Package ‘psycModel’

November 1, 2023

Type Package
Title Integrated Toolkit for Psychological Analysis and Modeling in R
Version 0.5.0
Description A beginner-friendly R package for modeling in psychology or related field. It allows fitting models, plotting, checking goodness of fit, and model assumption violations all in one place. It also produces beautiful and easy-to-read output.
License GPL (>= 3)
URL https://github.com/jasonmoy28/psycModel
Depends R (>= 3.2)
Imports dplyr, ggplot2, glue, insight, lavaan, lifecycle, lme4, lmerTest, parameters, patchwork, performance, psych, rlang (>= 0.1.2), stringr, tibble, tidyr, utils, tidyselect
Suggests correlation, covr, cowplot, fansi, ggrepel, GPArotation, gridExtra, interactions, knitr, nFactors, nlme, pagedown, qplot, markdown, roxygen2, sandwich, see, semPlot, spelling, testthat (>= 3.0.0), lavaSearch2
VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Language en-US
NeedsCompilation no
Author Jason Moy [aut, cre] (<https://orcid.org/0000-0001-8795-3311>)
Maintainer Jason Moy <jasonmoy28@gmail.com>
Repository CRAN
Date/Publication 2023-11-01 06:00:02 UTC
R topics documented:

anova_plot .. 2
cfa_groupwise .. 3
cfa_summary .. 4
compare_fit ... 7
cor_test .. 8
cronbach_alpha .. 9
descriptive_table ... 10
efa_summary ... 11
get_interaction_term 12
get_predict_df ... 13
glm_model ... 13
html_to_pdf .. 14
interaction_plot ... 15
knit_to_Rmd .. 16
label_name ... 17
lme_model ... 18
lme_multilevel_model_summary 20
lm_model .. 23
lm_model_summary ... 24
lm_model_table ... 26
measurement_invariance 27
mediation_summary ... 29
model_summary .. 31
polynomial_regression_plot 32
popular ... 33
reliability_summary ... 34
simple_slope .. 35
three_way_interaction_plot 36
two_way_interaction_plot 37

Index 39

anova_plot
ANOVA Plot

Description

[Experimental]
Plot categorical variable with barplot. Continuous moderator are plotted at ± 1 SD from the mean.

Usage

anova_plot(model, predictor = NULL, graph_label_name = NULL)
Arguments
model fitted model (usually \text{lm} or \text{aov} object). Variables must be converted to correct data type before fitting the model. Specifically, continuous variables must be converted to type \text{numeric} and categorical variables to type \text{factor}.
predictor predictor variable. Must specified for non-interaction plot and must not specify for interaction plot.
graph_label_name vector or function. Vector should be passed in the form of \text{c(response_var, predict_var1, predict_var2, ...)}. Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)

Value
a ggplot object

Examples

Main effect plot with 1 categorical variable
fit_1 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(school = as.factor(school)) %>%
 lm(data = ., grade ~ school)
anova_plot(fit_1, predictor = school)

Interaction effect plot with 2 categorical variables
fit_2 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(dplyr::across(c(school, sex), as.factor)) %>%
 lm(data = ., grade ~ school * sex)
anova_plot(fit_2)

Interaction effect plot with 1 categorical variable and 1 continuous variable
fit_3 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(school = as.factor(school)) %>%
 dplyr::mutate(ageyr = as.numeric(ageyr)) %>%
 lm(data = ., grade ~ ageyr * school)
anova_plot(fit_3)

cfa_groupwise Confirmatory Factor Analysis (groupwise)

Description

[Stable]
This function will run N number of CFA where N = length(group), and report the fit measures of CFA in each group. The function is intended to help you get a better understanding of which group has abnormal fit indicator
Usage

cfa_groupwise(data, ..., group, model = NULL, ordered = FALSE)

Arguments

data: data frame

...: CFA items. Support dplyr::select() syntax.

group: character. group variable. Support dplyr::select() syntax.

model: explicit lavaan model. Must be specify with model = lavaan_model_syntax.
[Experimental]

ordered: logical. default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML

Details

All argument must be explicitly specified. If not, all arguments will be treated as CFA items

Value

a data.frame with group-wise CFA result

Examples

The example is used as the illustration of the function output only.
It does not imply the data is appropriate for the analysis.
cfa_groupwise(
 data = lavaan::HolzingerSwineford1939,
 group = "school",
 x1:x3,
 x4:x6,
 x7:x9
)

cfa_summary

Confirmatory Factor Analysis

Description

[Stable]
The function fits a CFA model using the lavaan::cfa(). Users can fit single and multiple factors CFA, and it also supports multilevel CFA (by specifying the group). Users can fit the model by passing the items using dplyr::select() syntax or an explicit lavaan model for more versatile usage. All arguments (except the CFA items) must be explicitly named (e.g., model = your-model; see example for inappropriate behavior).
Usage

cfa_summary(
 data,
 ...,
 model = NULL,
 group = NULL,
 ordered = FALSE,
 digits = 3,
 estimator = "ML",
 model_covariance = TRUE,
 model_variance = TRUE,
 plot = TRUE,
 group_partial = NULL,
 streamline = FALSE,
 quite = FALSE,
 return_result = FALSE
)

Arguments

data
data frame

...
CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.

model
explicit lavaan model. Must be specify with model = lavaan_model_syntax. **[Experimental]**

group
optional character. used for multi-level CFA. the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.

