Package ‘psychometric’

February 20, 2015

Type Package
Title Applied Psychometric Theory
Version 2.2
Date 2010-08-07
Author Thomas D. Fletcher
Maintainer Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
Description Contains functions useful for correlation theory,
meta-analysis (validity-generalization), reliability, item
analysis, inter-rater reliability, and classical utility
Depends multilevel, nlme, R(>= 2.11.0)
Imports multilevel, nlme
License GPL (>= 2)
Repository CRAN
Date/Publication 2010-08-08 12:41:38
NeedsCompilation no

R topics documented:

 psychometric-package .. 2
 ABHt32 ... 5
 alpha ... 6
 alpha.CI .. 7
 artifacts ... 8
 CAFAA ... 10
 CI.Rsq ... 11
 CI.Rsqlm ... 12
 CI.tscore ... 13
 C1r ... 15
 C1rb ... 16
 C1rdif .. 17
 CIz ... 19
 ClassUtil ... 20
Description

Contains functions useful for correlation theory, meta-analysis (validity-generalization), reliability, item analysis, inter-rater reliability, and classical utility.
Details
This package corresponds to the basic concepts encountered in an introductory course in Psychometric Theory at the Graduate level. It is especially useful for Industrial/Organizational Psychologists, but will be useful for any student or practitioner of psychometric theory. I originally developed this package to correspond with concepts covered in PSYC 7429 at the University of MO-St. Louis course in Psychometric Theory.

Author(s)

Thomas D. Fletcher
Strategic Resources
State Farm Insurance Cos.

Maintainer: Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

See Also

multilevel-package ltm-package psy-package polycor-package nlme-package

Examples

Convert Pearson r to Fisher z'
\[r^{2z} (.51) \]
Convert Fisher z' to r
\[z^{2r} (.563) \]

Construct a CI about a True Score
Observed = 700, Test Ave. = 500, SD = 100, and reliability = .9
CI.tscore (700, 500, 100, .9)

Compute the classical utility of a test
Assuming base-rate = .5, selection ratio = .5 and rxy = .5
ClassUtil(rxy=.5, BR=.5, SR=.5)

Examine test score items
data(TestScores)
item.exam(TestScores[,1:10], y = TestScores[,11], discrim=TRUE)
Table 3.2 from Arthur et al

Description

These data are used as an example in ch. 3 of Conducting Meta-Analysis using SAS. The data appear in table 3.1 and 3.2 on pages 66 and 68. The example data are useful in illustrating simple meta-analysis concepts.

Usage

data(ABHt32)

Format

A data frame with 10 observations on the following 7 variables.

- study Study code
- Rxy Published Correlation
- n Sample Size
- Rxx Reliability of Predictor
- Ryy Reliability of Criterion
- a Range Restriction Ratio
- moderator Gender

References

Examples

data(ABHt32)
str(ABHt32)
rbar(ABHt32)
FunnelPlot(ABHt32)
alpha

Cronbach’s Coefficient Alpha

Description

Coefficient alpha is a measure of internal consistency. It is a standard measure of reliability for tests.

Usage

alpha(x)

Arguments

x
Data.frame or matrix object with rows corresponding individuals and columns to items

Details

You can specify any portion of a matrix or data.frame. For instance, if using a data.frame with numerous variables corresponding to items, one can specify subsets of those items. See examples below.

alpha <- \(\frac{k}{(k - 1)} \ast (1 - \frac{\text{SumSxi}}{Sx}) \)

where \(k \) is the number of items, \(Sx \) is the standard deviation of the total test, and \(\text{SumSxi} \) is the sum of the standard deviations for each item.

