Package ‘psycModel’

October 14, 2022

Type Package

Title Integrated Toolkit for Psychological Analysis and Modeling in R

Version 0.4.1

Description A beginner-friendly R package for modeling in psychology or related field. It allows fitting models, plotting, checking goodness of fit, and model assumption violations all in one place. It also produces beautiful and easy-to-read output.

License GPL (>= 3)

URL https://github.com/jasonmoy28/psycModel

Depends R (>= 3.2)

Imports dplyr, ggplot2, glue, insight, lavaan, lifecycle, lme4, lmerTest, parameters, patchwork, performance, psych, rlang (>= 0.1.2), stringr, tibble, tidyr, utils

Suggests correlation, covr, cowplot, fansi, ggrepel, GPArotation, gridExtra, interactions, knitr, nFactors, nlme, pagedown, qplot, markdown, roxygen2, sandwich, see, semPlot, spelling, testthat (>= 3.0.0), tidyselect

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.0

Language en-US

NeedsCompilation no

Author Jason Moy [aut, cre] (<https://orcid.org/0000-0001-8795-3311>)

Maintainer Jason Moy <jasonmoy28@gmail.com>

Repository CRAN

Date/Publication 2022-10-03 23:30:02 UTC
Description

[Experimental]
Plot categorical variable with barplot. Continuous moderator are plotted at ± 1 SD from the mean.

Usage

anova_plot(model, predictor = NULL, graph_label_name = NULL)
Arguments

model

fitted model (usually lm or aov object). Variables must be converted to correct data type before fitting the model. Specifically, continuous variables must be converted to type numeric and categorical variables to type factor.

predictor

predictor variable. Must specified for non-interaction plot and must not specify for interaction plot.

graph_label_name

vector or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...). Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)

Value

a ggplot object

Examples

Main effect plot with 1 categorical variable
fit_1 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(school = as.factor(school)) %>%
 lm(data = ., grade ~ school)
anova_plot(fit_1, predictor = school)

Interaction effect plot with 2 categorical variables
fit_2 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(dplyr::across(c(school, sex), as.factor)) %>%
 lm(data = ., grade ~ school*sex)
anova_plot(fit_2)

Interaction effect plot with 1 categorical variable and 1 continuous variable
fit_3 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(school = as.factor(school)) %>%
 dplyr::mutate(ageyr = as.numeric(ageyr)) %>%
 lm(data = ., grade ~ ageyr*school)
anova_plot(fit_3)

Description

[Stable]
This function will run N number of CFA where N = length(group), and report the fit measures of CFA in each group. The function is intended to help you get a better understanding of which group has abnormal fit indicator.
Usage

cfa_groupwise(data, ..., group, model = NULL, ordered = FALSE)

Arguments

data data frame
... CFA items. Support dplyr::select() syntax.
group character. group variable. Support dplyr::select() syntax.
model explicit lavaan model. Must be specify with model = lavaan_model_syntax.
[Experimental]
ordered logical. default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML.

Details

All argument must be explicitly specified. If not, all arguments will be treated as CFA items

Value

a data.frame with group-wise CFA result

Examples

The example is used as the illustration of the function output only.
It does not imply the data is appropriate for the analysis.
cfa_groupwise(
 data = lavaan::HolzingerSwineford1939,
 group = "school",
 x1:x3,
 x4:x6,
 x7:x9
)

cfa_summary Confirmatory Factor Analysis

Description

[Stable]
The function fits a CFA model using the lavaan::cfa(). Users can fit single and multiple factors CFA, and it also supports multilevel CFA (by specifying the group). Users can fit the model by passing the items using dplyr::select() syntax or an explicit lavaan model for more versatile usage. All arguments (except the CFA items) must be explicitly named (e.g., model = your-model; see example for inappropriate behavior).
cfa_summary

Usage

cfa_summary(
 data,
 ...,
 model = NULL,
 group = NULL,
 ordered = FALSE,
 digits = 3,
 model_covariance = TRUE,
 model_variance = TRUE,
 plot = TRUE,
 group_partial = NULL,
 streamline = FALSE,
 quite = FALSE,
 return_result = FALSE
)

Arguments

data data frame

... CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.

model explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]

group optional character. used for multi-level CFA. the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.

ordered Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML

digits number of digits to round to

model_covariance print model covariance. Default is TRUE

model_variance print model variance. Default is TRUE

plot print a path diagram. Default is TRUE

group_partial Items for partial equivalence. The form should be c('DV =~ item1', 'DV =~ item2').

streamline print streamlined output

quite suppress printing output

return_result If it is set to TRUE, it will return the lavaan model

Details

First, just like researchers have argued against p value of 0.05 is not a good cut-off, researchers have also argue against that fit indicies (more importantly, the cut-off criteria) are not completely representative of the goodness of fit. Nonetheless, you are required to report them if you are publishing
an article anyway. I will summarize the general recommended cut-off criteria for CFA model below. Researchers consider models with CFI (Bentler, 1990) that is > 0.95 to be excellent fit (Hu & Bentler, 1999), and > 0.9 to be acceptable fit. Researchers considered a model is excellent fit if CFI > 0.95 (Hu & Bentler, 1999), RMSEA < 0.06 (Hu & Bentler, 1999), TLI > 0.95, SRMR < 0.08. The model is considered an acceptable fit if CFI > 0.9 and RMSEA < 0.08. I need some time to find all the relevant references, but this should be the general consensus.