ordered
Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML.

digits
number of digits to round to

estimator
estimator for lavaan. Default is ML

model_covariance
print model covariance. Default is TRUE

model_variance
print model variance. Default is TRUE

plot
print a path diagram. Default is TRUE

group_partial
Items for partial equivalence. The form should be c("DV =~ item1", "DV =~ item2").

streamline
print streamlined output

quite
suppress printing output

return_result
If it is set to TRUE, it will return the lavaan model

Details

First, just like researchers have argued against p value of 0.05 is not a good cut-of, researchers have also argue against that fit indicies (more importantly, the cut-off criteria) are not completely repre- sentative of the goodness of fit. Nonetheless, you are required to report them if you are publishing
an article anyway. I will summarize the general recommended cut-off criteria for CFA model below. Researchers consider models with CFI (Bentler, 1990) that is > 0.95 to be excellent fit (Hu & Bentler, 1999), and > 0.9 to be acceptable fit. Researchers considered a model is excellent fit if CFI > 0.95 (Hu & Bentler, 1999), RMSEA < 0.06 (Hu & Bentler, 1999), TLI > 0.95, SRMR < 0.08. The model is considered an acceptable fit if CFI > 0.9 and RMSEA < 0.08. I need some time to find all the relevant references, but this should be the general consensus.

Value

a lavaan object if return_result is TRUE

References

Examples

REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT

Fitting a multilevel single factor CFA model
fit <- cfa_summary(
 data = lavaan::HolzingerSwineford1939,
 x1:x3,
 x4:x6,
 x7:x9,
 group = "sex",
 model_variance = FALSE, # do not print the model_variance
 model_covariance = FALSE # do not print the model_covariance
)

Fitting a CFA model by passing explicit lavaan model (equivalent to the above model)
Note in the below function how I added `model = ` in front of the lavaan model.
Similarly, the same rule apply for all arguments (e.g., `ordered = FALSE` instead of just `FALSE`)
fit <- cfa_summary(
 model = "visual =~ x1 + x2 + x3",
 data = lavaan::HolzingerSwineford1939,
 quite = TRUE # silence all output
)

Not run:
This will fail because I did not add `model = ` in front of the lavaan model.
Therefore, you must add the tag in front of all arguments
For example, `return_result = "model"` instead of `model`
cfa_summary("visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9 ",
 data = lavaan::HolzingerSwineford1939
)

End(Not run)
compare_fit

Comparison of Model Fit

Description
[Stable]
Compare the fit indices of models (see below for model support)

Usage

```r
compare_fit(
  ..., 
  digits = 3, 
  quite = FALSE, 
  streamline = FALSE,  
  return_result = FALSE 
)
```

Arguments

- `...` model. If it is a lavaan object, it will try to compute the measurement invariance. Other model types will be passed to `performance::compare_performance()`.
- `digits` number of digits to round to
- `quite` suppress printing output
- `streamline` print streamlined output
- `return_result` If it is set to TRUE, it will return the the compare fit data frame.