Value

coefficient alpha

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

alpha.CI

Examples

data(attitude)
alpha(attitude)
alpha(attitude[,1:5])
Description

Computes a one-tailed (or two-tailed) CI at the desired level for coefficient alpha

Usage

\[
alpha.CI(\alpha, k, N, \text{level} = 0.90, \text{onesided} = \text{FALSE})
\]

Arguments

- \(\alpha\): coefficient alpha to use for CI construction
- \(k\): number of items
- \(N\): sample size
- \(\text{level}\): Significance Level for constructing the CI, default is .90
- \(\text{onesided}\): return a one-sided (one-tailed) test, default is FALSE

Details

By inputting \(\alpha\), number of items and sample size, one can make inferences via a confidence interval. This can be used to compare two \(\alpha\) coefficients (e.g., from two groups), or to compare \(\alpha\) to some specified value (e.g., \(\geq .7\)). \(\text{onesided} = \text{FALSE}\) renders a two-sided test (i.e., this is the difference between tails of \(.025/0.975\) and \(.05/0.95\))

Value

Returns a table with 3 elements

- LCL: lower confidence limit of CI
- ALPHA: coefficient alpha
- UCL: upper confidence limit of CI

Warning

You must first compute \(\alpha\) and then enter into function. \(\alpha.CI\) will not evaluate a data.frame or matrix object.

Note

Feldt et al., provide a number of procedures for making inferences about \(\alpha\) (e.g., F test of the null hypothesis). Since the CI is the most versatile, it is the only function created in this package

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
References

See Also

alpha

Examples

From Feldt et al (1987)
alpha = .79, #items = 26, #examinees = 41
a two-tailed test 90% level

alpha.CI(.79, 26, 41)

artifacts

<table>
<thead>
<tr>
<th>Artifact Distributions Used in Meta-Analysis</th>
</tr>
</thead>
</table>

Description

Three artifact distributions are computed with each of these three functions which are then used to correct the observed sample-weighted mean correlation for attenuation. The artifacts are reliability in predictor, reliability in criterion, and range-restriction.

Usage

aRxx(x)
bRyy(x)
cRR(x)

Arguments

x A matrix or data.frame with columns Rxx, Ryy, and u: see EnterMeta

Details

- **aRxx** Distribution of measurement error in the predictor: $a = \sqrt{Rxx}$
- **bRyy** Distribution of measurement error in the criterion: $b = \sqrt{Ryy}$
- **cRR** Degree of range restriction indicated by ratio u (restricted SD/unrestricted SD): $c = \sqrt{r} \left(\frac{1 - u^2}{rb^2 + u^2} \right)$.

These are used in the computation of the compound attenuation factor $\text{CAFAA} = \text{mean}(a) \times \text{mean}(b) \times \text{mean}(c)$.
Value

A list containing:

- ma: Mean of a (or b or c)
- va: Variance of a (or b or c)

Note

One usually will not use these functions alone, but rather use functions that make use of these correction factors.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

- rhoCA, varAV, varRest, pvaaa

Examples

```
# From Arthur et al
data(ABHt32)
aRxx(ABHt32)
bRyy(ABHt32)
cRR(ABHt32)
rhoCA(ABHt32)

# From Hunter et al
data(HSJt35)
aRxx(HSJt35)
bRyy(HSJt35)
cRR(HSJt35)
rhoCA(HSJt35)
```
Description

The compound attenuation factor is computed as the product of the mean for each artifact distribution (square root of artifact) when correcting for attenuation in a correlation coefficient.

Usage

CAFAA(x)

Arguments

x A matrix or data.frame with columns Rxx, Ryy, and u: see EnterMeta

Details

The compound attenuation factor is computed as the product of mean(a)*mean(b)*mean(c) where
a = sqrt(Rxx) and is computed with the function arxx
b = sqrt(Ryy) and is computed with the function bryy
c = sqrt((1 - u^2) * rbar^2 + u^2) and is computed with the function crr

Value

A numeric value representing the compound attenuation factor

Note

This value is used in the correction for artifacts of a correlation coefficient

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

rhoCA, arxx, bryy, crr
Confidence Interval for R-squared

Description
Computes the confidence interval for a desired level for the squared-multiple correlation

