Package ‘psycModel’

May 22, 2021

Type Package

Title Integrated Toolkit for Psychological Analysis and Modeling in R

Version 0.3.1

Description A beginner-friendly R package for modeling in psychology or related field. It allows fitting models, plotting, checking goodness of fit, and model assumption violations all in one place. It also produces beautiful and easy-to-read output.

License GPL (>= 3)

Depends R (>= 2.10)

Imports dplyr, ggplot2, insight, glue, lavaan, lifecycle, lme4, lmerTest, parameters, performance, psych, rlang (>= 0.1.2), stringr, tibble, tidyr, utils

Suggests correlation, covr, cowplot, fansi, ggrepel, GPArotation, gridExtra, interactions, knitr, nFactors, nlme, pagedown, qplotr, markdown, roxygen2, sandwich, see, semPlot, testthat (>= 3.0.0), tidyeval

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

needsCompilation no

Author Jason Moy [aut, cre] (<https://orcid.org/0000-0001-8795-3311>)

Maintainer Jason Moy <jasonmoy28@gmail.com>

Repository CRAN

Date/Publication 2021-05-21 23:50:03 UTC
R topics documented:

- cfa_groupwise 2
- cfa_summary 3
- compare_fit 6
- cor_test 7
- descriptive_table 8
- efa_summary 9
- glme_model 10
- glm_model 12
- html_to_pdf 13
- integrated_model_summary 14
- integrated_multilevel_model_summary 16
- knit_to_Rmd 19
- lme_model 19
- lm_model 21
- measurement_invariance 23
- mediation_summary 25
- model_summary 27
- popular 28
- reliability_summary 29
- simple_slope 30
- three_way_interaction_plot 31
- two_way_interaction_plot 32

Index 35

cfa_groupwise
Confirmatory Factor Analysis (groupwise)

Description

[Stable]

This function will run N number of CFA where N = length(group), and report the fit measures of CFA in each group. The function is intended to help you get a better understanding of which group has abnormal fit indicator.

Usage

```r
CFA_groupwise(data, ..., group, model = NULL, ordered = FALSE)
```

Arguments

- `data` : data frame
- `...` : CFA items. Support `dplyr::select()` syntax.
- `group` : character. group variable. Support `dplyr::select()` syntax.
cfa_summary

model explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]

ordered logical. default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML

Details

All argument must be explicitly specified. If not, all arguments will be treated as CFA items

Value

data frame with group-wise CFA result

Examples

The example is used as the illustration of the function output only.
It does not imply the data is appropriate for the analysis.
cfa_groupwise(
 data = lavaan::HolzingerSwinford1939,
 group = "school",
 x1:x3,
 x4:x6,
 x7:x9
)

cfa_summary

Confirmatory Factor Analysis

Description

[Stable]
The function fits a CFA model using the lavaan::cfa(). Users can fit single and multiple factors CFA, and it also supports multilevel CFA (by specifying the group). Users can fit the model by passing the items using dplyr::select() syntax or an explicit lavaan model for more versatile usage. All arguments (except the CFA items) must be explicitly named (e.g., model = your-model; see example for inappropriate behavior).

Usage

cfa_summary(
 data,
 ...,
 model = NULL,
 group = NULL,
 ordered = FALSE,
 digits = 3,
 model_covariance = TRUE,
 model_variance = TRUE,
plot = TRUE,
group_partial = NULL,
streamline = FALSE,
quite = FALSE,
return_result = FALSE
)

Arguments

data data frame
... CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.
model explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]
group optional character. used for multi-level CFA. the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.
ordered Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML
digits number of digits to round to
model_covariance print model covariance. Default is TRUE
model_variance print model variance. Default is TRUE
plot print a path diagram. Default is TRUE
group_partial Items for partial equivalence. The form should be c('DV =~ item1', 'DV =~ item2').
streamline print streamlined output
quite suppress printing output
return_result If it is set to TRUE, it will return the lavaan model

Details

First, just like researchers have argued against p value of 0.05 is not a good cut-off, researchers have also argue against that fit indicies (more importantly, the cut-off criteria) are not completely representative of the goodness of fit. Nonetheless, you are required to report them if you are publishing an article anyway. I will summarize the general recommended cut-off criteria for CFA model below. Researchers consider models with CFI (Bentler, 1990) that is > 0.95 to be excellent fit (Hu & Bentler, 1999), and > 0.9 to be acceptable fit. Researchers considered a model is excellent fit if CFI > 0.95 (Hu & Bentler, 1999), RMSEA < 0.06 (Hu & Bentler, 1999), TLI > 0.95, SRMR < 0.08. The model is considered an acceptable fit if CFI > 0.9 and RMSEA < 0.08. I need some time to find all the relevant references, but this should be the general consensus.