Value

a dataframe with fit indices and change in fit indices

Examples

```r
# lme model

fit1 <- lm_model(
  data = popular, 
  response_variable = popular, 
  predictor_var = c(sex, extrav) 
)

fit2 <- lm_model(
  data = popular, 
  response_variable = popular, 
  predictor_var = c(sex, extrav), 
  two_way_interaction_factor = c(sex, extrav)
)```
compare_fit(fit1, fit2)

# see ?measurement_invariance for measurement invariance example

cor_test

Correlation table

Description

[Stable]
This function uses the correlation::correlation() to generate the correlation table.

Usage

cor_test(
  data,  
  cols,  
  ...,  
  digits = 3,  
  method = "pearson",  
  p_adjust = "none",  
  streamline = FALSE,  
  quite = FALSE,  
  return_result = FALSE
)

Arguments

data data frame

cols correlation items. Support dplyr::select() syntax.

... additional arguments passed to correlation::correlation(). See ?correlation::correlation. Note that the return data.frame from correlation::correlation() must contains r and p (e.g., passing bayesian = TRUE will not work)

digits number of digits to round to

method Default is "pearson". Options are "kendall", "spearman", "biserial", "polychoric", "tetrachoric", "biweight", "distance", "percentage", "blomqvist", "hoeffding", "gamma", "gaussian", "shepherd", or "auto". See ?correlation::correlation for detail

p_adjust Default is "holm". Options are "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "somers" or "none". See ?stats::p.adjust for more detail

streamline print streamlined output.

quite suppress printing output

return_result If it is set to TRUE, it will return the data frame of the correlation table
cronbach_alpha

Value

a data.frame of the correlation table

Examples

cor_test(iris, where(is.numeric))

description

[Stable]
Computing the Cronbach alphas for multiple factors.

Usage

cronbach_alpha(
  ..., 
  data, 
  var_name, 
  group = NULL, 
  quite = FALSE, 
  return_result = FALSE
)

Arguments

... Items. Group each latent factors using c() with when computing Cronbach alpha for 2+ factors (see example below)
data data.frame. Must specify
var_name character or a vector of characters. The order of var_name must be same as the order of the ...
group optional character. Specify this argument for computing Cronbach alpha for group separately
quite suppress printing output
return_result If it is set to TRUE, it will return a dataframe object

Value

a data.frame object if return_result is TRUE
Examples

cronbach_alpha(
    data = lavaan::HolzingerSwineford1939,
    var_name = c('Visual', 'Textual', 'Speed'),
    c(x1,x2,x3), # one way to pass the items of a factor is by wrapping it with c()
    x4:x6, # another way to pass the items is use tidyselect syntax
    x7:x9)

Description

[Stable]
This function generates a table of descriptive statistics (mainly using psych::describe()) and or a correlation table. User can export this to a csv file (optionally, using the file_path argument). Users can open the csv file with MS Excel then copy and paste the table into MS Word table.

Usage

descriptive_table(
    data,
    cols,
    ...,            # one way to pass the items of a factor is by wrapping it with c()
    digits = 3,
    descriptive_indicator = c("mean", "sd", "cor"),
    file_path = NULL,
    streamline = FALSE,
    quite = FALSE,
    return_result = FALSE)

Arguments

data data.frame

cols column(s) need to be included in the table. Support dplyr::select() syntax.

... additional arguments passed to cor_test. See ?cor_test.

digits number of digit for the descriptive table

descriptive_indicator

Default is mean, sd, cor. Options are missing (missing value count), non_missing (non-missing value count), cor (correlation table), n, mean, sd, median, trimmed (trimmed mean), median, mad (median absolute deviation from the median), min, max, range, skew, kurtosis, se (standard error)

file_path file path for export. The function will implicitly pass this argument to the write.csv(file = file_path)
efa_summary

streamline  print streamlined output
quite  suppress printing output
return_result  If it is set to TRUE, it will return the data frame of the descriptive table

Value

a data.frame of the descriptive table

Examples

descriptive_table(iris, cols = where(is.numeric)) # all numeric columns

descriptive_table(iris, cols = where(is.numeric),
  # get missing count, non-missing count, and mean & sd & correlation table
descriptive_indicator = c("missing", "non_missing", "mean", "sd", "cor")
)

descriptive_table(iris, cols = where(is.numeric),
  descriptive_indicator = c("missing", "non_missing", "mean", "sd", "cor")
  )

Description

[Stable]
The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using psych::fa(). Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)

Usage

efa_summary(
  data,
  cols,
  rotation = "varimax",
  optimal_factor_method = FALSE,
  efa_plot = TRUE,
  digits = 3,
  n_factor = NULL,
  post_hoc_cfa = FALSE,
  quite = FALSE,
  streamline = FALSE,
  return_result = FALSE
)
**get_interaction_term**

**Arguments**

- `data` data.frame
- `cols` columns. Support `dplyr::select()` syntax.
- `rotation` the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'varimax', 'quartimax', 'promax', 'oblimin', or 'simplimax'
- `optimal_factor_method` Show a summary of the number of factors by optimization method (e.g., BIC, VSS complexity, Velicer's MAP)
- `efa_plot` show explained variance by number of factor plot. default is TRUE.
- `digits` number of digits to round to
- `n_factor` number of factors for EFA. It will bypass the initial optimization algorithm, and fit the EFA model using this specified number of factor
- `post_hoc_cfa` a CFA model based on the extracted factor
- `quite` suppress printing output
- `streamline` print streamlined output
- `return_result` If it is set to TRUE (default is FALSE), it will return a `fa` object from `psych`

**Value**

a `fa` object from `psych`

**Examples**

```r
efa_summary(lavaan::HolzingerSwineford1939, starts_with("x"), post_hoc_cfa = TRUE)
```

---

**get_interaction_term**  get interaction term

**Description**

get interaction term

**Usage**

get_interaction_term(model)

**Arguments**

- `model` model

**Value**

a list with predict vars names
**get_predict_df**

get factor df to combine with mean_df

**Description**

get factor df to combine with mean_df

**Usage**

get_predict_df(data)

**Arguments**

data

**Value**

factor_df

---

**glm_model**

*Generalized Linear Regression*

**Description**

*Experimental*

Fit a generalized linear regression using glm(). This function is still in early development stage.

**Usage**

```r
glm_model(
data,
response_variable,
predictor_variable,
two_way_interaction_factor = NULL,
three_way_interaction_factor = NULL,
family,
quite = FALSE
)
```
Arguments

data data.frame
response_variable
  response variable. Support dplyr::select() syntax.
predictor_variable
  predictor variable. Support dplyr::select() syntax.
two_way_interaction_factor
  two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor
  three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
family
  a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options.
quite
  suppress printing output

Value

  an object class of glm representing the linear regression fit

Examples

  fit <- glm_model(
    response_variable = incidence,
    predictor_variable = period,
    family = "poisson", # or you can enter as poisson(link = 'log'),
    data = lme4::cbpp
  )

Description

[Experimental]
This is a helper function for knitting Rmd. Due to technological limitation, the output cannot knit to PDF in Rmd directly (the problem is with the latex engine printing unicode character). Therefore, to bypass this problem, you will first need to knit to html file first, then use this function to convert it to a PDF file.

Usage

  html_to_pdf(file_path = NULL, dir = NULL, scale = 1, render_exist = FALSE)
**interaction_plot**

**Arguments**

- **file_path**: file path to the HTML file (can be relative if you are in a R project)
- **dir**: file path to the directory of all HTML files (can be relative if you are in a R project)
- **scale**: the scale of the PDF
- **render_exist**: overwrite exist PDF. Default is `FALSE`

**Value**

no return value

**Examples**

