenous variable and of the regressors

$$y = f(s_1, s_2, \tau_t) + X\beta + (W_N \otimes I_T)X\theta + \sum_{i=1}^{k} g(z_i) + \sum_{i=1}^{k} g((\gamma_i \ast W_N \otimes I_T)z_i) + u$$

$$u = (\delta \ast W_N \otimes I_T)u + \epsilon$$

- **ps-sarar**: geoadditive semiparametric model with a spatial lag for: both dependent variable and errors

$$y = (\rho \ast W_N \otimes I_T)y + f(s_1, s_2, \tau_t) + X\beta + (W_N \otimes I_T)X\theta + \sum_{i=1}^{k} g(z_i) + \sum_{i=1}^{k} g((\gamma_i \ast W_N \otimes I_T)z_i) + u$$

$$u = (\delta \ast W_N \otimes I_T)u + \epsilon$$

2. **Plot of the spatial and spatio-temporal trends**

Once estimated the geoadditive semiparametric model, some functions of **pspatreg** are suited to make plots of the spatial or spatio-temporal trends. These functions, named **plot_sp2d** and **plot_sp3d**, can deal either with ‘sf’ objects or ‘dataframe’ objects including spatial coordinates (see the examples of the functions). The function **plot_sptime** allows to examine temporal trends for each spatial unit. Eventually, it is also possible to get the plots on nonparametric covariates using **plot_terms**.
3. Impacts and spatial spillovers

It is very common in spatial econometrics to evaluate the multiplier impacts that a change in the value of a regressor, in a point in the space, has on the explained variable. The \texttt{pspatreg} package allows the computation and inference of spatial impacts (direct, indirect and total) either for parametric covariates or nonparametric covariates (in the last case, the output are impact functions). The function named \texttt{impactspar} compute the impacts for parametric covariates in the usual way using simulation. On the other hand, the function \texttt{impactsnopar} allow the computation of impact functions for nonparametric covariates. For parametric covariates, the method to compute the impacts is the same than the exposed in LeSage and Page (2009). For nonparametric covariates the method is described in the help of the function \texttt{impactsnopar}. Both impact functions have dedicated methods to get a summary, for the parametric covariates, and plots, for the nonparametric covariates, of the direct, indirect and total impacts.

4. Additional methods

The package \texttt{pspatreg} provides the usual methods to extract information of the fitted models. The methods included are:

- \texttt{anova}: provides tables of fitted ‘\texttt{pspatreg}’ models including information criteria (AIC and BIC), log-likelihood and degrees of freedom of each fitted model. Also allows to perform LR tests between nested models.
- \texttt{print} method is used to print short tables including the values of beta and spatial coefficients as well as p-values of significance test for each coefficient.
- \texttt{summary} method displays the results of the estimation for spatial and spatio-temporal trends, parametric and nonparametric covariates and spatial parameters.
- \texttt{coef} extractor function of the parametric and spatial coefficentes.
- \texttt{fitted} extractor function of the fitted values.
- \texttt{logLik} extractor function of the log-likelihood.
- \texttt{residuals} extractor function of the residuals.
- \texttt{vcov} extractor function of the covariance matrix of the estimated parameters. The argument \texttt{bayesian} (default = ‘TRUE’) allows to choose between sandwich (frequentist) or bayesian method to compute the variances and covariances. See Fahrmeir et al. (2021) for details.

Datasets

\texttt{pspatreg} includes a spatio-temporal panel database including observations of unemployment, economic variables and spatial coordinates (centroids) for 103 Italian provinces in the period 1996-2019. This database is provided in RData format and can be loaded using the command \texttt{data(unemp_it, package = “pspatreg”).} The database also includes a $W$ spatial neighborhood matrix of the Italian provinces (computed using queen criterium). Furthermore, a map of Italian provinces is also included as an \texttt{sf} object. This map can be used to plot spatial and spatio-temporal trends estimated for each province. Some examples of spatial and spatio-temporal fitted trends are included in the help of the main function of \texttt{pspatreg} package (see especially \texttt{pspatfit}). See Minguez, Basile and Durban (2020) for additional details about this database.

source: Italian National Institute of Statistics (ISTAT) \texttt{https://www.istat.it}
For the spatial pure case, the examples included use the household database ames included in the AmesHousing package. See the help of ?AmesHousing::make_ames for an explanation of the variables included in this database. Examples of hedonic models including geoadditive spatial econometric regressions are included in the examples of pspatreg package.