Usage
CI.Rsq(rsq, n, k, level = 0.95)

Arguments
rsq Squared Multiple Correlation
n Sample Size
k Number of Predictors in Model
level Significance Level for constructing the CI, default is .95

Details
CI is constructed based on the approximate SE of Rsq

\[SE_{rsq} < -\sqrt{\frac{(4 \times rsq \times (1 - rsq)^2 \times (n - k - 1)^2) / (n^2 - 1) \times (n + 3))}{(n^2 - 1) \times (n + 3))}} \]

Value
Returns a table with 4 elements

Rsq Squared Multiple Correlation
SErsq Standard error of Rsq
LCL Lower Confidence Limit of the CI
UCL Upper Confidence Limit of the CI
Note
This is an adequate approximation for n > 60

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also
CI.Rsqlm

Examples

```r
# see section 3.6.2 Cohen et al (2003)
# 95 percent CI
CI.Rsqlm(lm(.5032, 62, 4, level = .95))
# 80 percent CI
CI.Rsqlm(lm(.5032, 62, 4, level = .80))
```

CI.Rsqlm

Confidence Interval for Rsq - from lm()

Description
Computes the CI for a desired level based on an object of class lm()

Usage

```r
CI.Rsqlm(obj, level = 0.95)
```

Arguments

- `obj` object of a linear model
- `level` Significance Level for constructing the CI, default is .95

Details
Extracts the necessary information from the linear model object and uses CI.Rsq
Value

Returns a table with 4 elements

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsq</td>
<td>Squared Multiple Correlation</td>
</tr>
<tr>
<td>SErrsq</td>
<td>Standard error of Rsq</td>
</tr>
<tr>
<td>LCL</td>
<td>Lower Confidence Limit of the CI</td>
</tr>
<tr>
<td>UCL</td>
<td>Upper Confidence Limit of the CI</td>
</tr>
</tbody>
</table>

Note

This is an adequate approximation for n > 60

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

CI.Rsq

Examples

Generate data
x <- rnorm(100)
z <- rnorm(100)
xz <- x*z
y <- .25*x - .25*z + .25*x*z + .25*rrnorm(100)
Create an lm() object
lm1 <- lm(y ~ x + z)
CI.Rsqlm(lm1)
Usage

CI.tscore(obs, mx, s, rxx, level = 0.95)

CI.obs(obs, s, rxx, level = 0.95)

Arguments

obs Observed test score on test x
mx mean of test x
s standard deviation of test x
rxx reliability of test x
level Significance Level for constructing the CI, default is .95

Details

CI.tscore makes use of Est.true to correct the observed score for regression to the mean and SE.Est for the correct standard error. CI.tscore also requires entry of the mean of the test scores for correcting for regression to the mean. CI.obs is much simpler in construction as it only makes use of the observed score without any corrections. CI.obs uses SE.Meas, the SEM that appears in most test manuals and text books.

Value

Both functions return a table with 4 elements

SE. Standard Error of the Estimate or SE of Measurement
LCL lower confidence limit of the CI
T.Score (or OBS) Estimate True Score or Observed score
UCL upper confidence limit of the CI

Warning

Be Cautious in construction and interpretation of CIs
To obtain percent for 1 SEM
1 - (1 - pnorm(1))^2
To obtain percent for 2 SEM
1 - (1 - pnorm(2))^2

95 percent CI corresponds to 1.96 * SE
1 * SE corresponds to .6827
2 * SE corresponds to 0.9772499
so, for two-sided, 2 * SE corresponds to 0.9544997
Note

It is not in error to report any one of these. The misinterpretation is in taking the observed score and making inferences about the true score without (1) using the correct standard error and (2) correcting for regression toward the mean of the observed scores.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

SE.Mea

Examples

Examples from Dudek (1979)
Suppose a test has mean = 500, SD = 100 rxx = .9
If an individual scores 700 on the test
CI.tscore (700, 500, 100, .9, level=.68)
CI.obs(700, 100, .9, level=.68)