```r
Not run:
html_to_pdf(file_path = "html_name.html")
all HTML files in the my_html_folder will be converted
html_to_pdf(dir = "Users/ Desktop/my_html_folder")
End(Not run)
```

---

**interaction_plot**  
*Interaction plot*

**Description**

[Stable]

The function creates a two-way or three-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with `lm_model()`, `lme_model()`.

**Usage**

```r
interaction_plot(
 model,
 data = NULL,
 graph_label_name = NULL,
 categorical_var = NULL,
 y_lim = NULL,
 plot_color = FALSE
)
```
# interaction_plot

**Arguments**

- **model**
  object from `lme`, `lme4`, `lmerTest` object.

- **data**
  data frame. If the function is unable to extract data frame from the object, then you may need to pass it directly.

- **graph_label_name**
  vector of length 4 or a switch function (see ?two_way_interaction_plot example). Vector should be passed in the form of c(response_var, predict_var1, predict_var2, predict_var3).

- **categorical_var**
  list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))

- **y_lim**
  the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)

- **plot_color**
  default if FALSE. Set to TRUE if you want to plot in color

**Value**

c ggplot object

**Examples**

```r
lm_fit_2 <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Sepal.Width*Petal.Length, data = iris)
interaction_plot(lm_fit_2)

interaction_plot(lm_fit_3)
```

---

**Description**

This is a helper function that instruct users of the package how to knit a R Markdown (Rmd) files

**Usage**

```r
knit_to_Rmd()
```

**Value**

no return value
Examples

```
knit_to_Rmd()
```

Description

get label name

Usage

```
label_name(
 graph_label_name,
 response_var_name,
 predict_var1_name,
 predict_var2_name,
 predict_var3_name
)
```

Arguments

- `graph_label_name`: label name
- `response_var_name`: outcome variable name
- `predict_var1_name`: predictor 1 name
- `predict_var2_name`: predictor 2 name
- `predict_var3_name`: predictor 3 name

Value

vector of var name
Description

[Stable]
Fit a linear mixed effect model (i.e., hierarchical linear model, multilevel linear model) using the `nlme::lme()` or the `lmerTest::lmer()` function. Linear mixed effect model is used to explore the effect of continuous / categorical variables in predicting a normally distributed continuous variable.

Usage