**Author(s)**

Roman Minguez <roman.minguez@uclm.es>
Roberto Basile <roberto.basile@univaq.it>
Maria Durban <mdurban@est-econ.uc3m.es>
Gonzalo Espana-Heredia <gehllanza@gmail.com>

**References**

pspl_terms

Functions to include non-parametric continuous covariates and spatial or spatio-temporal trends in semiparametric regression models.

Description

The pspl() and pspt() functions allow the inclusion of non-parametric continuous covariates and spatial or spatio-temporal trends in semiparametric regression models. Both type of terms are modelled using P-splines.

pspl(): This function allows the inclusion of terms for non-parametric covariates in semiparametric models. Each non-parametric covariate must be included with its own pspl term in a formula.

pspt(): This function allows the inclusion of a spatial or spatio-temporal trend in the formula of the semiparametric spatial or spatio-temporal models. The trend can be decomposed in an ANOVA functional way including main and interaction effects.

Usage

pspl(
x,  
xl = min(x) - 0.01 * abs(min(x)),  
xr = max(x) + 0.01 * abs(max(x)),  
nknots = 10,  
bdeg = 3,  
pord = 2,  
decom = 3
)

pspt(
sp1,  
sp2,  
time = NULL,  
scale = TRUE,  
nptime = NULL,  
xl_sp1 = min(sp1) - 0.01 * abs(min(sp1)),  
xr_sp1 = max(sp1) + 0.01 * abs(max(sp1)),  
xl_sp2 = min(sp2) - 0.01 * abs(min(sp2)),  
xr_sp2 = max(sp2) + 0.01 * abs(max(sp2)),  
xl_time = min(time) - 0.01 * abs(min(time)),  
xr_time = max(time) + 0.01 * abs(max(time)),  
nknots = c(10, 10, 5),  
bdeg = c(3, 3, 3),  
pord = c(2, 2, 2),  
decom = 3,  
psanova = FALSE,  
nest_sp1 = 1,  
nest_sp2 = 1,


```r
nest_time = 1,
f1_main = TRUE,
f2_main = TRUE,
ft_main = TRUE,
f12_int = TRUE,
f1t_int = TRUE,
f2t_int = TRUE,
f12t_int = TRUE
)
```

**Arguments**

- `x` Name of the covariate.
- `xl` Minimum of the interval for the continuous covariate.
- `xr` Maximum of the interval for the continuous covariate.
- `nknots` Vector including the number of knots of each coordinate for spline bases. Default = c(10,10,5). The order of the knots in the vector follows the order of the specified spatio-temporal parameters so the first value of the vector is the number of knots for `sp1`, the second value is for `sp2` and the third for `time`. See Examples.
- `bdeg` Order of the B-spline bases. Default = c(3,3,3).
- `pord` Order of the penalty for the difference matrices in P-spline. Default = c(2,2,2).
- `decom` Type of decomposition of fixed part when P-spline term is expressed as a mixed model. If `decom = 1` the fixed part is given by $X = \mathbf{B} \ast \mathbf{U}_n$ where $\mathbf{B}$ is the B-spline basis matrix and $\mathbf{U}_n$ is the nullspace basis of the penalty matrix. If `decom = 2` the fixed part is given by $X = [1|x|...|x^{pord-1}]$. Default = 2.
- `sp1` Name of the first spatial coordinate.
- `sp2` Name of the second spatial coordinate.
- `time` Name of the temporal coordinate. It must be specified only for spatio-temporal trends when using panel data. Default = 'NULL'.
- `scale` Logical value to scale the spatial and temporal coordinates before the estimation of semiparametric model. Default = ‘TRUE’
- `ntime` Number of temporal periods in panel data.
- `xl_sp1` Minimum of the interval for the first spatial coordinate.
- `xr_sp1` Maximum of the interval for the first spatial coordinate.
- `xl_sp2` Minimum of the interval for the second spatial coordinate.
- `xr_sp2` Maximum of the interval for the second spatial coordinate.
- `xl_time` Minimum of the interval for the temporal coordinate.
- `xr_time` Maximum of the interval for the temporal coordinate.
- `psanova` Logical value to choose an ANOVA decomposition of the spatial or spatio-temporal trend. Default = ‘FALSE’. If ‘TRUE’, you must specify the divisors for main, and interaction effects. More in Examples.
nest_sp1  Vector including the divisor of the knots for main and interaction effects for the first spatial coordinate. It is used for ANOVA decomposition models including nested bases. Default = 1 (no nested bases). The values must be divisors and the resulting value of the division should not be smaller than 4.