Value

a lavaan object
References

Examples

REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
Fitting a multiple factor CFA model
fit <- cfa_summary(
 data = lavaan::HolzingerSwinford1939,
 x1:x3,
 x4:x6,
 x7:x9,
)

Fitting a multilevel single factor CFA model
fit <- cfa_summary(
 data = lavaan::HolzingerSwinford1939,
 x1:x3,
 group = "sex",
 model_variance = FALSE, # do not print the model_variance
 model_covariance = FALSE # do not print the model_covariance
)

Fitting a CFA model by passing explicit lavaan model (equivalent to the above model)
Note in the below function how I added `model = ` in front of the lavaan model.
Similarly, the same rule apply for all arguments (e.g., `ordered = FALSE` instead of just `FALSE`)
fit <- cfa_summary(
 model = "visual =~ x1 + x2 + x3; textual =~ x4 + x5 + x6;",
 data = lavaan::HolzingerSwinford1939,
 quite = TRUE # silence all output
)

Not run:
This will fail because I did not add `model = ` in front of the lavaan model.
Therefore, you must add the tag in front of all arguments
For example, `return_result = 'model'` instead of `model`
cfa_summary("visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9 ",
 data = lavaan::HolzingerSwinford1939
)

End(Not run)
Comparison of Model Fit

Description

[Stable]
Compare the fit indices of models (see below for model support)

Usage

```r
compare_fit(
  ..., 
  digits = 3, 
  quite = FALSE, 
  streamline = FALSE, 
  return_result = FALSE 
)
```

Arguments

- `...`: model. If it is a lavaan object, it will try to compute the measurement invariance. Other model types will be passed to performance::compare_performance().
- `digits`: number of digits to round to
- `quite`: suppress printing output
- `streamline`: print streamlined output
- `return_result`: If it is set to TRUE, it will return the the compare fit data frame.

Value

data frame with fit indices and change in fit indices

Examples

lme model

```r
fit1 <- lm_model(
  data = popular, 
  response_variable = popular, 
  predictor_var = c(sex, extrav) 
)
```

```r
fit2 <- lm_model(
  data = popular, 
  response_variable = popular, 
  predictor_var = c(sex, extrav), 
  two_way_interaction_factor = c(sex, extrav) 
)```
cor_test

compare_fit(fit1, fit2)

# see ?measurement_invariance for measurement invariance example

---

Description

[Stable]
This function uses the correlation::correlation() to generate the correlation table.

Usage

cor_test(
  data,
  cols,
  ..., 
  digits = 3,
  method = "pearson",
  p_adjust = "holm",
  streamline = FALSE,
  quite = FALSE,
  return_result = FALSE
)

Arguments

data data frame
cols correlation items. Support dplyr::select() syntax.
... additional arguments passed to correlation::correlation(). See ?correlation::correlation. Note that the return data.frame from correlation::correlation() must contains r and p (e.g., passing baysesian = TRUE will not work)
digits number of digits to round to
method Default is "pearson". Options are "kendall", "spearman", "biserial", "polychoric", "tetrachoric", "biweight", "distance", "percentage", "blomqvist", "hoeffding", "gamma", "gaussian", "shepherd", or "auto". See ?correlation::correlation for detail
p_adjust Default is "holm". Options are "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "somers" or "none". See ?stats::p.adjust for more detail
streamline print streamlined output.
quite suppress printing output
return_result If it is set to TRUE, it will return the data frame of the correlation table
Value
data frame of the correlation table

Examples
cor_test(iris, where(is.numeric))

---

descriptive_table  Descriptive Statistics Table

Description

[Stable]
This function generates a table of descriptive statistics (mainly using psych::describe()) and or a correlation table. User can export this to a csv file (optionally, using the file_path argument). Users can open the csv file with MS Excel then copy and paste the table into MS Word table.

Usage
descriptive_table(
data, 
cols, 
..., 
digits = 3, 
descriptive_indicator = c("mean", "sd", "cor"), 
file_path = NULL, 
streamline = FALSE, 
quite = FALSE, 
return_result = FALSE
)

Arguments
data  data frame
cols  column(s) need to be included in the table. Support dplyr::select() syntax.
...  additional arguments passed to cor_test. See ?cor_test.
digits  number of digit for the descriptive table
descriptive_indicator  Default is mean, sd, cor. Options are missing (missing value count), non_missing (non-missing value count), cor (correlation table), n, mean, sd, median, trimmed (trimmed mean), median, mad (median absolute deviation from the median), min, max, range, skew, kurtosis, se (standard error)
file_path  file path for export. The function will implicitly pass this argument to the write.csv(file = file_path)
streamline  print streamlined output
quite  suppress printing output
return_result  If it is set to TRUE, it will return the data frame of the descriptive table
**Value**

data frame of the descriptive table

**Examples**

descriptive_table(iris, cols = where(is.numeric)) # all numeric columns

descriptive_table(iris, cols = where(is.numeric),
  # get missing count, non-missing count, and mean & sd & correlation table
  descriptive_indicator = c("missing", "non_missing", "mean", "sd", "cor")
)

**Description**

**[Stable]**
The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using psych::fa(). Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)

**Usage**

efa_summary(
  data,
  cols,
  rotation = "varimax",
  optimal_factor_method = FALSE,
  efa_plot = TRUE,
  digits = 3,
  n_factor = NULL,
  post_hoc_cfa = FALSE,
  quite = FALSE,
  streamline = FALSE,
  return_result = FALSE
)

**Arguments**

data frame

cols columns. Support dplyr::select() syntax.

rotation the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'varimax', 'quartimax', 'promax', 'oblimin', or 'simplimax'
---

**glme_model**

Generalized Linear Mixed Effect Model

**Description**

[Experimental]

Fit a generalized linear mixed effect model using `lme4::glmer()`. This function is still in early development stage.

**Usage**