```r
lme_model(
 data,
 model = NULL,
 response_variable,
 random_effect_factors = NULL,
 non_random_effect_factors = NULL,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 id,
 estimation_method = "REML",
 opt_control = "bobyqa",
 na.action = stats::na.omit,
 use_package = "lmerTest",
 quite = FALSE
)
```

Arguments

data data.frame

model lme4 model syntax. Support more complicated model. Note that model_summary will only return fixed effect estimates.

response_variable DV (i.e., outcome variable / response variable). Length of 1. Support `dplyr::select()` syntax.

random_effect_factors random effect factors (level-1 variable for HLM people) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support `dplyr::select()` syntax.

non_random_effect_factors non-random effect factors (level-2 variable for HLM people). Factors only need to estimate fixed effect. Support `dplyr::select()` syntax.

two_way_interaction_factor two-way interaction factors. You need to pass 2+ factor. Support `dplyr::select()` syntax.
three_way_interaction_factor
three-way interaction factor. You need to pass exactly 3 factors. Specifying
three-way interaction factors automatically included all two-way interactions,
so please do not specify the two_way_interaction_factor argument. Support
dplyr::select() syntax.

id
the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.

estimation_method
character. ML or REML default to REML.

opt.control
default is optim for lme and bobyqa for lmerTest

na.action
default is stats::na.omit. Another common option is na.exclude

use_package
Default is lmerTest. Only available for linear mixed effect model. Options are
nlme, lmerTest, or lme4('lme4 return similar result as lmerTest except the
return model)

quite
suppress printing output

Details
Here is a little tip. If you are using generic selecting syntax (e.g., contains() or start_with()), you
don't need to remove the response variable and the id from the factors. It will be automatically
remove. For example, if you have x1:x9 as your factors. You want to regress x2:x8 on x1. Your
probably pass something like response_variable = x1, random_effect_factors = c(contains('x'),-
x1) to the function. However, you don't need to do that, you can just pass random_effect_factors
= c(contains('x')) to the function since it will automatically remove the response variable from
selection.

Value
an object representing the linear mixed-effects model fit (it maybe an object from lme or lmer
depending of the package you use)

Examples

# two-level model with level-1 and level-2 variable with random intercept and random slope
fit1 <- lme_model(
  data = popular,
  response_variable = popular,
  random_effect_factors = c(extrav, sex),
  non_random_effect_factors = texp,
  id = class
)

# added two-way interaction factor
fit2 <- lme_model(
  data = popular,
  response_variable = popular,
  random_effect_factors = c(extrav, sex),
  non_random_effect_factors = texp,
two_way_interaction_factor = c(extrav, texp),
    id = class)
)

# pass a explicit lme model (I don't why you want to do that, but you can)
lme_fit <- lme_model(
  model = "popular ~ extrav*texp + (1 + extrav | class)",
  data = popular
)

lme_multilevel_model_summary

Model Summary for Mixed Effect Model

Description

[Stable]
An integrated function for fitting a multilevel linear regression (also known as hierarchical linear regression).

Usage

lme_multilevel_model_summary(
  data,
  model = NULL,
  response_variable = NULL,
  random_effect_factors = NULL,
  non_random_effect_factors = NULL,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  family = NULL,
  cateogrical_var = NULL,
  id = NULL,
  graph_label_name = NULL,
  estimation_method = "REML",
  opt_control = "bobyqa",
  na.action = stats::na.omit,
  model_summary = TRUE,
  interaction_plot = TRUE,
  y_lim = NULL,
  plot_color = FALSE,
  digits = 3,
  use_package = "lmerTest",
  standardize = NULL,
  ci_method = "satterthwaite",
  simple_slope = FALSE,
  assumption_plot = FALSE,
  quite = FALSE,
streamline = FALSE,
    return_result = FALSE
)

Arguments

data data.frame
model lme4 model syntax. Support more complicated model structure from lme4. It is not well-tested to ensure accuracy [Experimental]
response_variable DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.
random_effect_factors random effect factors (level-1 variable for HLM from a HLM perspective) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support dplyr::select() syntax.
non_random_effect_factors non-random effect factors (level-2 variable from a HLM perspective). Factors only need to estimate fixed effect. Support dplyr::select() syntax.
two_way_interaction_factor two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_interaction_factor three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
family a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options. [Experimental]
categorical_var list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))
id the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.
graph_label_name optional vector or function. vector of length 2 for two-way interaction graph. vector of length 3 for three-way interaction graph. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...). Function should be passed as a switch function (see ?two_way_interaction_plot for an example)
estimation_method character. ML or REML default is REML.
opt_control default is optim for lme and bobyqa for lmerTest.
na.action default is stats::na.omit. Another common option is na.exclude
model_summary print model summary. Required to be TRUE if you want assumption_plot.
interaction_plot

generate interaction plot. Default is TRUE

y_lim

the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)

plot_color

If it is set to TRUE (default is FALSE), the interaction plot will plot with color.

digits

number of digits to round to

use_package

Default is lmerTest. Only available for linear mixed effect model. Options are nlme, lmerTest, or lme4 (‘lme4 return similar result as lmerTest except the return model)

standardize

The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in parameters::standardize_parameters()

ci_method

see options in the Mixed model section in ?parameters::model_parameters()

simple_slope

Slope estimate at ± 1 SD and the mean of the moderator. Uses interactions::sim_slope() in the background.

assumption_plot

Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls performance::check_model().

quite

suppress printing output

streamline

print streamlined output.

return_result

If it is set to TRUE (default is FALSE), it will return the model, model_summary, and plot (plot if the interaction term is included)

Value

a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

fit <- lme_multilevel_model_summary(
  data = popular,
  response_variable = popular,
  random_effect_factors = NULL, # you can add random effect predictors here
  non_random_effect_factors = c(extrav, texp),
  two_way_interaction_factor = NULL, # you can add two-way interaction plot here
  graph_label_name = NULL, # you can also change graph label name here
  id = class,
  simple_slope = FALSE, # you can also request simple slope estimate
  assumption_plot = FALSE, # you can also request assumption plot
  plot_color = FALSE, # you can also request the plot in color
  streamline = FALSE # you can change this to get the least amount of info
)
Description

[Stable]
Fit a linear regression using `lm()`. Linear regression is used to explore the effect of continuous variables / categorical variables in predicting a normally-distributed continuous variables.

Usage

```r
lm_model(
 data,
 response_variable,
 predictor_variable,
 two_way_interaction_factor = NULL,
 three_way_interaction_factor = NULL,
 quite = FALSE
)
```

Arguments

- `data` data.frame
- `response_variable` response variable. Support `dplyr::select()` syntax.
- `predictor_variable` predictor variable. Support `dplyr::select()` syntax. It will automatically remove the response variable from predictor variable, so you can use `contains()` or `start_with()` safely.
- `two_way_interaction_factor` two-way interaction factors. You need to pass 2+ factor. Support `dplyr::select()` syntax.
- `three_way_interaction_factor` three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support `dplyr::select()` syntax.
- `quite` suppress printing output

Value

an object class of `lm` representing the linear regression fit
Examples

   fit <- lm_model(
        data = iris,
        response_variable = Sepal.Length,
        predictor_variable = dplyr::everything(),
        two_way_interaction_factor = c(Sepal.Width, Species)
   )

lm_model_summary  

Model Summary for Linear Regression

Description

[Stable]
An integrated function for fitting a linear regression model.

Usage

   lm_model_summary(
        data, 
        response_variable = NULL, 
        predictor_variable = NULL, 
        two_way_interaction_factor = NULL, 
        three_way_interaction_factor = NULL, 
        family = NULL, 
        categorical_var = NULL, 
        graph_label_name = NULL, 
        model_summary = TRUE, 
        interaction_plot = TRUE, 
        y_lim = NULL, 
        plot_color = FALSE, 
        digits = 3, 
        simple_slope = FALSE, 
        assumption_plot = FALSE, 
        quite = FALSE, 
        streamline = FALSE, 
        return_result = FALSE
   )

Arguments

   data data.frame 
response_variable   
   DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.
predictor_variable   
   IV. Support dplyr::select() syntax.
two_way_interaction_factor
two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.

three_way_interaction_factor
three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.

family
a GLM family. It will passed to the family argument in glm. See ?glm for possible options. [Experimental]

categorical_var
list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))

graph_label_name
optional vector or function. Vector of length 2 for two-way interaction graph. Vector of length 3 for three-way interaction graph. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...). Function should be passed as a switch function (see ?two_way_interaction_plot for an example)

model_summary
print model summary. Required to be TRUE if you want assumption_plot.

interaction_plot
generate the interaction plot. Default is TRUE

y_lim
the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)

plot_color
If it is set to TRUE (default is FALSE), the interaction plot will plot with color.

digits
number of digits to round to

simple_slope
Slope estimate at ±1/-1 SD and the mean of the moderator. Uses interactions::sim_slope() in the background.

assumption_plot
Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls performance::check_model()

quite
Suppress printing output

streamline
print streamlined output

return_result
If it is set to TRUE (default is FALSE), it will return the model, model_summary, and plot (if the interaction term is included)

Value
a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