Value

A lavaan object if return_result is TRUE

References

Examples

REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
Fitting a multilevel single factor CFA model
fit <- cfa_summary(
 data = lavaan::HolzingerSwineford1939,
 x1:x3,
 x4:x6,
 x7:x9,
 group = "sex",
 model_variance = FALSE, # do not print the model_variance
 model_covariance = FALSE # do not print the model_covariance
)

Fitting a CFA model by passing explicit lavaan model (equivalent to the above model)
Similarly, the same rule apply for all arguments (e.g., 'ordered = FALSE' instead of just 'FALSE')
fit <- cfa_summary(
 model = "visual =~ x1 + x2 + x3",
 data = lavaan::HolzingerSwineford1939,
 quite = TRUE # silence all output
)

Not run:
This will fail because I did not add `model = ` in front of the lavaan model.
Therefore, you must add the tag in front of all arguments
For example, `return_result = 'model'` instead of `model`
cfa_summary("visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9 ",
 data = lavaan::HolzingerSwineford1939
)

End(Not run)
Description

[Stable]
Compare the fit indices of models (see below for model support)

Usage

```r
compare_fit(
  ..., 
  digits = 3,
  quite = FALSE,
  streamline = FALSE,
  return_result = FALSE
)
```

Arguments

- `...` model. If it is a lavaan object, it will try to compute the measurement invariance. Other model types will be passed to performance::compare_performance().
- `digits` number of digits to round to
- `quite` suppress printing output
- `streamline` print streamlined output
- `return_result` If it is set to TRUE, it will return the the compare fit data frame.

Value

a dataframe with fit indices and change in fit indices

Examples

```r
# lme model

fit1 <- lm_model(
  data = popular,
  response_variable = popular,
  predictor_var = c(sex, extrav)
)

fit2 <- lm_model(
  data = popular,
  response_variable = popular,
  predictor_var = c(sex, extrav),
  two_way_interaction_factor = c(sex, extrav)
)
```
```r
cor_test(fit1, fit2)
# see ?measurement_invariance for measurement invariance example
```

Description

[Stable]

This function uses the `correlation::correlation()` to generate the correlation table.

Usage

```r
cor_test(
  data,
  cols,
  ..., 
  digits = 3,
  method = "pearson",
  p_adjust = "holm",
  streamline = FALSE,
  quite = FALSE,
  return_result = FALSE
)
```

Arguments

- `data` data frame
- `cols` correlation items. Support `dplyr::select()` syntax.
- `...` additional arguments passed to `correlation::correlation()`. See `correlation::correlation`. Note that the return data frame from `correlation::correlation()` must contains `r` and `p` (e.g., passing `baysian = TRUE` will not work)
- `digits` number of digits to round to
- `method` Default is "pearson". Options are "kendall", "spearman", "biserial", "polychoric", "tetrachoric", "biweight", "distance", "percentage", "blomqvist", "hoeffding", "gamma", "gaussian", "shepherd", or "auto". See `correlation::correlation` for detail
- `p_adjust` Default is "holm". Options are "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "somers" or "none". See `stats::p.adjust` for more detail
- `streamline` print streamlined output.
- `quite` suppress printing output
- `return_result` If it is set to `TRUE`, it will return the data frame of the correlation table
cronbach_alpha

Value

a data.frame of the correlation table

Examples

cor_test(iris, where(is.numeric))

cronbach_alpha Cronbach alpha

Description

[Stable]
Computing the Cronbach alphas for multiple factors.

Usage

cronbach_alpha(
 ...,
 data,
 var_name,
 group = NULL,
 quite = FALSE,
 return_result = FALSE
)

Arguments

... Items. Group each latent factors using c() with when computing Cronbach alpha for 2+ factors (see example below)
data data.frame. Must specify
var_name character or a vector of characters. The order of var_name must be same as the order of the ...group optional character. Specify this argument for computing Cronbach alpha for group separately
quite suppress printing output
return_result If it is set to TRUE, it will return a data frame object

Value

a data frame object if return_result is TRUE
Examples

cronbach_alpha(
 data = lavaan::HolzingerSwineford1939,
 var_name = c('Visual','Textual','Speed'),
 c(x1,x2,x3), # one way to pass the items of a factor is by wrapping it with c()
 x4:x6, # another way to pass the items is use tidyselect syntax
 x7:x9)

descriptive_table

Description

[Stable]
This function generates a table of descriptive statistics (mainly using psych::describe()) and or a
correlation table. User can export this to a csv file (optionally, using the file_path argument). Users
can open the csv file with MS Excel then copy and paste the table into MS Word table.