gest_sp2  Vector including the divisor of the knots for main and interaction effects for the second spatial coordinate. It is used for ANOVA decomposition models including nested bases. Default = 1 (no nested bases). The values must be divisors and the resulting value of the division should not be smaller than 4.

gest_time  Vector including the divisor of the knots for main and interaction effects for the temporal coordinate. It is used for ANOVA decomposition models including nested bases. Default = 1 (no nested bases). The values must be divisors and the resulting value of the division should not be smaller than 4.

f1_main  Logical value to include main effect for the first spatial coordinate in ANOVA models. Default = ‘TRUE’.

f2_main  Logical value to include main effect for the second spatial coordinate in ANOVA models. Default = ‘TRUE’.

ft_main  Logical value to include main effect for the temporal coordinate in ANOVA models. Default = ‘TRUE’.

f12_int  Logical value to include second-order interaction effect between first and second spatial coordinates in ANOVA models. Default = ‘TRUE’.

f1t_int  Logical value to include second-order interaction effect between first spatial and temporal coordinates in ANOVA models. Default = ‘TRUE’.

f2t_int  Logical value to include second-order interaction effect between second spatial and temporal coordinates in ANOVA models. Default = ‘TRUE’.

f12t_int  Logical value to include third-order interaction effect between first and second spatial coordinates and temporal coordinates in ANOVA models. Default = ‘TRUE’.

Value

pspl(): An object of class bs including.

  B  Matrix including B-spline basis for the covariate

  a  List including nknots, knots, bdeg, pord and decom.

pspt(): An object of class bs including.

  B  Matrix including B-spline basis for the covariate

  a  List including sp1, sp2, time, nknots, bdeg, pord, decom, psanova, nest_sp1, nest_sp2, nest_time, f1_main, f2_main, ft_main.

References


See Also

`pspatfit` estimate semiparametric spatial or spatio-temporal regression models.

Examples

library(pspatreg)
### Examples using spatial data of Ames Houses.
library(spdep)
library(sf)
ames <- AmesHousing::make_ames() # Raw Ames Housing Data
ames_sf <- st_as_sf(ames, coords = c("Longitude", "Latitude"))
ames_sf$Longitude <- ames$Longitude
ames_sf$Latitude <- ames$Latitude
ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF+1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)
ames_sf1 <- ames_sf[(duplicated(ames_sf$Longitude) == FALSE), ]
#### GAM pure with pspatreg
form1 <- lnSale_Price ~ Fireplaces + Garage_Cars +
       pspl(lnLot_Area, nknots = 20) +
       pspl(lnTotal_Bsmt_SF, nknots = 20) +
       pspl(lnGr_Liv_Area, nknots = 20)
gampure <- pspatfit(form1, data = ames_sf1)
summary(gampure)