```r
glme_model(
 data,
 model = NULL,
 response_variable,
 random_effect_factors = NULL,
 non_random_effect_factors = NULL,
 family,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 id,
 estimation_method = "REML",
 opt_control = "bobyqa",
 na.action = stats::na.omit,
 quite = FALSE
)
```
Arguments

- **data**: data frame
- **model**: lme4 model syntax. Support more complicated model. Note that model_summary will only return fixed effect estimates. This is not tested. [Experimental]
- **response_variable**: DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.
- **random_effect_factors**: random effect factors (level-1 variable for HLM people) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support dplyr::select() syntax.
- **non_random_effect_factors**: non-random effect factors (level-2 variable for HLM people). Factors only need to estimate fixed effect. Support dplyr::select() syntax.
- **family**: a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options.
- **two_way_interaction_factor**: two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
- **three_way_interaction_factor**: three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
- **id**: the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.
- **estimation_method**: character. ML or REML default to REML.
- **opt_control**: character. default is bobyqa. See ?lme4::glmerControl for more options.
- **na.action**: default is stats::na.omit. Another common option is na.exclude
- **quite**: suppress printing output

Value

An object of class glmerMod representing the linear mixed-effects model fit.

Examples

```r
fit <- glme_model(
 response_variable = incidence,
 random_effect_factors = period,
 family = "poisson", # or you can enter as poisson(link = 'log')
 id = herd,
 data = lme4::cbpp
)
```
glm_model  

Description

[Experimental]
Fit a generalized linear regression using glm(). This function is still in early development stage.

Usage

```r
glm_model(
 data,
 response_variable,
 predictor_variable,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 family,
 quite = FALSE
)
```

Arguments

data  
data frame
response_variable  
response variable. Support dplyr::select() syntax.
predictor_variable  
predictor variable. Support dplyr::select() syntax.
two_way_interaction_factor  
two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor  
three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
family  
a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options.
quite  
suppress printing output

Value

an object class of glm representing the linear regression fit
html_to_pdf

Examples

```r
fit <- glm_model(
 response_variable = incidence,
 predictor_variable = period,
 family = "poisson", # or you can enter as poisson(link = 'log'),
 data = lme4::cbpp
)
```

html_to_pdf

Convert HTML to PDF

Description

[Experimental]
This is a helper function for knitting Rmd. Due to technological limitation, the output cannot knit to PDF in Rmd directly. It uses the pagedown::chrome_print() in the backend. You must first knit to HTML, then you can use this function to convert them to PDF if you wish. I know this is a workaround to the issue, but the problem is with the latex engine printing unicode character. If you happen to know how to fix it, please let me know.

Usage

```r
html_to_pdf(file_path = NULL, dir = NULL, scale = 1, render_exist = FALSE)
```

Arguments

- `file_path`: file path to the HTML file (can be relative if you are in a R project)
- `dir`: file path to the directory of all HTML files (can be relative if you are in a R project)
- `scale`: the scale of the PDF
- `render_exist`: overwrite exist PDF. Default is FALSE

Value

no return value

Examples

```r
Not run:
html_to_pdf(file_path = "html_name.html")
all HTML files in the my_html_folder will be converted
html_to_pdf(dir = "Users/Desktop/my_html_folder")
```

# End(Not run)
integrated_model_summary

*Integrated Function for Linear Regression*

**Description**

[Stable]

It will first compute the linear regression. Then, it will graph the interaction using the `two_way_interaction_plot` or the `three_way_interaction_plot` function. If you requested simple slope summary, it will calls the `interaction::sim_slopes()`

**Usage**