Usage

descriptive_table(
 data,
 cols,
 ...,
 digits = 3,
 descriptive_indicator = c("mean", "sd", "cor"),
 file_path = NULL,
 streamline = FALSE,
 quite = FALSE,
 return_result = FALSE
)

Arguments

data data.frame
cols column(s) need to be included in the table. Support dplyr::select() syntax.
... additional arguments passed to cor_test. See ?cor_test.
digits number of digit for the descriptive table
descriptive_indicator Default is mean, sd, cor. Options are missing (missing value count), non_missing
 (non-missing value count), cor (correlation table), n, mean, sd, median, trimmed
 (trimmed mean), median, mad (median absolute deviation from the median),
 min, max, range, skew, kurtosis, se (standard error)
file_path file path for export. The function will implicitly pass this argument to the
 write.csv(file = file_path)
streamline print streamlined output
quite suppress printing output
return_result If it is set to TRUE, it will return the data frame of the descriptive table

Value
a data.frame of the descriptive table

Examples
descriptive_table(iris, cols = where(is.numeric)) # all numeric columns
descriptive_table(iris, cols = where(is.numeric),
get missing count, non-missing count, and mean & sd & correlation table
descriptive_indicator = c("missing", "non_missing", "mean", "sd", "cor")
)

descriptive_table(iris, cols = where(is.numeric),
get missing count, non-missing count, and mean & sd & correlation table
descriptive_indicator = c("missing", "non_missing", "mean", "sd", "cor")
)

efa_summary

Exploratory Factor Analysis

Description
[Stable]
The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using psych::fa(). Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)

Usage
efa_summary(
 data,
 cols,
 rotation = "varimax",
 optimal_factor_method = FALSE,
 efa_plot = TRUE,
 digits = 3,
 n_factor = NULL,
 post_hoc_cfa = FALSE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
get_interaction_term

Arguments

- **data**: data frame
- **cols**: columns. Support `dplyr::select()` syntax.
- **rotation**: the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'varimax', 'quartimax', 'promax', 'oblimin', or 'simplimax'
- **optimal_factor_method**: Show a summary of the number of factors by optimization method (e.g., BIC, VSS complexity, Velicer’s MAP)
- **efa_plot**: show explained variance by number of factor plot. default is TRUE.
- **digits**: number of digits to round to
- **n_factor**: number of factors for EFA. It will bypass the initial optimization algorithm, and fit the EFA model using this specified number of factor
- **post_hoc_cfa**: a CFA model based on the extracted factor
- **quite**: suppress printing output
- **streamline**: print streamlined output
- **return_result**: If it is set to TRUE (default is FALSE), it will return a fa object from psych

Value

- a fa object from psych

Examples

```
efa_summary(lavaan::HolzingerSwinford1939, starts_with("x"), post_hoc_cfa = TRUE)
```

get_interaction_term get interaction term

Description

get interaction term

Usage

`get_interaction_term(model)`

Arguments

- **model**: model

Value

- a list with predict vars names
get_predict_df

get factor df to combine with mean_df

Description

get factor df to combine with mean_df

Usage

```r
get_predict_df(data)
```

Arguments

data

Value

factor_df

glm_model

Generalized Linear Regression

Description

Experimental

Fit a generalized linear regression using glm(). This function is still in early development stage.

Usage

```r
glm_model(
data,
response_variable,
predictor_variable,
two_way_interaction_factor = NULL,
three_way_interaction_factor = NULL,
family,
quite = FALSE
)
```
html_to_pdf

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>data.frame</td>
</tr>
<tr>
<td>response_variable</td>
<td>response variable. Support dplyr::select() syntax.</td>
</tr>
<tr>
<td>predictor_variable</td>
<td>predictor variable. Support dplyr::select() syntax.</td>
</tr>
<tr>
<td>two_way_interaction_factor</td>
<td>two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.</td>
</tr>
<tr>
<td>three_way_interaction_factor</td>
<td>three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.</td>
</tr>
<tr>
<td>family</td>
<td>a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options.</td>
</tr>
<tr>
<td>quite</td>
<td>suppress printing output</td>
</tr>
</tbody>
</table>

Value

an object class of glm representing the linear regression fit

Examples

```r
fit <- glm_model(
  response_variable = incidence,
  predictor_variable = period,
  family = "poisson", # or you can enter as poisson(link = 'log'),
  data = lme4::cbpp
)
```

Description

[Experimental]
This is a helper function for knitting Rmd. Due to technological limitation, the output cannot knit to PDF in Rmd directly (the problem is with the latex engine printing unicode character). Therefore, to bypass this problem, you will first need to knit to html file first, then use this function to convert it to a PDF file.