```r
fit <- lm_model_summary(
data = iris,
response_variable = "Sepal.Length",
```
lm_model_table

predictor_variable = dplyr::everything(),
two_way_interaction_factor = c(Sepal.Width, Species),
interaction_plot = FALSE, # you can also request the interaction plot
simple_slope = FALSE, # you can also request simple slope estimate
assumption_plot = FALSE, # you can also request assumption plot
streamline = FALSE #you can change this to get the least amount of info

---

lm_model_table

**Linear Regression Model Table**
Generate tables with multiple response and predictor variable (only lm models are supported)

**Description**

Linear Regression Model Table Generate tables with multiple response and predictor variable (only lm models are supported)

**Usage**

```r
lm_model_table(
 data,
 response_variable,
 predictor_variable,
 control_variable = NULL,
 marginal_alpha = 0.1,
 return_result = FALSE,
 verbose = TRUE,
 show_p = FALSE
)
```

**Arguments**

- **data** data.frame
  - response variable. Support dplyr::select() syntax.
- **response_variable**
  - predictor variable. Support dplyr::select() syntax. It will automatically remove the response variable from predictor variable, so you can use contains() or start_with() safely.
- **predictor_variable**
  - control variables. Support dplyr::select() syntax.
- **control_variable**
  - the set marginal_alpha level for marginally significant (denoted by .). Set to 0.05 if you do not want marginally significant denotation.
- **marginal_alpha**
  - It set to TRUE, it return the model estimates data frame.
- **return_result**
  - default is TRUE. Set to FALSE to suppress outputs
- **verbose**
  - show the p-value in parenthesis
measurement_invariance

Value
data.frame

Examples

```r
lm_model_table(data = iris,
 response_variable = c(Sepal.Length, Sepal.Width),
 predictor_variable = Petal.Width)
```

measurement_invariance

Measurement Invariance

Description

[Stable]
Compute the measurement invariance model (i.e., measurement equivalence model) using multi-group confirmatory factor analysis (MGCFAs; Jöreskog, 1971). This function uses the lavaan::cfa() in the backend. Users can run the configural-metric or the configural-metric-scalar comparisons (see below for detail instruction). All arguments (except the CFA items) must be explicitly named (like model = your-model; see example for inappropriate behavior).

Usage

```r
measurement_invariance(
 data,
 ...,
 model = NULL,
 group,
 ordered = FALSE,
 group_partial = NULL,
 invariance_level = "scalar",
 estimator = "ML",
 digits = 3,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
```

Arguments

- **data** data.frame
- **...** CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.
- **model** explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]
measurement_invariance

group the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.
ordered Default is FALSE. If it is set to TRUE, lavaan will treat it as an ordinal variable and use DWLS instead of ML.
group_partial items for partial equivalence. The form should be c('DV =~ item1', 'DV =~ item2'). See details for recommended practice.
invariance_level "metric" or "scalar". Default is 'metric'. Set as 'metric' for configural-metric comparison, and set as 'scalar' for configural-metric-scalar comparison.
estimator estimator for lavaan. Default is ML.
digits number of digits to round to
quite suppress printing output except the model summary.
streamline print streamlined output
return_result If it is set to TRUE, it will return a data frame of the fit measure summary

Details

Chen (2007) suggested that change in CFI <= |-0.010| supplemented by RMSEA <= 0.015 indicate non-invariance when sample sizes were equal across groups and larger than 300 in each group (Chen, 2007). And, Chen (2007) suggested that change in CFI <= |-0.005| and change in RMSEA <= 0.010 for unequal sample size with each group smaller than 300. For SRMR, Chen (2007) recommend change in SRMR < 0.030 for metric-invariance and change in SRMR < 0.015 for scalar-invariance. For large group size, Rutowski & Svetina (2014) recommended a more liberal cut-off for metric non-invariance for CFI (change in CFI <= |-0.020|) and RMSEA (RMSEA <= 0.030). However, this more liberal cut-off DOES NOT apply to testing scalar non-invariance. If measurement-invariance is not achieved, some researchers suggesting partial invariance is acceptable (by releasing the constraints on some factors). For example, Steenkamp and Baumgartner (1998) suggested that ideally more than half of items on a factor should be invariant. However, it is important to note that no empirical studies were cited to support the partial invariance guideline (Putnick & Bornstein, 2016).

Value

a data.frame of the fit measure summary

References


Examples

# REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
# Fitting a multiple-factor measurement invariance model by passing items.
measurement_invariance(
x1:x3,
x4:x6,
x7:x9,
data = lavaan::HolzingerSwineford1939,
group = "school",
invariance_level = "scalar" # you can change this to metric
)

# Fitting measurement invariance model by passing explicit lavaan model
# I am also going to only test for metric invariance instead of the default scalar invariance
measurement_invariance(
model = "visual =~ x1 + x2 + x3;
textual =~ x4 + x5 + x6;
speed =~ x7 + x8 + x9",
data = lavaan::HolzingerSwineford1939,
group = "school",
invariance_level = "metric"
)

## Not run:
# This will fail because I did not add `model = ` in front of the lavaan model.
# Therefore,you must add the tag in front of all arguments
# For example, `return_result = "model"` instaed of `model`
measurement_invariance("visual =~ x1 + x2 + x3;
textual =~ x4 + x5 + x6;
speed =~ x7 + x8 + x9",
data = lavaan::HolzingerSwineford1939)

## End(Not run)

---

**Description**

[Experimental]
It currently only support simple mediation analysis using the path analysis approach with the
lavaan package. I am trying to implement multilevel mediation in lavaan. In the future, I will try supporting moderated mediation (through lavaan or mediation) and mediation with latent variable (through lavaan).

Usage

