Package ‘psycho’

October 14, 2022

Type Package

Title Efficient and Publishing-Oriented Workflow for Psychological Science

Version 0.6.1

Maintainer Dominique Makowski <dom.makowski@gmail.com>

BugReports https://github.com/neuropsychology/psycho.R/issues

Description The main goal of the psycho package is to provide tools for psychologists, neuropsychologists and neuroscientists, to facilitate and speed up the time spent on data analysis. It aims at supporting best practices and tools to format the output of statistical methods to directly paste them into a manuscript, ensuring statistical reporting standardization and conformity.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Imports stats, scales, utils, dplyr, stringr, ggplot2, insight, bayestestR, parameters, effectsize

Suggests knitr, rmarkdown, testthat, covr, GPArotation

VignetteBuilder knitr

NeedsCompilation no

Author Dominique Makowski [aut, cre, cph]
 (<https://orcid.org/0000-0001-5375-9967>), Hugo Najberg [ctb], Viliam Simko [ctb], Sasha Epskamp [rev] (Sasha reviewed the package for JOSS, see https://github.com/openjournals/joss-reviews/issues/470)

Repository CRAN

Date/Publication 2021-01-19 06:40:10 UTC
This is data from the French validation of the Affective Style Questionnaire.

Description

Usage

Format

A data frame with 1277 rows and 8 variables:

Sex Sex (F or M)
Birth_Season Season of birth
Age Current age
Salary Salary in euros
Life Satisfaction General life satisfaction

Concealing Concealing score

Adjusting Adjusting score

Tolerating Tolerating score

assess

Compare a patient’s score to a control group

Description

Compare a patient’s score to a control group.

Usage

```r
essess(
  patient,
  mean = 0,
  sd = 1,
  n = NULL,
  controls = NULL,
  CI = 95,
  treshold = 0.05,
  iter = 10000,
  color_controls = "#2196F3",
  color_CI = "#E91E63",
  color_score = "black",
  color_size = 2,
  alpha_controls = 1,
  alpha_CI = 0.8,
  verbose = TRUE
)
```

Arguments

- `patient` Single value (patient’s score).
- `mean` Mean of the control sample.
- `sd` SD of the control sample.
- `n` Size of the control sample.
- `controls` Vector of values (control’s scores).
- `CI` Credible interval bounds.
- `treshold` Significance threshold.
- `iter` Number of iterations.
- `color_controls` Color of the controls distribution.
crawford.test

- **color_CI**: Color of CI distribution.
- **color_score**: Color of the line representing the patient’s score.
- **color_size**: Size of the line representing the patient’s score.
- **alpha_controls**: Alpha of the CI distribution.
- **alpha_CI**: Alpha of the controls distribution.
- **verbose**: Print possible warnings.

Details

Until relatively recently the standard way of testing for a difference between a case and controls was to convert the case’s score to a z score using the control sample mean and standard deviation (SD). If z was less than -1.645 (i.e., below 95

Value

output

Author(s)

Dominique Makowski

Examples

```r
result <- assess(patient = 124, mean = 100, sd = 15, n = 100)
print(result)
plot(result)
```

Description

Neuropsychologists often need to compare a single case to a small control group. However, the standard two-sample t-test does not work because the case is only one observation. Crawford and Garthwaite (2007) demonstrate that the Bayesian test is a better approach than other commonly-used alternatives.

Usage

```r
crawford.test(
  patient,
  controls = NULL,
  mean = NULL,
  sd = NULL,
  n = NULL,
  CI = 95,
)```
crawford.test

treshold = 0.1,
iter = 10000,
color_controls = "#2196F3",
color_CI = "#E91E63",
color_score = "black",
color_size = 2,
alpha_controls = 1,
alpha_CI = 0.8
)

Arguments

patient | Single value (patient’s score).
controls | Vector of values (control’s scores).
mean | Mean of the control sample.
sd | SD of the control sample.
n | Size of the control sample.
CI | Credible interval bounds.
treshold | Significance treshold.
iter | Number of iterations.
color_controls | Color of the controls distribution.
color_CI | Color of CI distribution.
color_score | Color of the line representing the patient’s score.
color_size | Size of the line representing the patient’s score.
alpha_controls | Alpha of the CI distribution.
alpha_CI | Alpha of the controls distribution.

Details

The p value obtained when this test is used to test significance also simultaneously provides a point estimate of the abnormality of the patient’s score; for example if the one-tailed probability is .013 then we know that the patient’s score is significantly (p < .05) below the control mean and that it is estimated that 1.3

Author(s)

Dominique Makowski

Examples

library(psycho)

crawford.test(patient = 125, mean = 100, sd = 15, n = 100)
plot(crawford.test(patient = 80, mean = 100, sd = 15, n = 100))

crawford.test(patient = 10, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
test <- crawford.test(patient = 7, controls = c(0, -2, 5, -6, 0, 3, -4, -2))
plot(test)
**crawford.test.freq**  

**Description**

Neuropsychologists often need to compare a single case to a small control group. However, the standard two-sample t-test does not work because the case is only one observation. Crawford and Garthwaite (2012) demonstrate that the Crawford-Howell (1998) t-test is a better approach (in terms of controlling Type I error rate) than other commonly-used alternatives.

**Usage**