Usage

```r
html_to_pdf(file_path = NULL, dir = NULL, scale = 1, render_exist = FALSE)
```
interaction_plot

Arguments

- `file_path`: file path to the HTML file (can be relative if you are in a R project)
- `dir`: file path to the directory of all HTML files (can be relative if you are in a R project)
- `scale`: the scale of the PDF
- `render_exist`: overwrite exist PDF. Default is `FALSE`

Value

no return value

Examples

```r
## Not run:
html_to_pdf(file_path = "html_name.html")
# all HTML files in the my_html_folder will be converted
hhtml_to_pdf(dir = "Users/Desktop/my_html_folder")

## End(Not run)
```

Description

[Stable]

The function creates a two-way or three-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with `lm_model()`, `lme_model()`.

Usage

```r
interaction_plot(
  model,
  data = NULL,
  graph_label_name = NULL,
  categorical_var = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```
Arguments

model object from lme, lme4, lmerTest object.
data data frame. If the function is unable to extract data frame from the object, then you may need to pass it directly

graph_label_name vector of length 4 or a switch function (see ?two_way_interaction_plot example). Vector should be passed in the form of c(response_var, predict_var1, predict_var2, predict_var3).
categorical_var list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))
y_lim the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color default if FALSE. Set to TRUE if you want to plot in color

Value

a ggplot object

Examples

```r
lm_fit_2 <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Sepal.Width*Petal.Length, data = iris)
interaction_plot(lm_fit_2)

interaction_plot(lm_fit_3)
```

Knit Rmd Files Instruction

Description

This is a helper function that instruct users of the package how to knit a R Markdown (Rmd) files

Usage

```
knit_to_Rmd()
```

Value

no return value
Examples

knit_to_Rmd()

Description

get label name

Usage

label_name(
 graph_label_name,
 response_var_name,
 predict_var1_name,
 predict_var2_name,
 predict_var3_name
)

Arguments

 graph_label_name
 label name

 response_var_name
 outcome variable name

 predict_var1_name
 predictor 1 name

 predict_var2_name
 predictor 2 name

 predict_var3_name
 predictor 3 name

Value

 vector of var name
Description

[Stable]
Fit a linear mixed effect model (i.e., hierarchical linear model, multilevel linear model) using the `nlme::lme()` or the `lmerTest::lmer()` function. Linear mixed effect model is used to explore the effect of continuous / categorical variables in predicting a normally distributed continuous variable.

Usage