CIR

Confidence Interval for a Correlation Coefficient

Description

Will construct the CI for a desired level given a correlation and sample size

Usage

CIR(r, n, level = 0.95)

Arguments

r Correlation Coefficient
n Sample Size
level Significance Level for constructing the CI, default is .95

Value

LCL Lower Confidence Limit of the CI
UCL Upper Confidence Limit of the CI
Note

Does not compute r, you must enter it into the function

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

rRz, CIZ, SEz, z2r

Examples

```r
# From ch. 2 in Cohen et al (2003)
CIr (.657, 15)
```

CIRb
Confidence Interval about Sample Weighted Mean Correlation

Description

Produces a CI for the desired level of the sample weighted mean correlation using the appropriate standard error.

Usage

```r
CIRb(x, LEVEL = 0.95, homogenous = TRUE)
```

Arguments

- `x`: A matrix or data.frame with columns Rxy and n: see `EnterMeta`
- `LEVEL`: Significance Level for constructing the CI, default is .95
- `homogenous`: Whether or not to use homogenous or heterogenous SE

Details

The CI is constructed based on the uncorrected mean correlation. It is corrected for sampling error only. To get the CI for the mean correlation corrected for artifacts, use `CredIntRho`, but this is a credibility interval rather than a confidence interval. See Hunter & Schmidt (2004) for more details on the interpretation of the differences.

If the CI is computed about a heterogenous mean correlation, one is implying that moderators are present, but that one can’t determine what those moderators might be. Otherwise, strive to parse the studies into homogenous subsets and create CI about those means within the subsets.
Value

A list containing:

LCL Lower Confidence Limit of the CI
UCL Upper Confidence Limit of the CI

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

SERbar, rbar

Examples

```r
#From Arthur et al
data(ABHt32)
rbar(ABHt32)
CIRbd(ABHt32)

# From Hunter et al
data(HSJt35)
rbar(HSJt35)
CIRbd(HSJt35)
```

<table>
<thead>
<tr>
<th>CIrdif</th>
<th>Confidence Interval for the difference in Correlation Coefficients</th>
</tr>
</thead>
</table>

Description

Will construct the CI for a difference in two correlations for a desired level

Usage

`CIrdif(r1, r2, n1, n2, level = 0.95)`
Arguments

\(r1 \)
Correlation 1

\(r2 \)
Correlation 2

\(n1 \)
Sample size for \(r1 \)

\(n2 \)
Sample size for \(r2 \)

\(\text{level} \)
Significance Level for constructing the CI, default is .95

Details

Constructs a confidence interval based on the standard error of the difference of two correlations \((r1 - r2)\),

\[
\text{sed} < -\sqrt{-\frac{(1 - r1^2)}{n1} + \frac{(1 - r2^2)}{n2}}
\]

Value

Returns a table with 4 elements

\(\text{dif} \)
Observed Difference in correlations

\(\text{sed} \)
Standard error of the difference

\(\text{LCL} \)
Lower Confidence Limit of the CI

\(\text{UCL} \)
Upper Confidence Limit of the CI

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

rdif.nul

Examples

From ch. 2 in Cohen et al (2003)
CIrdif(.657, .430, 62, 143)
CIz
Confidence Interval for Fisher z’

Description

Constructs a CI for a specified level about z’. This is useful for constructing CI for a correlation

Usage

```
CIz(z, n, level = 0.95)
```

Arguments

- `z`: Fishers z’
- `n`: Sample Size
- `level`: Significance Level for constructing the CI, default is .95

Value

- `lcl`: Lower Confidence Limit of the CI
- `ucl`: Upper Confidence Limit of the CI

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

`r2z, CIr, SEz, z2r`

Examples

```
# From ch. 2 in Cohen et al (2003)
zp <- r2z(.657)
CIz(zp, 15)
```
Classical Utility of a Test

Description

Calculate the classical utility of a test given a correlation, base-rate and selection ratio.