```
crawford.test.freq(patient, controls)
```

**Arguments**

- `patient` Single value (patient’s score).
- `controls` Vector of values (control’s scores).

**Value**

Returns a data frame containing the t-value, degrees of freedom, and p-value. If significant, the patient is different from the control group.

**Author(s)**

Dan Mirman, Dominique Makowski

**Examples**

```
library(psycho)
crawford.test.freq(patient = 10, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
crawford.test.freq(patient = 7, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
```

---

**crawford_dissociation.test**  
*Crawford-Howell (1998) modified t-test for testing difference between a patient’s performance on two tasks.*

**Description**

Assessing dissociation between processes is a fundamental part of clinical neuropsychology. However, while the detection of suspected impairments is a fundamental feature of single-case studies, evidence of an impairment on a given task usually becomes of theoretical interest only if it is observed in the context of less impaired or normal performance on other tasks. Crawford and Garthwaite (2012) demonstrate that the Crawford-Howell (1998) t-test for dissociation is a better approach (in terms of controlling Type I error rate) than other commonly-used alternatives.
Usage

crawford_dissociation.test(
    case_X,
    case_Y,
    controls_X,
    controls_Y,
    verbose = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>case_X</td>
<td>Single value (patient’s score on test X).</td>
</tr>
<tr>
<td>case_Y</td>
<td>Single value (patient’s score on test Y).</td>
</tr>
<tr>
<td>controls_X</td>
<td>Vector of values (control’s scores of X).</td>
</tr>
<tr>
<td>controls_Y</td>
<td>Vector of values (control’s scores of Y).</td>
</tr>
<tr>
<td>verbose</td>
<td>True or False. Prints the interpretation text.</td>
</tr>
</tbody>
</table>

Value

Returns a data frame containing the t-value, degrees of freedom, and p-value. If significant, the dissociation between test X and test Y is significant.

Author(s)

Dominique Makowski

Examples

library(psycho)

case_X <- 142
case_Y <- 7
controls_X <- c(100, 125, 89, 105, 109, 99)
controls_Y <- c(7, 8, 9, 6, 7, 10)

crawford_dissociation.test(case_X, case_Y, controls_X, controls_Y)

dprime

Dprime (d’) and Other Signal Detection Theory indices.

Description

Computes Signal Detection Theory indices, including d’, beta, A’, B”D and c.
Usage

dprime(
  n_hit,
  n_fa,
  n_miss = NULL,
  n_cr = NULL,
  n_targets = NULL,
  n_distractors = NULL,
  adjusted = TRUE
)

Arguments

n_hit  Number of hits.
n_fa   Number of false alarms.
n_miss Number of misses.
n_cr   Number of correct rejections.
n_targets Number of targets (n_hit + n_miss).
n_distractors Number of distractors (n_fa + n_cr).
adjusted Should it use the Hautus (1995) adjustments for extreme values.

Value

Calculates the d', the beta, the A' and the B''D based on the signal detection theory (SRT). See Pallier (2002) for the algorithms.

Returns a list containing the following indices:

- **dprime (d')**: The sensitivity. Reflects the distance between the two distributions: signal, and signal+noise and corresponds to the Z value of the hit-rate minus that of the false-alarm rate.
- **beta**: The bias (criterion). The value for beta is the ratio of the normal density functions at the criterion of the Z values used in the computation of d’. This reflects an observer's bias to say 'yes' or 'no' with the unbiased observer having a value around 1.0. As the bias to say 'yes' increases (liberal), resulting in a higher hit-rate and false-alarm-rate, beta approaches 0.0. As the bias to say 'no' increases (conservative), resulting in a lower hit-rate and false-alarm rate, beta increases over 1.0 on an open-ended scale.
- **c**: Another index of bias. the number of standard deviations from the midpoint between these two distributions, i.e., a measure on a continuum from "conservative" to "liberal".
- **aprice (A')**: Non-parametric estimate of discriminability. An A’ near 1.0 indicates good discriminability, while a value near 0.5 means chance performance.
- **bppd (B''D)**: Non-parametric estimate of bias. A B''D equal to 0.0 indicates no bias, positive numbers represent conservative bias (i.e., a tendency to answer 'no'), negative numbers represent liberal bias (i.e. a tendency to answer 'yes'). The maximum absolute value is 1.0.

Note that for d’ and beta, adjustment for extreme values are made following the recommendaions of Hautus (1995).
emotion

Author(s)

Dominique Makowski

Examples

library(psycho)

n_hit <- 9
n_fa <- 2
n_miss <- 1
n_cr <- 7

indices <- psycho::dprime(n_hit, n_fa, n_miss, n_cr)

df <- data.frame(
  Participant = c("A", "B", "C"),
  n_hit = c(1, 2, 5),
  n_fa = c(6, 8, 1)
)

indices <- psycho::dprime(
  n_hit = df$n_hit,
  n_fa = df$n_fa,
  n_targets = 10,
  n_distractors = 10,
  adjusted = FALSE
)

emotion

Emotional Ratings of Pictures

Description

Emotional ratings of neutral and negative pictures by healthy participants.

Usage

emotion

Format

A data frame with 912 rows and 11 variables:

- Participant_ID  Subject’s number
- Participant_Age  Subject’s age
- Participant_Sex  Subject’s sex
- Item_Category    Picture’s category
**Item_Name**  Picture’s name

**Trial_Order**  Trial order (1-48)

**Emotion_Condition**  Picture’s emotional category (Neutral or Negative)

**Subjective_Arousal**  Participant’s rating of arousal (0-100)

**Subjective_Valence**  Participant’s rating of valence (-100: negative, 100: positive, 0: neutral)

**Autobiographical_Link**  Participant’s rating of autobiographical connection (is the picture’s content associated with memories)

**Recall**  Whether the participant recalled the picture 20min after presentation

---

**find_combinations**  *Generate all combinations.*

---

**Description**

Generate all combinations.

**Usage**