```r
lme_model(
  data,
  model = NULL,
  response_variable,
  random_effect_factors = NULL,
  non_random_effect_factors = NULL,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  id,
  estimation_method = "REML",
  opt_control = "bobyqa",
  na.action = stats::na.omit,
  use_package = "lmerTest",
  quite = FALSE
)
```

Arguments

data data.frame

model lme4 model syntax. Support more complicated model. Note that model_summary will only return fixed effect estimates.

response_variable

DV (i.e., outcome variable / response variable). Length of 1. Support `dplyr::select()` syntax.

random_effect_factors

random effect factors (level-1 variable for HLM people) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support `dplyr::select()` syntax.

non_random_effect_factors

non-random effect factors (level-2 variable for HLM people). Factors only need to estimate fixed effect. Support `dplyr::select()` syntax.

two_way_interaction_factor

two-way interaction factors. You need to pass 2+ factor. Support `dplyr::select()` syntax.
three_way_interaction_factor

three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.

id

the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.

estimation_method

character. ML or REML default to REML.

opt_control

default is optim for lme and bobyqa for lmerTest

na.action

default is stats::na.omit. Another common option is na.exclude

use_package

Default is lmerTest. Only available for linear mixed effect model. Options are nlme, lmerTest, or lme4 ("lme4 return similar result as lmerTest except the return model)

quite

suppress printing output

Details

Here is a little tip. If you are using generic selecting syntax (e.g., contains() or start_with()), you don’t need to remove the response variable and the id from the factors. It will be automatically remove. For example, if you have x1:x9 as your factors. You want to regress x2:x8 on x1. Your probably pass something like response_variable = x1, random_effect_factors = c(contains('x'),-x1) to the function. However, you don’t need to do that, you can just pass random_effect_factors = c(contains('x')) to the function since it will automatically remove the response variable from selection.

Value

an object representing the linear mixed-effects model fit (it maybe an object from lme or lmer depending of the package you use)

Examples

two-level model with level-1 and level-2 variable with random intercept and random slope
fit1 <- lme_model(
 data = popular,
 response_variable = popular,
 random_effect_factors = c(extrav, sex),
 non_random_effect_factors = texp,
 id = class
)

added two-way interaction factor
fit2 <- lme_model(
 data = popular,
 response_variable = popular,
 random_effect_factors = c(extrav, sex),
 non_random_effect_factors = texp,
two_way_interaction_factor = c(extrav, texp),
 id = class
)

pass a explicit lme model (I don't why you want to do that, but you can)
lme_fit <- lme_model(
 model = "$popular ~ extrav*texp + (1 + extrav | class)" ,
 data = popular
)

lme_multilevel_model_summary

Model Summary for Mixed Effect Model

Description

[Stable]
An integrated function for fitting a multilevel linear regression (also known as hierarchical linear regression).

Usage

lme_multilevel_model_summary(
 data,
 model = NULL,
 response_variable = NULL,
 random_effect_factors = NULL,
 non_random_effect_factors = NULL,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 family = NULL,
 categorical_var = NULL,
 id = NULL,
 graph_label_name = NULL,
 estimation_method = "REML",
 opt_control = "bobyqa",
 na.action = stats::na.omit,
 model_summary = TRUE,
 interaction_plot = TRUE,
 y_lim = NULL,
 plot_color = FALSE,
 digits = 3,
 use_package = "lmerTest",
 simple_slope = FALSE,
 assumption_plot = FALSE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
Arguments

data data.frame
model lme4 model syntax. Support more complicated model structure from lme4. It is not well-tested to ensure accuracy [Experimental]
response_variable
DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.
random_effect_factors
random effect factors (level-1 variable for HLM from a HLM perspective) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support dplyr::select() syntax.
non_random_effect_factors
non-random effect factors (level-2 variable from a HLM perspective). Factors only need to estimate fixed effect. Support dplyr::select() syntax.
two_way_interaction_factor
two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor
three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
family a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options. [Experimental]
categorical_var
list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))
id
the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.
graph_label_name
optional vector or function. vector of length 2 for two-way interaction graph. vector of length 3 for three-way interaction graph. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...). Function should be passed as a switch function (see ?two_way_interaction_plot for an example)
estimation_method
character. ML or REML default is REML.
opt_control
default is optim for lme and bobyqa for lmerTest.
na.action
default is stats::na.omit. Another common option is na.exclude
model_summary
print model summary. Required to be TRUE if you want assumption_plot.
interaction_plot
generate interaction plot. Default is TRUE
y_lim
the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color
If it is set to TRUE (default is FALSE), the interaction plot will plot with color.

digits
number of digits to round to

use_package
Default is `lmerTest`. Only available for linear mixed effect model. Options are `nlme`, `lmerTest`, or `lme4` (`lme4` return similar result as `lmerTest` except the return model)

simple_slope
Slope estimate at ± 1 SD and the mean of the moderator. Uses `interactions::sim_slope()` in the background.

assumption_plot
Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls `performance::check_model()`.

quite
suppress printing output

streamline
print streamlined output.

return_result
If it is set to TRUE (default is FALSE), it will return the model, `model_summary`, and plot (plot if the interaction term is included)

Value

- a list of all requested items in the order of model, `model_summary`, interaction_plot, simple_slope

Examples

```r
fit <- lme_multilevel_model_summary(
  data = popular,
  response_variable = popular, # you can add random effect predictors here
  random_effect_factors = NULL,
  non_random_effect_factors = c(extrav, texp),
  two_way_interaction_factor = NULL, # you can add two-way interaction plot here
  graph_label_name = NULL, #you can also change graph lable name here
  id = class,
  simple_slope = FALSE, # you can also request simple slope estimate
  assumption_plot = FALSE, # you can also request assumption plot
  plot_color = FALSE, # you can also request the plot in color
  streamline = FALSE # you can change this to get the least amount of info
)
```

lm_model

Linear Regressions / ANOVA / ANCOVA

Description

Stable

Fit a linear regression using `lm()`. Linear regression is used to explore the effect of continuous variables / categorical variables in predicting a normally-distributed continuous variables.
Usage

```r
lm_model(
  data,
  response_variable,
  predictor_variable,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  quite = FALSE
)
```

Arguments

data data.frame
response_variable response variable. Support dplyr::select() syntax.
predictor_variable predictor variable. Support dplyr::select() syntax. It will automatically remove the response variable from predictor variable, so you can use contains() or start_with() safely.
two_way_interaction_factor two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
quite suppress printing output

Value

an object class of lm representing the linear regression fit

Examples