Usage

ClassUtil(rxy = 0, BR = 0.5, SR = 0.5)

Arguments

- rxy: Correlation of Test X with Outcome Y
- BR: Base Rate or prevalence without use of a test
- SR: Selection Ratio: Number selected out of those tested

Details

The degree of utility of using a test as a selection instrument over randomly selecting individuals can be reflected in the decision outcomes expected by using the selection instrument. Suppose you have a predictor (selection instrument) and a criterion (job performance). By regressing the criterion on the predictor, and selecting individuals based on some cut-off value, we have 4 possible outcomes. A = True Positives, B = True Negatives, C = False Negatives, and D = False Positives. The classical utility of using the test over current procedures (random selection) is:

\[\frac{A}{A+D} - \frac{(A+C)}{(A+B+C+D)} \]

Various manipulations of these relationships can be used to assist in decision making.

Value

Returns a table with the following elements reflecting decision outcomes:

- True Positives: Probability of correctly selecting a successful candidate
- False Negatives: Probability of incorrectly not selecting a successful candidate
- False Positives: Probability of incorrectly selecting an unsuccessful candidate
- True Negatives: Probability of correctly not selecting an unsuccessful candidate
- Sensitivity: True Positives / (True Positives + False Negatives)
- Specificity: True Negatives / (True Negatives + False Positives)
- % of Decisions Correct: Percentage of correct decisions
- Proportion Selected Successful: Proportion of those selected expected to be successful
- % Improvement over BR: Percentage of improvement using the test over random selection
CredIntRho

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also
Utility

Examples

```r
# 50 percent of those randomly selected are expected to be successful
# A company need only select 1/10 applicants
# The correlation between test scores and performance is .35
ClassUtil(.35, .5, .1)
```

CredIntRho	Credibility Interval for Meta-Analytic Rho

Description
Computed the credibility interval about the population correlation coefficient at the desired level.

Usage
```
CredIntRho(x, aprox = FALSE, level = 0.95)
```

Arguments
- `x`: A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see `EnterMeta`
- `aprox`: Logical test to determine if the approximate or exact var e is used
- `level`: Significance Level for constructing the CI, default is .95

Details
The credibility interval is used for the detection of potential moderators. Intervals that large or include zero potentially reflect the presence of moderators. Credibility intervals are constructed about rho, whereas confidence intervals are generally constructed about rbar. See Hunter & Schmidt (2004) for a description of the different uses.

The credibility interval is computed as: rho +/- z[crit] * SD(rho)
where, rho is the corrected correlation, z[crit] is the critical z value (1.96 for 95%), and SD(rho) is the sqrt(variance in rho).
Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCL</td>
<td>Lower Confidence Limit of the CI</td>
</tr>
<tr>
<td>UCL</td>
<td>Upper Confidence Limit of the CI</td>
</tr>
</tbody>
</table>

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

rbar, rhoCA, CIRb, varRes

Examples

```r
# From Arthur et al
data(AHt32)
CredIntRho(AHt32, aprox=TRUE)

# From Hunter et al
data(HSjt35)
CredIntRho(HSjt35)
```

Description

Corrects a correlation for Range restriction given population and sample standard deviations

Usage

```r
cRr(r, sdy, sdyu)
```

Arguments

- `r` Observed or restricted correlation
- `sdy` Standard deviation of a restricted sample
- `sdyu` Standard deviation of an unrestricted sample
cRRr

Details

When one of the variables used to measure a correlation has a restricted variance, the correlation will be attenuated. This commonly occurs for instance when using incumbents (those already selected by previous procedures) to base decisions about validity of new selection procedures. Given \(u \) (ratio of unrestricted SD of one variable to the restricted SD of that variable), the following formula is used to correct for attenuation in a correlation coefficient:

\[
 r_{xy} < -\left(r + \frac{(sd_{yu}/sd_y)}{sqrt(1 + r^2 * ((sd_{yu}^2/sd_y^2) - 1))} \right)
\]

Value

unrestricted corrected correlation

Note

Do not confuse this function with the meta-analysis function cRR in this same package!