```r
integrated_model_summary(
 data,
 response_variable = NULL,
 predictor_variable = NULL,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 family = NULL,
 categorical_var = NULL,
 graph_label_name = NULL,
 model_summary = TRUE,
 interaction_plot = TRUE,
 y_lim = NULL,
 plot_color = FALSE,
 digits = 3,
 simple_slope = FALSE,
 assumption_plot = FALSE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
```

**Arguments**

- **data**: data frame
- **response_variable**: DV (i.e., outcome variable / response variable). Length of 1. Support `dplyr::select()` syntax.
- **predictor_variable**: IV. Support `dplyr::select()` syntax.
- **two_way_interaction_factor**: two-way interaction factors. You need to pass 2+ factor. Support `dplyr::select()` syntax.
three_way_interaction_factor
three-way interaction factor. You need to pass exactly 3 factors. Specifying
three-way interaction factors automatically included all two-way interactions,
so please do not specify the two_way_interaction_factor argument. Support
dplyr::select() syntax.

family
a GLM family. It will passed to the family argument in glm. See ?glm for
possible options. [Experimental]

categorical_var
list. Specify the upper bound and lower bound directly instead of using ± 1 SD
from the mean. Passed in the form of list(var_name1 = c(upper_bound1,lower_bound1), var_name2
= c(upper_bound2,lower_bound2))

graph_label_name
optional vector or function. vector of length 2 for two-way interaction graph.
vector of length 3 for three-way interaction graph. Vector should be passed in
the form of c(response_var, predict_var1, predict_var2, ...). Function should be
passed as a switch function (see ?two_way_interaction_plot for an example)

model_summary
print model summary. Required to be TRUE if you want assumption_plot.

interaction_plot
generate the interaction plot. Default is TRUE

y_lim
the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit,upper_limit)

plot_color
If it is set to TRUE (default is FALSE), the interaction plot will plot with color.

digits
number of digits to round to

simple_slope
Slope estimate at +1/-1 SD and the mean of the moderator. Uses interactions::sim_slope()
in the background.

assumption_plot
Generate an panel of plots that check major assumptions. It is usually recom-
manded to inspect model assumption violation visually. In the background, it
calls performance::check_model()

quite
suppress printing output

streamline
print streamlined output

return_result
If it is set to TRUE (default is FALSE), it will return the model, model_summary,
and plot (if the interaction term is included)

Value
a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

fit <- integrated_model_summary(
data = iris,
response_variable = "Sepal.Length",
predictor_variable = tidyselect::everything(),
two_way_interaction_factor = c(Sepal.Width, Species)
)
```r
fit <- integrated_model_summary(
 data = iris,
 response_variable = "Sepal.Length",
 predictor_variable = tidyselect::everything(),
 two_way_interaction_factor = c(Sepal.Width, Species),
 simple_slope = TRUE, # you can request simple slope
 assumption_plot = TRUE, # you can also request assumption plot
 plot_color = TRUE # you can also request the plot in color
)
```

---

**integrated_multilevel_model_summary**

*Integrated Function for Mixed Effect Model*

**Description**

*[Stable]*

It will first compute the mixed effect model. It will use either the `nlme::lme` or the `lmerTest::lmer` for linear mixed effect model. It will use `lme4::glmer` for generalized linear mixed effect model. Then, it will print the model summary and the panel of the plots that are useful for checking assumption (default is `FALSE`). If you requested the interaction plot (default is `TRUE`), it will graph the interaction (Currently only support `lme` model but not `glme`) If you requested simple slope summary, it will uses the `interaction::sim_slopes()` to generate the slope estimate at varying level of the moderator (see `?simple_slope` for more detail)

**Usage**

```r
integrated_multilevel_model_summary(
 data,
 model = NULL,
 response_variable = NULL,
 random_effect_factors = NULL,
 non_random_effect_factors = NULL,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 family = NULL,
 categorical_var = NULL,
 id = NULL,
 graph_label_name = NULL,
 estimation_method = "REML",
 opt_control = "bobyqa",
 na.action = stats::na.omit,
 model_summary = TRUE,
 interaction_plot = TRUE,
 y_lim = NULL,
 plot_color = FALSE,
 digits = 3,
)```
use_package = "lmerTest",
 simple_slope = FALSE,
 assumption_plot = FALSE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)

Arguments

data: data frame
model: lme4 model syntax. Support more complicated model structure from lme4. It is not well-tested to ensure accuracy [Experimental]
response_variable: DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.
random_effect_factors: random effect factors (level-1 variable for HLM from a HLM perspective) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support dplyr::select() syntax.
non_random_effect_factors: non-random effect factors (level-2 variable from a HLM perspective). Factors only need to estimate fixed effect. Support dplyr::select() syntax.
two_way_interaction_factor: two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor: three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
family: a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options. [Experimental]
categorical_var: list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1,lower_bound1), var_name2 = c(upper_bound2,lower_bound2))
id: the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.
graph_label_name: optional vector or function. vector of length 2 for two-way interaction graph. vector of length 3 for three-way interaction graph. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...). Function should be passed as a switch function (see ?two_way_interaction_plot for an example)
estimation_method: character. ML or REML default is REML.
opt_control default is optim for lme and bobyqa for lmerTest.
n.a.action default is stats::na.omit. Another common option is na.exclude
model_summary print model summary. Required to be TRUE if you want assumption_plot.
interaction_plot generate interaction plot. Default is TRUE
y_lim the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color If it is set to TRUE (default is FALSE), the interaction plot will plot with color.
digits number of digits to round to
use_package Default is lmerTest. Only available for linear mixed effect model. Options are nlme, lmerTest, or lme4('lme4 return similar result as lmerTest except the return model)
simple_slope Slope estimate at ± 1 SD and the mean of the moderator. Uses interactions::sim_slope() in the background.
assumption_plot Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls performance::check_model().
quite suppress printing output
streamline print streamlined output.
return_result If it is set to TRUE (default is FALSE), it will return the model, model_summary, and plot (plot if the interaction term is included)