```r
fit <- lm_model(
  data = iris,
  response_variable = "Sepal.Length",
  predictor_variable = tidyselect::everything(),
  two_way_interaction_factor = c(Sepal.Width, Species)
)
```
lm_model_summary

Model Summary for Linear Regression

Description

[Stable]
An integrated function for fitting a linear regression model.

Usage

```r
lm_model_summary(
  data,
  response_variable = NULL,
  predictor_variable = NULL,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  family = NULL,
  categorical_var = NULL,
  graph_label_name = NULL,
  model_summary = TRUE,
  interaction_plot = TRUE,
  y_lim = NULL,
  plot_color = FALSE,
  digits = 3,
  simple_slope = FALSE,
  assumption_plot = FALSE,
  quite = FALSE,
  streamline = FALSE,
  return_result = FALSE
)
```

Arguments

- `data` data.frame: DV (i.e., outcome variable / response variable). Length of 1. Support `dplyr::select()` syntax.
- `response_variable` character: IV. Support `dplyr::select()` syntax.
- `two_way_interaction_factor` character: three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the `two_way_interaction_factor` argument. Support `dplyr::select()` syntax.
`lm_model_summary`

family a GLM family. It will passed to the family argument in glm. See `?glm` for possible options. [Experimental]

categorical_var list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of `list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))`

graph_label_name optional vector or function. Vector of length 2 for two-way interaction graph. Vector of length 3 for three-way interaction graph. Vector should be passed in the form of `c(response_var, predict_var1, predict_var2, ...)`. Function should be passed as a switch function (see `?two_way_interaction_plot` for an example)

model_summary print model summary. Required to be TRUE if you want assumption_plot.

interaction_plot generate the interaction plot. Default is TRUE

y_lim the plot’s upper and lower limit for the y-axis. Length of 2. Example: `c(lower_limit, upper_limit)`

plot_color If it is set to TRUE (default is FALSE), the interaction plot will plot with color.

digits number of digits to round to

simple_slope Slope estimate at +1/-1 SD and the mean of the moderator. Uses `interactions::sim_slope()` in the background.

assumption_plot Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls `performance::check_model()`

quite suppress printing output

streamline print streamlined output

return_result If it is set to TRUE (default is FALSE), it will return the model, model_summary, and plot (if the interaction term is included)

Value

a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

```r
fit <- lm_model_summary(
  data = iris,
  response_variable = "Sepal.Length",
  predictor_variable = tidyselect::everything(),
  two_way_interaction_factor = c(Sepal.Width, Species),
  interaction_plot = FALSE, # you can also request the interaction plot
  simple_slope = FALSE, # you can also request simple slope estimate
  assumption_plot = FALSE, # you can also request assumption plot
  streamline = FALSE # you can change this to get the least amount of info
)
```
measurement_invariance

Measurement Invariance

Description

[Stable]
Compute the measurement invariance model (i.e., measurement equivalence model) using multi-group confirmatory factor analysis (MGCFA; Jöreskog, 1971). This function uses the lavaan::cfa() in the backend. Users can run the configural-metric or the configural-metric-scalar comparisons (see below for detail instruction). All arguments (except the CFA items) must be explicitly named (like model = your-model; see example for inappropriate behavior).

Usage

measurement_invariance(
 data,
 ...,
 model = NULL,
 group,
 ordered = FALSE,
 group_partial = NULL,
 invariance_level = "scalar",
 digits = 3,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)

Arguments

data data.frame
 ... CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.
model explicit lavaan model. Must be specify with model = lavaan_model_syntax.
 [Experimental]
group the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.
ordered Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML.
group_partial items for partial equivalence. The form should be c('DV =~ item1', 'DV =~ item2'). See details for recommended practice.
invariance_level "metric" or "scalar". Default is 'metric'. Set as 'metric' for configural-metric comparison, and set as 'scalar' for configural-metric-scalar comparison.
details

Chen (2007) suggested that change in CFI $\leq |-0.010|$ supplemented by RMSEA ≤ 0.015 indicate non-invariance when sample sizes were equal across groups and larger than 300 in each group (Chen, 2007). And, Chen (2007) suggested that change in CFI $\leq |-0.005|$ and change in RMSEA ≤ 0.010 for unequal sample size with each group smaller than 300. For SRMR, Chen (2007) recommend change in SRMR < 0.030 for metric-invariance and change in SRMR < 0.015 for scalar-invariance. For large group size, Rutowski & Svetina (2014) recommended a more liberal cut-off for metric non-invariance for CFI (change in CFI $\leq |-0.020|$) and RMSEA (RMSEA ≤ 0.030). However, this more liberal cut-off DOES NOT apply to testing scalar non-invariance. If measurement-invariance is not achieved, some researchers suggesting partial invariance is acceptable (by releasing the constraints on some factors). For example, Steenkamp and Baumgartner (1998) suggested that ideally more than half of items on a factor should be invariant. However, it is important to note that no empirical studies were cited to support the partial invariance guideline (Putnick & Bornstein, 2016).

value

da frame of the fit measure summary

references

examples

REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
Fitting a multiple-factor measurement invariance model by passing items.

measurement_invariance(
x1:x3,
x4:x6,
x7:x9,
)
mediation_summary

Mediation Analysis

Description

[Experimental]
It currently only support simple mediation analysis using the path analysis approach with the lavaan package. I am trying to implement multilevel mediation in lavaan. In the future, I will try supporting moderated mediation (through lavaan or mediation) and mediation with latent variable (through lavaan).

Usage

mediation_summary(
 data,
 response_variable,
 mediator,
mediation_summary

predictor_variable,
control_variable = NULL,
group = NULL,
standardize = TRUE,
digits = 3,
quite = FALSE,
streamline = FALSE,
return_result = FALSE
)

Arguments

data data.frame
response_variable
 response variable. Support dplyr::select() syntax.
mediator
 mediator. Support dplyr::select() syntax.
predictor_variable
 predictor variable. Support dplyr::select() syntax.
control_variable
 control variables / covariate. Support dplyr::select() syntax.

group
 nesting variable for multilevel mediation. Not confident about the implementation method. [Experimental]
standardize
 standardized coefficients. Default is TRUE
digits
 number of digits to round to
quite
 suppress printing output
streamline
 print streamlined output
return_result
 If it is set to TRUE, it will return the lavaan object

Value

an object from lavaan

Examples

mediation_summary(
 data = lmerTest::carrots,
 response_variable = Preference,
 mediator = Sweetness,
 predictor_variable = Crisp
)
model_summary

Model Summary for Regression Models

Description

[Stable]
The function will extract the relevant coefficients from the regression models (see below for supported model).

Usage