```r
mediation_summary(
 data,
 response_variable,
 mediator,
 predictor_variable,
 control_variable = NULL,
 group = NULL,
 standardize = TRUE,
 digits = 3,
 quite = FALSE,
 streamline = FALSE,
 return_result = FALSE
)
```

Arguments

- `data`: data.frame
- `response_variable`: response variable. Support dplyr::select() syntax.
- `mediator`: mediator. Support dplyr::select() syntax.
- `predictor_variable`: predictor variable. Support dplyr::select() syntax.
- `control_variable`: control variables / covariate. Support dplyr::select() syntax.
- `group`: nesting variable for multilevel mediation. Not confident about the implementation method. [Experimental]
- `standardize`: standardized coefficients. Default is TRUE
- `digits`: number of digits to round to
- `quite`: suppress printing output
- `streamline`: print streamlined output
- `return_result`: If it is set to TRUE, it will return the lavaan object

Value

an object from lavaan

Examples

```r
mediation_summary(
 data = lmerTest::carrots,
 response_variable = Preference,
)
Description

[Stable]
The function will extract the relevant coefficients from the regression models (see below for supported model).

Usage

```r
model_summary(
  model,
  digits = 3,
  assumption_plot = FALSE,
  quite = FALSE,
  streamline = TRUE,
  return_result = FALSE,
  standardize = NULL,
  ci_method = "satterthwaite"
)
```

Arguments

- **model**: an model object. The following model are tested for accuracy: `lm`, `glm`, `lme`, `lmer`, `glmer`. Other model object may work if it work with `parameters::model_parameters()`.
- **digits**: number of digits to round to
- **assumption_plot**: Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls `performance::check_model()`.
- **quite**: suppress printing output
- **streamline**: print streamlined output. Only print model estimate and performance.
- **return_result**: It set to TRUE, it return the model estimates data frame.
- **standardize**: The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in `parameters::standardize_parameters()`.
- **ci_method**: see options in the Mixed model section in `?parameters::model_parameters()`

Value

a list of model estimate data frame, model performance data frame, and the assumption plot (an `ggplot` object)
References

Examples

I am going to show the more generic usage of this function
You can also use this package's built in function to fit the models
I recommend using the integrated_multilevel_model_summary to get everything

lme example
lme_fit <- lme4::lmer("popular ~ texp + (1 | class)",
 data = popular)

model_summary(lme_fit)

lm example

lm_fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
 data = iris)

model_summary(lm_fit)

polynomial_regression_plot

Polynomial Regression Plot

Description

[Experimental]
The function create a simple regression plot (no interaction). Can be used to visualize polynomial regression.

Usage

```r
polynomial_regression_plot(
  model,
  model_data = NULL,
  predictor,
  graph_label_name = NULL,
  x_lim = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```
Arguments

model (required) object from lm
model_data (optional) data frame (in case data cannot be retrieved from the model)
predictor (required) predictor variable name (must be character)
graph_label_name (optional) vector of length 3 or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2). Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)
x_lim the plot’s upper and lower limit for the x-axis. Length of 2. Example: c(lower_limit, upper_limit)
y_lim the plot’s upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color (optional) default if FALSE. Set to TRUE if you want to plot in color

Details

It appears that predict cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

an object of class ggplot

Examples

fit = lm(data = iris, Sepal.Length ~ poly(Petal.Length, 2))
polynomial_regression_plot(model = fit, predictor = 'Petal.Length')

Description

Classic data-set from Chapter 2 of Joop Hox’s Multilevel Analysis (2010). The popular dataset included student from different class (i.e., class is the nesting variable). The outcome variable is a self-rated popularity scale. Individual-level (i.e., level 1) predictors are sex, extroversion. Class level (i.e., level 2) predictor is teacher experience.

Usage

popular
Format

A data frame with 2000 rows and 6 variables:

- **pupil** Subject ID
- **popular** Self-rated popularity scale ranging from 1 to 10
- **class** the class that students belong to (nesting variable)
- **extrav** extraversion scale (individual-level)
- **sex** gender of the student (individual-level)
- **texp** teacher experience (class-level)

Source

http://joophox.net/mlbook2/DataExchange.zip

reliability_summary Reliability Analysis

Description

[Stable]
First, it will determine whether the data is uni-dimensional or multi-dimensional using `parameters::n_factors()`. If the data is uni-dimensional, then it will print a summary consists of alpha, G6, single-factor CFA, and descriptive statistics result. If it is multi-dimensional, it will print a summary consist of alpha, G6, omega result. You can bypass this by specifying the dimensionality argument.

Usage