```r
find_combinations(object, ...)
```

**Arguments**

- `object`  Object
- `...`  Arguments passed to or from other methods.

**Author(s)**

Dominique Makowski

---

**find_combinations.formula**

*Generate all combinations of predictors of a formula.*

---

**Description**

Generate all combinations of predictors of a formula.

**Usage**

```r
S3 method for class 'formula'
find_combinations(object, interaction = TRUE, fixed = NULL, ...)
```
find_matching_string

Arguments

object  Formula.
interaction  Include interaction term.
fixed  Additional formula part to add at the beginning of each combination.
...  Arguments passed to or from other methods.

Value

list containing all combinations.

Author(s)

Dominique Makowski

Examples

library(psycho)

f <- as.formula("Y ~ A + B + C + D")
f <- as.formula("Y ~ A + B + C + D + (1|E)"))
f <- as.formula("Y ~ A + B + C + D + (1|E) + (1|F)\")

find_combinations(f)

find_matching_string  Fuzzy string matching.

Description

Fuzzy string matching.

Usage

find_matching_string(x, y, value = TRUE, step = 0.1, ignore.case = TRUE)

Arguments

x  Strings.
y  List of strings to be matched.
value  Return value or the index of the closest string.
step  Step by which decrease the distance.
ignore.case  if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching.

Author(s)

Dominique Makowski
find_season

Find season of dates.

Description

Returns the season of an array of dates.

Usage

```r
find_season(
 dates,
 winter = "12-21",
 spring = "3-20",
 summer = "6-21",
 fall = "9-22"
)
```

Arguments

- `dates`: Array of dates.
- `winter`: month-day of winter solstice.
- `spring`: month-day of spring equinox.
- `summer`: month-day of summer solstice.
- `fall`: month-day of fall equinox.

Value

`season`

Author(s)

Josh O'Brien

See Also

https://stackoverflow.com/questions/9500114/find-which-season-a-particular-date-belongs-to

Examples

```r
library(psycho)

find_matching_string("How are you", c("How are you", "Not this word", "Nice to meet you"))
```

```r
find_season(dates)
```
golden

Golden Ratio.

Description
Returns the golden ratio (1.618034...).

Usage
golden(x = 1)

Arguments
x A number to be multiplied by the golden ratio. The default (x=1) returns the value of the golden ratio.

Author(s)
Dominique Makowski

Examples
library(psycho)
golden()
golden(8)

is.psychobject
Creates or tests for objects of mode "psychobject".

Description
Creates or tests for objects of mode "psychobject".

Usage
is.psychobject(x)

Arguments
x an arbitrary R object.
is.standardized  
*Check if a dataframe is standardized.*

**Description**

Check if a dataframe is standardized.

**Usage**

```r
is.standardized(df, tol = 0.1)
```

**Arguments**

- `df`  
  A dataframe.
- `tol`  
  The error threshold.

**Value**

`bool`.

**Author(s)**

Dominique Makowski

**Examples**