####### Constructing the spatial weights matrix
coord_sf1 <- cbind(ames_sf1$Longitude, ames_sf1$Latitude)
k5nb <- knn2nb(knearneigh(coord_sf1, k = 5, longlat = TRUE, use_kd_tree = FALSE), sym = TRUE)
lw_ames <- nb2listw(k5nb, style = "W", zero.policy = FALSE)
GAM + SAR Model

```r
gamsar <- pspatfit(form1, data = ames_sf1,
 type = "sar", listw = lw_ames,
 method = "Chebyshev")
summary(gamsar)
```

### Models with 2d spatial trend

```r
form2 <- lnSale_Price ~ Fireplaces + Garage_Cars +
 pspl(lnLot_Area, nknots = 20) +
 pspl(lnTotal_Bsmt_SF, nknots = 20) +
 pspl(lnGr_Liv_Area, nknots = 20) +
 pspt(Longitude, Latitude,
 nknots = c(10, 10),
 psanova = FALSE)
```

GAM + GEO Model

```r
gamgeo2d <- pspatfit(form2, data = ames_sf1)
summary(gamgeo2d)
```

```r
gamgeo2dsar <- pspatfit(form2, data = ames_sf1,
 type = "sar",
 listw = lw_ames,
 method = "Chebyshev")
summary(gamgeo2dsar)
```

### Models with psanova 2d spatial trend

```r
form3 <- lnSale_Price ~ Fireplaces + Garage_Cars +
 pspl(lnLot_Area, nknots = 20) +
 pspl(lnTotal_Bsmt_SF, nknots = 20) +
 pspl(lnGr_Liv_Area, nknots = 20) +
 pspt(Longitude, Latitude,
 nknots = c(10, 10),
 psanova = TRUE)
```

```r
gamgeo2danovasar <- pspatfit(form3, data = ames_sf1,
 type = "sar",
 listw = lw_ames, method = "Chebyshev")
summary(gamgeo2danovasar)
```
```r
nest_sp2 = c(1, 2, 2),
nest_time = c(1, 2, 2))
sptanova <- pspatfit(form4, data = unemp_it)
summary(sptanova)

##
Interaction terms fit not included in ANOVA decomposition
form5 <- unrate ~ partrate + agri + cons +
 pspl(serv, nknots = 15) +
 pspl(empgrowth, nknots=20) +
 pspt(long, lat, year,
 nknots = c(18, 18, 8),
 psanova = TRUE,
 nest_sp1 = c(1, 2, 3),
 nest_sp2 = c(1, 2, 3),
 nest_time = c(1, 2, 2),
 f1t_int = FALSE)
Add sar specification and ar1 temporal correlation
sptanova2_sar_ar1 <- pspatfit(form5, data = unemp_it,
 listw = lwsp_it,
 type = "sar",
 cor = "ar1")
summary(sptanova2_sar_ar1)
```

---

**summary.impactspar.pspatreg**

*Summary method for object of class impactspar.pspatreg.*

**Description**

This method summarizes direct, indirect and total effects (or impacts) for continuous parametric covariates in semiparametric spatial regression models.

**Usage**

```r
S3 method for class 'impactspar.pspatreg'
summary(object, ...)
```

**Arguments**

- `object` *impactspar* object fitted using `pspatfit` function.
- `...` further arguments passed to or from other methods.

**Value**

An object of class `summary.impactspar.pspatreg`
See Also

- `impactspar` Compute direct, indirect and total impacts for continuous parametric covariates.
- `print.summary.impactspar.pspatreg` print objects of class `summary.pspatreg`

Examples

```r
See examples for \code{\link{impactspar}} function.
```

### summary.pspatreg

*Summary method for objects of class pspatreg.*

#### Description

This method summarizes both spatial (2-dimension) and spatio-temporal (3-dimension) `pspatreg` objects. The tables include information of:

- The spatial (or spatio-temporal) trends. When the model is ANOVA the trend is decomposed in main and interaction effects.
- The parametric and non-parametric covariates.
- The \( \rho \) parameter when the model is SAR.
- The \( \phi \) parameter when the model is spatio-temporal with a first-order autorregressive in the noise.