```r
reliability_summary(
  data,
  cols,
  dimensionality = NULL,
  digits = 3,
  descriptive_table = TRUE,
  quite = FALSE,
  streamline = FALSE,
  return_result = FALSE
)
```

Arguments

- **data** data.frame
- **cols** items for reliability analysis. Support `dplyr::select()` syntax.
- **dimensionality** Specify the dimensionality. Either uni (uni-dimensionality) or multi (multi-dimensionality). Default is NULL that determines the dimensionality using EFA.
- **digits** number of digits to round to
simple_slope

descriptive_table
 Get descriptive statistics. Default is TRUE

quite
 suppress printing output

streamline
 print streamlined output

return_result
 If it is set to TRUE (default is FALSE), it will return psych::alpha for uni-
 dimensional scale, and psych::omega for multidimensional scale.

Value

a psych::alpha object for unidimensional scale, and a psych::omega object for multidimensional
scale.

Examples

fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x3)
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x9)

simple_slope Slope Estimate at Varying Level of Moderators

Description

[Stable]
The function uses the interaction::sim_slopes() to calculate the slope estimate at varying level
of moderators (+/- 1 SD and mean). Additionally, it will produce a Johnson-Newman plot that shows
when the slope estimate is not significant

Usage

 simple_slope(model, data = NULL)

Arguments

 model model object from lm, lme,lmer
 data data.frame

Value

 a list with the slope estimate data frame and a Johnson-Newman plot.
Examples

```r
fit <- lm_model(
  data = iris,
  response_variable = Sepal.Length,
  predictor_variable = dplyr::everything(),
  three_way_interaction_factor = c(Sepal.Width, Petal.Width, Petal.Length)
)

simple_slope_fit <- simple_slope(
  model = fit,
)
```

three_way_interaction_plot

Description

[Deprecated]

The function creates a two-way interaction plot. It will create a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with `lm_model()`, `lme_model()`.

Usage

```r
three_way_interaction_plot(
  model,
  data = NULL,
  categorical_var = NULL,
  graph_label_name = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```

Arguments

- **model**: object from `lme`, `lme4`, `lmerTest` object.
- **data**: data frame. If the function is unable to extract data frame from the object, then you may need to pass it directly.
- **categorical_var**: list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of `list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))`.
- **graph_label_name**: vector of length 4 or a switch function (see `?two_way_interaction_plot` example). Vector should be passed in the form of `c(response_var, predict_var1, predict_var2, predict_var3)`.

two_way_interaction_plot

y_lim: the plot’s upper and lower limit for the y-axis. Length of 2. Example: `c(lower_limit, upper_limit)`
plot_color: default if FALSE. Set to TRUE if you want to plot in color

Details

It appears that "predict" cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

a ggplot object

Examples

```r

three_way_interaction_plot(lm_fit, data = iris)
```

two_way_interaction_plot

Two-way Interaction Plot

Description

[Deprecated]
The function creates a two-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See supported model below. I recommend using concurrently with lm_model or lme_model.

Usage

```r
two_way_interaction_plot(
  model,
  data = NULL,
  graph_label_name = NULL,
  categorical_var = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```
two_way_interaction_plot

Arguments

- **model**: object from `lm`, `nlme`, `lme4`, or `lmerTest`
- **data**: `data.frame`. If the function is unable to extract data frame from the object, then you may need to pass it directly.
- **graph_label_name**: vector of length 3 or function. Vector should be passed in the form of `c(response_var, predict_var1, predict_var2)`. Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function).
- **categorical_var**: list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of `list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))`
- **y_lim**: the plot’s upper and lower limit for the y-axis. Length of 2. Example: `c(lower_limit, upper_limit)`
- **plot_color**: default if `FALSE`. Set to `TRUE` if you want to plot in color

Details

It appears that `predict` cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

an object of class `ggplot`

Examples

```r
lm_fit <- lm(Sepal.Length ~ Sepal.Width * Petal.Width, data = iris)
two_way_interaction_plot(lm_fit, data = iris)
```
Index

* datasets
 popular, 33
anova_plot, 2
cfa_groupwise, 3
cfa_summary, 4
compare_fit, 7
cor_test, 8
cronbach_alpha, 9
descriptive_table, 10
efa_summary, 11
get_interaction_term, 12
get_predict_df, 13
glm_model, 13
html_to_pdf, 14
interaction_plot, 15
knit_to_Rmd, 16
label_name, 17
lm_model, 23
lm_model_summary, 24
lm_model_table, 26
lme_model, 18
lme_multilevel_model_summary, 20
measurement_invariance, 27
mediation_summary, 29
model_summary, 31
polynomial_regression_plot, 32
popular, 33
reliability_summary, 34
simple_slope, 35
three_way_interaction_plot, 36
two_way_interaction_plot, 37