Value
a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

```r
fit <- integrated_multilevel_model_summary(
data = popular,
response_variable = popular,
random_effect_factors = c(extrav),
non_random_effect_factors = texp,
two_way_interaction_factor = c(extrav, texp),
graph_label_name = c("popular", "extraversion", "teacher experience"),
id = class)

fit <- integrated_multilevel_model_summary(
data = popular,
response_variable = popular,
random_effect_factors = c(extrav, sex),
non_random_effect_factors = texp,
three_way_interaction_factor = c(extrav, sex, texp), # three-way interaction
graph_label_name = c("popular", "extraversion", "sex", "teacher experience"),
id = class,
simple_slope = TRUE, # you can request simple slope
```

assumption_plot = TRUE, # you can also request assumption plot plot_color = TRUE # you can also request the plot in color
)

Description

This is a helper function that instruct users of the package how to knit a R Markdown (Rmd) files

Usage

```r
knit_to_Rmd()
```

Value

no return value

Examples

```r
knit_to_Rmd()
```

lme_model

Linear Mixed Effect Model

Description

[Stable] Fit a linear mixed effect model (i.e., hierarchical linear model, multilevel linear model) using the `nlme::lme()` or the `lmerTest::lmer()` function. Linear mixed effect model is used to explore the effect of continuous / categorical variables in predicting a normally distributed continuous variable.

Usage

```r
lme_model(
  data,
  model = NULL,
  response_variable,
  random_effect_factors = NULL,
  non_random_effect_factors = NULL,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  id,
```
estimation_method = "REML",
opt_control = "bobyqa",
na.action = stats::na.omit,
use_package = "lmerTest",
quite = FALSE
)

Arguments

data data frame
model lme4 model syntax. Support more complicated model. Note that model_summary
 will only return fixed effect estimates.
response_variable
 DV (i.e., outcome variable/response variable). Length of 1. Support dplyr::select() syntax.
random_effect_factors
 random effect factors (level-1 variable for HLM people) Factors that need to estimate fixed effect and random effect (i.e., random slope/varying slope based on the id). Support dplyr::select() syntax.
non_random_effect_factors
 non-random effect factors (level-2 variable for HLM people). Factors only need to estimate fixed effect. Support dplyr::select() syntax.
two_way_interaction_factor
 two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor
 three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
id the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.
estimation_method
 character. ML or REML default to REML.
opt_control default is optim for lme and bobyqa for lmerTest
na.action default is stats::na.omit. Another common option is na.exclude
use_package Default is lmerTest. Only available for linear mixed effect model. Options are nlme, lmerTest, or lme4(lme4 return similar result as lmerTest except the return model)
quite suppress printing output

Details

Here is a little tip. If you are using generic selecting syntax (e.g., contains() or start_with()), you don’t need to remove the response variable and the id from the factors. It will be automatically remove. For example, if you have x1:x9 as your factors. You want to regress x2:x8 on x1. Your
probably pass something like `response_variable = x1, random_effect_factors = c(contains('x'), x1)` to the function. However, you don’t need to do that, you can just pass `random_effect_factors = c(contains('x'))` to the function since it will automatically remove the response variable from selection.

Value

an object representing the linear mixed-effects model fit (it maybe an object from `lme` or `lmer` depending of the package you use)

Examples

```r
# two-level model with level-1 and level-2 variable with random intercept and random slope
fit1 <- lm_model(
  data = popular,
  response_variable = popular,
  random_effect_factors = c(extrav, sex),
  non_random_effect_factors = texp,
  id = class
)

# added two-way interaction factor
fit2 <- lm_model(
  data = popular,
  response_variable = popular,
  random_effect_factors = c(extrav, sex),
  non_random_effect_factors = texp,
  two_way_interaction_factor = c(extrav, texp),
  id = class
)

# pass a explicit lme model (I don’t why you want to do that, but you can)
lme_fit <- lm_model(
  model = "popular ~ extrav*texp + (1 + extrav | class)",
  data = popular
)
```

Description

[Stable]

Fit a linear regression using `lm()`. Linear regression is used to explore the effect of continuous variables / categorical variables in predicting a normally-distributed continuous variables. If you are using a categorical predictor to predict a continuous variable, some may call it a ANOVA / ANCOVA while it is just a special form of linear regression. In this package, I will not build separate function for ANOVA & ANCOVA since they are the same as linear regression.
Usage

```r
lm_model(
  data,
  response_variable,
  predictor_variable,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  quite = FALSE
)
```