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

cRR

Examples

See section 2.10.3 of Cohen et al (2003)
cRRr(.25, 12, 5)

Create two correlated variables
x <- rnorm(1000)
y <- 0.71*x + rnorm(1000)
cor(x, y)
order and select top 1/10
tmp <- cbind(x, y)[order(y, x),][1:100,]
rxyr <- cor(tmp[, "x"], tmp[, "y"]) # restricted rxy
rxyr
correct for restriction of range
cRRr(rxyr, sd(tmp[, "y"]), sd(y))
CVF

Description

The compound variance factor is computed by summing the individual squared coefficients of variation for each artifact when correcting for attenuation in a correlation coefficient.

Usage

\[
\text{CVF}(x)
\]

Arguments

- \(x\) A matrix or data.frame with columns representing artifacts (\(R_{xx}, R_{yy}, u\)): see \texttt{EnterMeta}

Details

The CVF is equal to \(\text{scv}(a) + \text{scv}(b) + \text{scv}(c)\), where \(\text{scv}\) is the squared coefficient of variation. The letters \(a, b, c\) represent artifacts reliability in predictor, reliability in criterion, and restriction of range respectively. The \(\text{scv}\) is computed as the variance in the artifact divided by the square of the average for the artifact.

Value

A numeric value representing the compound variance factor.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

\texttt{arxx, bRyy, cRR, varAV, CAFAA}
CVratio

Examples

From Arthur et al
data(ABHt32)
CVF(ABHt32)

From Hunter et al
data(HSJt35)
CVF(HSJt35)

CVratio Content Validity Ratio

Description
Computes Lawshe’s CVR for determining whether items are essential or not.

Usage

CVratio(NTOTAL, NESSENTIAL)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTOTAL</td>
<td>Total number of Experts</td>
</tr>
<tr>
<td>NESSENTIAL</td>
<td>Number of Experts indicating item 'essential'</td>
</tr>
</tbody>
</table>

Details
To determine content validity (in relation to job performance), a panel of subject matter experts will examine a set of items indicating whether the items are essential, useful, not necessary. The CVR is calculated to indicate whether the item is pertinent to the content validity.

CVR values range +1 to -1. Values closer to +1 indicated experts are in agreement that the item is essential to content validity.

Value
Content Validity Ratio

Note

CVR = (Ne - N/2)/(N-1)

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
References

Examples

```r
# Using 5 Expert panelists (SMEs)
# The ratings for an item is as follows:
# Rater1 = Essential
# Rater2 = Essential
# Rater3 = Essential
# Rater4 = Useful
# Rater5 = Not necessary
# # essential = 3
# CVratio (5, 3)
```

discrim
Item Discrimination

Description

Discrimination of an item is the ability for a specific item to distinguish among upper and lower ability individuals on a test.

Usage

discrim(x)

Arguments

- `x`: matrix or data.frame of items to be examined. Rows represent persons, Columns represent items.

Details

The function takes data on individuals and their test scores and computes a total score to separate high and low ordered individuals. The upper and lower groups are defined as the top and bottom 1/3 of the total. Discrimination is then computed and returned for each item using the formula:
(number correct in the upper group - number correct in the lower group) / size of each group.

Value

Discrimination index for each item in the data.frame or matrix analyzed.
Note

discrim is used by item.exam discrim is especially useful for dichotomously coded items such as correct/incorrect. If items are not dichotomously coded, the interpretation of discrim has less meaning.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

item.exam

Examples

```r
# see item.exam
# Scores on a test for 12 individuals
# 1 = correct
item1 <- c(1, 1, 0, 1, 1, 1, 1, 1, 0, 1)
item2 <- c(1, 0, 1, 1, 1, 1, 1, 1, 1, 0)
item3 <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
item4 <- c(0, 1, 1, 0, 1, 1, 1, 1, 1, 1)
item5 <- c(0, 0, 0, 1, 0, 1, 1, 1, 1, 1)
item6 <- c(0, 0, 0, 0, 1, 0, 1, 1, 1, 1)
item7 <- c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1)
exam <- cbind(item1, item2, item3, item4, item5, item6, item7)
discrim(exam)
```

Description

This function creates data entry object suitable for creating an object needed in the typical meta-analysis. The object will have the appropriate variable names.