```r
model_summary(
    model,
    digits = 3,
    assumption_plot = FALSE,
    quite = FALSE,
    streamline = TRUE,
    return_result = FALSE,
    standardize = "basic"
)
```

Arguments

- **model**: an model object. The following model are tested for accuracy: `lm`, `glm`, `lme`, `lmer`, `glmer`. Other model object may work if it work with parameters::model_parameters()
- **digits**: number of digits to round to
- **assumption_plot**: Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls performance::check_model().
- **quite**: suppress printing output
- **streamline**: print streamlined output. Only print model estimate and performance.
- **return_result**: It set to TRUE, it return the model estimates data frame.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in parameters::standardize_parameters()

Value

a list of model estimate data frame, model performance data frame, and the assumption plot (an ggplot object)

References

Examples

I am going to show the more generic usage of this function
You can also use this package's built in function to fit the models
I recommend using the integrated_multilevel_model_summary to get everything

lme example
lme_fit <- lme4::lmer("popular ~ texp + (1 | class)",
 data = popular
)
model_summary(lme_fit)

lm example
lm_fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
 data = iris
)
model_summary(lm_fit, assumption_plot = TRUE)

polynomial_regression_plot

Polynomial Regression Plot

Description

[Experimental]
The function create a simple regression plot (no interaction). Can be used to visualize polynomial regression.

Usage

polynomial_regression_plot(
 model,
 model_data = NULL,
 predictor,
 graph_label_name = NULL,
 x_lim = NULL,
 y_lim = NULL,
 plot_color = FALSE
)

Arguments

model object from lm
model_data optional dataframe (in case data cannot be retrieved from the model)
predictor predictor variable name (must be character)
graph_label_name
 vector of length 3 or function. Vector should be passed in the form of `c(response_var, predict_var1, predict_var2)`. Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)

x_lim
 the plot's upper and lower limit for the x-axis. Length of 2. Example: `c(lower_limit, upper_limit)`

y_lim
 the plot's upper and lower limit for the y-axis. Length of 2. Example: `c(lower_limit, upper_limit)`

plot_color
 default if FALSE. Set to TRUE if you want to plot in color

Details

It appears that predict cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

an object of class ggplot

Examples

```r
fit = lm(data = iris, Sepal.Length ~ poly(Petal.Length,2))
polynomial_regression_plot(model = fit, predictor = 'Petal.Length')
```

popular

Popular dataset

Description

Classic data-set from Chapter 2 of Joop Hox’s Multilevel Analysis (2010). The popular dataset included student from different class (i.e., class is the nesting variable). The outcome variable is a self-rated popularity scale. Individual-level (i.e., level 1) predictors are sex, extroversion. Class level (i.e., level 2) predictor is teacher experience.

Usage