Arguments

- **data**: data frame
- **response_variable**: response variable. Support `dplyr::select()` syntax.
- **predictor_variable**: predictor variable. Support `dplyr::select()` syntax. It will automatically remove the response variable from predictor variable, so you can use `contains()` or `start_with()` safely.
- **two_way_interaction_factor**: two-way interaction factors. You need to pass 2+ factor. Support `dplyr::select()` syntax.
- **three_way_interaction_factor**: three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the `two_way_interaction_factor` argument. Support `dplyr::select()` syntax.
- **quite**: suppress printing output

Value

an object class of `lm` representing the linear regression fit

Examples

```r
fit <- lm_model(
  data = iris,
  response_variable = "Sepal.Length",
  predictor_variable = tidyselect::everything(),
  two_way_interaction_factor = c(Sepal.Width, Species)
)
```
measurement_invariance

Description

[Stable]

Compute the measurement invariance model (i.e., measurement equivalence model) using multi-group confirmatory factor analysis (MGCFA; Jöreskog, 1971). This function uses the lavaan::cfa() in the backend. Users can run the configural-metric or the configural-metric-scalar comparisons (see below for detail instruction). All arguments (except the CFA items) must be explicitly named (like model = your-model; see example for inappropriate behavior).

Usage

```r
measurement_invariance(
  data,
  ..., 
  model = NULL, 
  group, 
  ordered = FALSE, 
  group_partial = NULL, 
  invariance_level = "scalar", 
  digits = 3, 
  quite = FALSE, 
  streamline = FALSE, 
  return_result = FALSE
)
```

Arguments

- `data`
 data frame
- `...`
 CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support `dplyr::select()` syntax.
- `model`
 explicit lavaan model. Must be specify with `model = lavaan_model_syntax`. **[Experimental]**
- `group`
 the nested variable for multilevel dataset (e.g., Country). Support `dplyr::select()` syntax.
- `ordered`
 Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML
- `group_partial`
 items for partial equivalence. The form should be `c('DV =~ item1', 'DV =~ item2')`. See details for recommended practice.
- `invariance_level`
 "metric" or "scalar". Default is 'metric'. Set as 'metric' for configural-metric comparison, and set as 'scalar' for configural-metric-scalar comparison.
measurement_invariance

digits number of digits to round to
quite suppress printing output except the model summary.
streamline print streamlined output
return_result If it is set to TRUE, it will return a data frame of the fit measure summary

Details

Chen (2007) suggested that change in CFI \(\leq |-0.010|\) supplemented by RMSEA \(\leq 0.015\) indicate non-invariance when sample sizes were equal across groups and larger than 300 in each group (Chen, 2007). And, Chen (2007) suggested that change in CFI \(\leq |-0.005|\) and change in RMSEA \(\leq 0.010\) for unequal sample size with each group smaller than 300. For SRMR, Chen (2007) recommend change in SRMR < 0.030 for metric-invariance and change in SRMR < 0.015 for scalar-invariance. For large group size, Rutowski & Svetina (2014) recommended a more liberal cut-off for metric non-invariance for CFI (change in CFI \(\leq |-0.020|\)) and RMSEA (RMSEA \(\leq 0.030\)). However, this more liberal cut-off DOES NOT apply to testing scalar non-invariance. If measurement-invariance is not achieved, some researchers suggesting partial invariance is acceptable (by releasing the constraints on some factors). For example, Steenkamp and Baumgartner (1998) suggested that ideally more than half of items on a factor should be invariant. However, it is important to note that no empirical studies were cited to support the partial invariance guideline (Putnick & Bornstein, 2016).

Value

a data frame of the fit measure summary

References

Examples

REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
Fitting a multiple-factor measurement invariance model by passing items.
measurement_invariance(
 x1:x3,
 x4:x6,
 x7:x9,
mediation_summary

```r
data = lavaan::HolzingerSwineford1939,
group = "school",
invariance_level = "scalar" # you can change this to metric
)

# Fitting measurement invariance model by passing explicit lavaan model
# I am also going to only test for metric invariance instead of the default scalar invariance
measurement_invariance(
  model = "visual =~ x1 + x2 + x3;
  textual =~ x4 + x5 + x6;
  speed =~ x7 + x8 + x9",
  data = lavaan::HolzingerSwineford1939,
  group = "school",
  invariance_level = "metric"
)

## Not run:
# This will fail because I did not add `model = ` in front of the lavaan model.
# Therefore, you must add the tag in front of all arguments
# For example, `return_result = `model` instead of `model`
measurement_invariance(
  "visual =~ x1 + x2 + x3;
  textual =~ x4 + x5 + x6;
  speed =~ x7 + x8 + x9",
  data = lavaan::HolzingerSwineford1939
)

## End(Not run)
```

Description

[Experimental]

It currently only support simple mediation analysis. In the backend, it called the lavaan::sem() model. I am trying to implement multilevel mediation in lavaan. In the future, I will try supporting moderated mediation (through lavaan or mediation) and mediation with latent variable (through lavaan).