```r
library(psycho)
library(effectsize)

df <- psycho::affective
is.standardized(df)

dfZ <- effectsize::standardize(df)
is.standardized(dfZ)
```

---

mellenbergh.test  
*Mellenbergh & van den Brink (1998) test for pre-post comparison.*

**Description**

Test for comparing post-test to baseline for a single participant.

**Usage**

```r
mellenbergh.test(t0, t1, controls)
```
**percentile**

**Arguments**

- **t0** Single value (pretest or baseline score).
- **t1** Single value (posttest score).
- **controls** Vector of scores of the control group OR single value corresponding to the control SD of the score.

**Value**

Returns a data frame containing the z-value and p-value. If significant, the difference between pre and post tests is significant.

**Author(s)**

Dominique Makowski

**Examples**

```r
library(psycho)

mellenbergh.test(t0 = 4, t1 = 12, controls = c(0, -2, 5, 2, 1, 3, -4, -2))
mellenbergh.test(t0 = 8, t1 = 2, controls = 2.6)
```

---

**percentile**

*Transform z score to percentile.*

**Description**

Transform z score to percentile.

**Usage**

```r
percentile(z_score)
```

**Arguments**

- **z_score** Z score.

**Author(s)**

Dominique Makowski

**Examples**

```r
library(psycho)
percentile(-1.96)
```
percentile_to_z  

*Transform a percentile to a z score.*

**Description**

Transform a percentile to a z score.

**Usage**

```r
percentile_to_z(percentile)
```

**Arguments**

- `percentile`  
  Percentile

**Author(s)**

Dominique Makowski

**Examples**

```r
library(psycho)
percentile_to_z(95)
```

---

Plot the results.

**Description**

Plot the results.

**Usage**

```r
S3 method for class 'psychobject'
plot(x, ...)
```

**Arguments**

- `x`  
  A psychobject class object.

- `...`  
  Arguments passed to or from other methods.

**Author(s)**

Dominique Makowski
power_analysis

Power analysis for fitted models.

Description

Compute the n models based on n sampling of data.

Usage

power_analysis(
  fit,
  n_max,
  n_min = NULL,
  step = 1,
  n_batch = 1,
  groups = NULL,
  verbose = TRUE,
  CI = 90
)

Arguments

fit  A lm or stanreg model.

n_max  Max sample size.

n_min  Min sample size. If null, take current nrow.

step  Increment of the sequence.

n_batch  Number of iterations at each sample size.

groups  Grouping variable name (string) to preserve proportions. Can be a list of strings.

verbose  Print progress.

CI  Confidence level.

Value

A dataframe containing the summary of all models for all iterations.

Author(s)

Dominique Makowski

Examples

## Not run:
library(dplyr)
library(psycho)

fit <- lm(Sepal.Length ~ Sepal.Width, data = iris)
results <- power_analysis(fit, n_max = 300, n_min = 100, step = 5, n_batch = 20)

results %>%
  filter(Variable == "Sepal.Width") %>%
  select(n, p) %>%
  group_by(n) %>%
  summarise(
    p_median = median(p),
    p_mad = mad(p)
  )

## End(Not run)

print.psychobject

Print the results.

Description

Print the results.

Usage

## S3 method for class 'psychobject'
print(x, ...)

Arguments

x A psychobject class object.
...
Further arguments passed to or from other methods.

Author(s)

Dominique Makowski

remove_empty_cols

Remove empty columns.

Description

Removes all columns containing only NaNs.

Usage

remove_empty_cols(df)
**summary.psychobject**

**Arguments**

- `df` : Dataframe.

**Author(s)**

Dominique Makowski

---

**Description**

Print the results.

**Usage**

```r
S3 method for class 'psychobject'
summary(object, round = NULL, ...)
```

**Arguments**

- `object` : A psychobject class object.
- `round` : Round the output.
- `...` : Further arguments passed to or from other methods.

**Author(s)**

Dominique Makowski

---

**values**

*Extract values as list.*

**Description**

Extract values as list.

**Usage**

```r
values(x)
```

**Arguments**

- `x` : A psychobject class object.

**Author(s)**

Dominique Makowski
Index

* datasets
  affective, 2
  emotion, 9

affective, 2
assess, 3
crawford.test, 4
crawford.test.freq, 6
crawford_dissociation.test, 6
dprime, 7
emotion, 9
find_combinations, 10
find_combinations.formula, 10
find_matching_string, 11
find_season, 12
golden, 13
is.psychobject, 13
is.standardized, 14
mellenbergh.test, 14
percentile, 15
percentile_to_z, 16
plot.psychobject, 16
power_analysis, 17
print.psychobject, 18
remove_empty_cols, 18
summary.psychobject, 19
values, 19