#### Usage

```r
S3 method for class 'pspatreg'
summary(object, ...)
```

#### Arguments

- **object** `pspatreg` object fitted using `pspatfit` function.
- **...** further arguments passed to or from other methods.

#### Value

An object of class `summary.pspatreg`

#### Author(s)
See Also

- `pspatfit` estimate spatial or spatio-temporal semiparametric regression models.
- `print.summary.pspatreg` print objects of class `summary.pspatreg`

Examples

```r
See examples for \code{\link{pspatfit}) function.
```

---

**unemp_it**

*Regional unemployment rates Italian provinces*

Description

A panel dataset containing unemployment rates and other economic variables for Italian NUTS-3 provinces during the years 1996-2019.

Usage

```r
unemp_it
```

Format

A data frame with 2472 rows and 17 variables:

- `prov` province (NUTS-3) coded as a number.
- `name` province (NUTS-3) coded as a name.
- `reg` region (NUTS-2) coded as a name.
- `year` year.
- `area` area of the province (km\(^2\)).
- `unrate` unemployment rate (percentage).
- `agri` share of employment in agriculture (percentage).
- `ind` share of employment in industry (percentage).
- `cons` share of employment in construction (percentage).
- `serv` share of employment in services (percentage).
**popdens** population density.

**partrate** labor force participation rate, i.e. the ratio between the total labor force and the working population.

**empgrowth** employment growth rate (percentage).

**long** longitude of the centroid of the province.

**lat** latitude of the centroid of the province.

**South** dummy variable with unit value for southern provinces.

**ln_popdens** logarithm of population density.

**Source**

Italian National Institute of Statistics (ISTAT) [https://www.istat.it](https://www.istat.it)

---

**Wsp_it**

*Spatial weight matrix for Italian provinces*

**Description**

A spatial weight matrix row-standardized for Italian NUTS-3 provinces

**Usage**

`Wsp_it`

**Format**

A row-standardized squared matrix with 103 rows and columns. The rows and columns follow the same order than provinces included in `unemp_it` data frame.

**Source**

Italian National Institute of Statistics (ISTAT) [https://www.istat.it](https://www.istat.it)
Index

* datasets
  lwsp_it, 11
  map_it, 12
  prod_it, 28
  unemp_it, 54
  Wsp_it, 55

anova, 12, 44
anova (methods_pspatreg), 12

bobyqa, 33

choose.k, 32
coef, 44
coef (methods_pspatreg), 12

eigenw, 30

fit_terms, 3, 5, 7, 10, 16, 24, 25, 37
fitted, 44
fitted (methods_pspatreg), 12

gam, 25, 37

impacts, 9, 10
impactsnopar, 5, 9, 10, 16, 25, 34, 37, 44
impactspar, 7, 8, 9, 27, 33, 36, 44, 53

lagsarlm, 30
loess, 5, 6, 16
logLik, 44
logLik (methods_pspatreg), 12
lwsp_it, 11

map_it, 12
methods_pspatreg, 12

nb2listw, 30
null.space.dimension, 32

plm, 31
plot_impactsnopar, 5, 7, 15

plot_sp2d, 18, 43
plot_sp3d, 20, 43
plot_sptime, 22, 43
plot_terms, 3, 4, 16, 24, 43
print, 12, 44
print (methods_pspatreg), 12
print.summary.impactspar.pspatreg, 26, 53
print.summary.pspatreg, 27, 54
prod_it, 28
pspatfit, 3–5, 7, 9, 10, 13, 18, 20, 22, 29, 49, 51, 53, 54
pspatreg, 41
pspl, 32
pspl (pspl_terms), 46
pspl_terms, 46
pspt, 32
pspt (pspl_terms), 46

residuals, 44
residuals (methods_pspatreg), 12

spsurml, 30
summary, 44
summary.impactspar.pspatreg, 27, 51
summary.pspatreg, 12, 28, 53

trW, 30

unemp_it, 54

vcov, 44
vcov (methods_pspatreg), 12
vis.gam, 25

Wsp_it, 55