Usage

```r
mediation_summary(
  data,?
  response_variable,?
  mediator,
)```
mediation_summary

mediation_summary(data = lmerTest::carrots, 
response_variable = Preference, 
mediator = Sweetness, 
predictor_variable = Crisp)

Arguments

data data frame
response_variable response variable. Support dplyr::select() syntax.
mediator mediator. Support dplyr::select() syntax.
predictor_variable predictor variable. Support dplyr::select() syntax.
control_variable control variables. Support dplyr::select() syntax.
group nesting variable for multilevel mediation. Not confident about the implementation method. [Experimental]
standardize standardized coefficients. Default is TRUE
digits number of digits to round to
quite suppress printing output
streamline print streamlined output
return_result If it is set to TRUE, it will return the lavaan object

Value

an object from lavaan

Examples

mediation_summary(
  data = lmerTest::carrots, 
  response_variable = Preference, 
  mediator = Sweetness, 
  predictor_variable = Crisp
)
Description

[Stable]
The function will extract the relevant coefficients from the regression models (see below for supported model).

Usage

```r
model_summary(
 model,
 digits = 3,
 assumption_plot = FALSE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
```

Arguments

- `model` an model object. The following model are tested for accuracy: `lm`, `glm`, `lme`, `lmer`, `glmer`. Other model object may work if it work with parameters::model_parameters()
- `digits` number of digits to round to
- `assumption_plot` Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls performance::check_model().
- `quite` suppress printing output
- `streamline` print streamlined output. Only print model estimate and performance.
- `return_result` It set to TRUE, it return the model estimates data frame.

Value

a list of model estimate data frame, model performance data frame, and the assumption plot (an ggplot object)

References

Examples

# I am going to show the more generic usage of this function
# You can also use this package's built in function to fit the models
# I recommend using the integrated_multilevel_model_summary to get everything

# lme example
lme_fit <- lme4::lmer("popular ~ texp + (1 | class)",
    data = popular
)
model_summary(lme_fit)

# lm example
lm_fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
    data = iris
)
model_summary(lm_fit, assumption_plot = TRUE)

---

**popular**

*Popular dataset*

**Description**

Classic data-set from Chapter 2 of Joop Hox’s Multilevel Analysis (2010). The popular dataset included student from different class (i.e., class is the nesting variable). The outcome variable is a self-rated popularity scale. Individual-level (i.e., level 1) predictors are sex, extroversion. Class level (i.e., level 2) predictor is teacher experience.

**Usage**

popular

**Format**

A data frame with 2000 rows and 6 variables:

- **pupil** Subject ID
- **popular** Self-rated popularity scale ranging from 1 to 10
- **class** the class that students belong to (nesting variable)
- **extrav** extraversion scale (individual-level)
- **sex** gender of the student (individual-level)
- **texp** teacher experience (class-level)

**Source**

**reliability_summary**  

**Reliability Analysis**

**Description**
First, it will determine whether the data is uni-dimensional or multi-dimensional using `parameters::n_factors()`. If the data is uni-dimensional, then it will print a summary consists of alpha, G6, single-factor CFA, and descriptive statistics result. If it is multi-dimensional, it will print a summary consist of alpha, G6, omega result. You can bypass this by specifying the dimensionality argument.

**Usage**

```r
reliability_summary(
 data,
 cols,
 dimensionality = NULL,
 digits = 3,
 descriptive_table = TRUE,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
```

**Arguments**
- **data**: data frame
- **cols**: items for reliability analysis. Support `dplyr::select()` syntax.
- **dimensionality**: Specify the dimensionality. Either `uni` (uni-dimensionality) or `multi` (multi-dimensionality). Default is `NULL` that determines the dimensionality using EFA.
- **digits**: number of digits to round to
- **descriptive_table**: Get descriptive statistics. Default is `TRUE`
- **quite**: suppress printing output
- **streamline**: print streamlined output
- **return_result**: If it is set to `TRUE` (default is `FALSE`), it will return `psych::alpha` for unidimensional scale, and `psych::omega` for multidimensional scale.

**Value**
- `psych::alpha` object for unidimensional scale, and `psych::omega` object for multidimensional scale.

**Examples**

```r
fit <- reliability_summary(data = lavaan::HolzingerSwinfield1939, cols = x1:x3)
fit <- reliability_summary(data = lavaan::HolzingerSwinfield1939, cols = x1:x9)
```
Description

The function uses the interaction::`sim_slopes()` to calculate the slope estimate at varying level of moderators (+/- 1 SD and mean). Additionally, it will produce a Johnson-Newman plot that shows when the slope estimate is not significant.

Usage

```r
simple_slope(
data,
model,
two_way_interaction_factor = NULL,
three_way_interaction_factor = NULL
)
```

Arguments

- `data`: data frame
- `model`: model object from `lm`, `lme`, `lmer`
- `two_way_interaction_factor`: vector of character of the `two_way_interaction_factor`
- `three_way_interaction_factor`: vector of character of the `three_way_interaction_factor`

Value

A list with the slope estimate data frame and a Johnson-Newman plot.

Examples