```r
popular
```

Format

A data frame with 2000 rows and 6 variables:

- `pupil` Subject ID
- `popular` Self-rated popularity scale ranging from 1 to 10
- `class` the class that students belong to (nesting variable)
- `extrav` extraversion scale (individual-level)
- `sex` gender of the student (individual-level)
- `texp` teacher experience (class-level)
Description

[Stable]
First, it will determine whether the data is uni-dimensional or multi-dimensional using parameters::n_factors(). If the data is uni-dimensional, then it will print a summary consists of alpha, G6, single-factor CFA, and descriptive statistics result. If it is multi-dimensional, it will print a summary consist of alpha, G6, omega result. You can bypass this by specifying the dimensionality argument.

Usage

reliability_summary(
 data, cols,
 dimensionality = NULL,
 digits = 3,
 descriptive_table = TRUE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)

Arguments

data data.frame
cols items for reliability analysis. Support dplyr::select() syntax.
dimensionality Specify the dimensionality. Either uni (uni-dimensionality) or multi (multi-dimensionality). Default is NULL that determines the dimensionality using EFA.
digits number of digits to round to
descriptive_table Get descriptive statistics. Default is TRUE
quite suppress printing output
streamline print streamlined output
return_result If it is set to TRUE (default is FALSE), it will return psych::alpha for unidimensional scale, and psych::omega for multidimensional scale.

Value

a psych::alpha object for unidimensional scale, and a psych::omega object for multidimensional scale.
Examples

```r
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x3)
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x9)
```

simple_slope
Slope Estimate at Varying Level of Moderators

Description

[Stable]

The function uses the `interaction::sim_slopes()` to calculate the slope estimate at varying level of moderators (+/- 1 SD and mean). Additionally, it will produce a Johnson-Newman plot that shows when the slope estimate is not significant.

Usage

```r
simple_slope(model, data = NULL)
```

Arguments

- `model`
 model object from `lm, lme, lmer`
- `data`
 data.frame

Value

a list with the slope estimate data frame and a Johnson-Newman plot.

Examples

```r
fit <- lm_model(
  data = iris,
  response_variable = Sepal.Length,
  predictor_variable = tidyselect::everything(),
  three_way_interaction_factor = c(Sepal.Width, Petal.Width, Petal.Length)
)

simple_slope_fit <- simple_slope(  
  model = fit,
)
```
Description

[Deprecated]
The function creates a two-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with lm_model(), lme_model().

Usage

three_way_interaction_plot(
 model,
 data = NULL,
 categorical_var = NULL,
 graph_label_name = NULL,
 y_lim = NULL,
 plot_color = FALSE
)

Arguments

model object from lme, lme4, lmerTest object.
data data.frame. If the function is unable to extract data frame from the object, then you may need to pass it directly
categorical_var list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))
graph_label_name vector of length 4 or a switch function (see ?two_way_interaction_plot example). Vector should be passed in the form of c(response_var, predict_var1, predict_var2, predict_var3).
y_lim the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color default if FALSE. Set to TRUE if you want to plot in color

Details

It appears that ‘predict’ cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

a ggplot object
Examples

```r
three_way_interaction_plot(lm_fit, data = iris)
```

Description

[Deprecated]
The function creates a two-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See supported model below. I recommend using concurrently with `lm_model` or `lme_model`.

Usage

```r
two_way_interaction_plot(
  model,
  data = NULL,
  graph_label_name = NULL,
  categorical_var = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```

Arguments

- **model**: object from `lm`, `nlme`, `lme4`, or `lmerTest`
- **data**: data.frame. If the function is unable to extract data frame from the object, then you may need to pass it directly
- **graph_label_name**: vector of length 3 or function. Vector should be passed in the form of `c(response_var, predict_var1, predict_var2)`. Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)
- **categorical_var**: list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of `list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))`
- **y_lim**: the plot’s upper and lower limit for the y-axis. Length of 2. Example: `c(lower_limit, upper_limit)`
- **plot_color**: default if `FALSE`. Set to `TRUE` if you want to plot in color
Details

It appears that ‘predict’ cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

an object of class ggplot

Examples

```r
lm_fit <- lm(Sepal.Length ~ Sepal.Width * Petal.Width, 
             data = iris)
```

two_way_interaction_plot(lm_fit, data = iris)
Index

* datasets
 popular, 32

anova_plot, 2

cfa_groupwise, 3
cfa_summary, 4
compare_fit, 7
cor_test, 8
cronbach_alpha, 9
descriptive_table, 10
efa_summary, 11

get_interaction_term, 12
get_predict_df, 13
glm_model, 13

html_to_pdf, 14

interaction_plot, 15

knit_to_Rmd, 16

label_name, 17

lm_model, 22

lm_model_summary, 24

lme_model, 18

lme_multilevel_model_summary, 20

measurement_invariance, 26

mediation_summary, 28

model_summary, 30

polynomial_regression_plot, 31

popular, 32

reliability_summary, 33

simple_slope, 34

three_way_interaction_plot, 35

two_way_interaction_plot, 36