```r
fit <- lm_model(
data = iris,
response_variable = Sepal.Length,
predictor_variable = tidyselect::everything(),
three_way_interaction_factor = c(Sepal.Width, Petal.Width, Petal.Length)
)

simple_slope_fit <- simple_slope(
data = iris,
model = fit,
three_way_interaction_factor = c("Sepal.Width", "Petal.Width", "Petal.Length")
)
```
three_way_interaction_plot

Three-way Interaction Plot

Description

[Stable]
The function creates a two-way interaction plot. It will create a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with `lm_model()`, `lme_model()`.

Usage

```r
three_way_interaction_plot(
 model,
 data = NULL,
 cateogrical_var = NULL,
 graph_label_name = NULL,
 y_lim = NULL,
 plot_color = FALSE
)
```

Arguments

- `model` object from `lme`, `lme4`, `lmerTest` object.
- `data` data frame. If the function is unable to extract data frame from the object, then you may need to pass it directly.
- `cateogrical_var` list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of `list(var_name1 = c(upper_bound1,lower_bound1), var_name2 = c(upper_bound2,lower_bound2))`.
- `graph_label_name` vector of length 4 or a switch function (see `?two_way_interaction_plot` example). Vector should be passed in the form of `c(response_var, predict_var1, predict_var2, predict_var3)`.
- `y_lim` the plot's upper and lower limit for the y-axis. Length of 2. Example: `c(lower_limit,upper_limit)`.
- `plot_color` default if FALSE. Set to TRUE if you want to plot in color.

Details

It appears that 'predict' cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

a ggplot object
Examples

# I am going to show the more generic usage of this function
# You can also use this package's built in function to fit the models
# I recommend using the integrated_multilevel_model_summary to get everything

# lme example
lme_fit <- lme4::lmer("popular ~ extrav + sex + texp + extrav:sex:texp +
(1 + extrav + sex | class)", data = popular)

three_way_interaction_plot(lme_fit, data = popular)

# lm example
lm_fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width +
Sepal.Width:Petal.Length:Petal.Width, data = iris)

three_way_interaction_plot(lm_fit, data = iris)

two_way_interaction_plot
Two-way Interaction Plot

Description

[Stable]
The function creates a two-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See supported model below. I recommend using concurrently with lm_model or lme_model.

Usage

two_way_interaction_plot(
  model,
  data = NULL,
  graph_label_name = NULL,
  categorical_var = NULL,
  y_lim = NULL,
  plot_color = FALSE
)

Arguments

model object from lm, nlmle, lme4, or lmerTest
data data frame. If the function is unable to extract data frame from the object, then you may need to pass it directly
two_way_interaction_plot

graph_label_name
vector of length 3 or function. Vector should be passed in the form of c(response_var,predict_var1,predict_var2).
Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)
categorical_var
list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1,lower_bound1),var_name2 = c(upper_bound2,lower_bound2))
y_lim
the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit,upper_limit)
plot_color
default if FALSE. Set to TRUE if you want to plot in color

Details
It appears that ‘predict’ cannot handle categorical factors. All variables are converted to numeric before plotting.

Value
an object of class ggplot

Examples
# If you pass the model directly, it can't extract the data-frame from fit object
# Therefore, for now, you must pass the data frame to the function.
# You don't need pass the data if you use 'lm_model' or 'lme_model'.

# lme example
lme_fit <- lme4::lmer("popular ~ extrav*texp + (1 + extrav | class)",
data = popular)

two_way_interaction_plot(lme_fit,
    graph_label_name = c("popular", "extraversion", "teacher experience"),
data = popular)

lm_fit <- lm(Sepal.Length ~ Sepal.Width * Petal.Width,
data = iris)

two_way_interaction_plot(lm_fit, data = iris)

# For more advanced users
label_name <- function(var_name) {
    var_name_processed <- switch(var_name,
        "extrav" = "Extroversion",
        "texp" = "Teacher Experience",
        "popular" = "popular"
    )
    if (is.null(var_name_processed)) {
        var_name_processed <- var_name
    }
    label_name
two_way_interaction_plot

  )
  return(var_name_processed)
}

two_way_interaction_plot(lme_fit, data = popular, graph_label_name = label_name)
Index

* datasets
  popular, 28

cfa_groupwise, 2

cfa_summary, 3

cmpare_fit, 6

cor_test, 7

descriptive_table, 8

efa_summary, 9

glm_model, 12

glme_model, 10

html_to_pdf, 13

integrated_model_summary, 14

integrated_multilevel_model_summary, 16

knit_to_Rmd, 19

lm_model, 21

lme_model, 19

measurement_invariance, 23

mediation_summary, 25

model_summary, 27

popular, 28

reliability_summary, 29

simple_slope, 30

three_way_interaction_plot, 31

two_way_interaction_plot, 32