Usage

EnterMeta()
Details

To create a data object appropriate for the meta-analysis functions in this package: Type

```r
my.Meta.data <- EnterMeta()
```

Then use the data editor to enter data in the appropriate columns.

Value

Does not return a value, but rather is used for naming columns of a data.frame() The final object (if saved) will contain:

- **study**: Enter Study Code or article name
- **Rxy**: Correlation coefficient
- **n**: Sample size for study
- **Rxx**: Reliability of predictor variable X
- **Ryy**: Reliability of criterion variable Y
- **u**: Degree of range restriction - ratio of restricted to unrestricted standard deviations
- **moderator**: moderator variable (if any)

Warning

This function will not automatically save your data object. You must create the object using the assignment operator.

Note

This is the general format required for data objects used for all the meta-analysis functions in this package. If certain variables are empty (e.g., Rxx, u), then the appropriate correction is not made, but the placeholder must be there. Moderator is useful for the user to subset the data and re-run any functions.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

See Also

As an alternative, consider **read.csv** for importing data prepared elsewhere (e.g., Excel)

Examples

```r
# my.data <- EnterMeta()
```
Estimation of a True Score

Description
Given the mean and reliability of a test, this function estimates the true score based on an observed score. The estimation is accounting for regression to the mean.

Usage
Est.true(obs, mx, rxx)

Arguments
obs an observed score on test x
mx mean of test x
rxx reliability of test x

Details
The estimated true score (that) is computed as
that <- mx*(1-rxx)+rxx*obs
When the obs score is much higher than the mean, the that < obs
When the obs score is much lower than the mean, that > obs

Value
Estimated True score

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also
CI.tscore, SE.Est
Examples

Examples from Dudek (1979)
Suppose a test has mean = 500, SD = 100 rxx = .9
If an individual scores 700 on the test
Est.true(700, 500, .9)

If an individual scores 400 on the test
Est.true(400, 500, .9)

Description

Computes the number of 'lost' studies needed to render the observed meta-analytic correlation to non-significance.

Usage

FileDrawer(x, rc = 0.1)

Arguments

x A matrix or data.frame with columns Rxy and n: see EnterMeta
rc cut-off correlation for which to make a comparison

Details

Use to detect availability bias in published correlations. It is computed as n <- k * (rb/rc - 1), where, n is the file drawer n, k is the number of studies in current meta-analysis, rb is rbar and rc is the cut-off correlation for which you wish to make a comparison. For a test of the null hypothesis, use rc = 0. In many instances, practitioners are interested in reducing correlations to less than 1 percent of the variance accounted for (i.e., rc = .1).

Value

"# of 'lost' studies needed"

File drawer N needed to change decision

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
FunnelPlot

References

See Also

FunnelPlot

Examples

```r
# From Arthur et al
data(ABHt32)
FileDrawer(ABHt32)

# From Hunter et al
data(HSJt35)
FileDrawer(HSJt35)
```

Funnel Plot for Meta-Analysis

Description

Produces a simple x-y plot corresponding to the correlation and sample size. A vertical line is produced representing the sample weighted correlation.

Usage

FunnelPlot(x)

Arguments

x A matrix or data.frame with columns rxy and n: see EnterMeta

Details

Plot showing 'no evidence' of availability bias will resemble funnel getting smaller at the top, and larger at the bottom of the plot. A plot showing evidence of availability bias will not resemble a funnel.

Value

a plot
Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

FileDrawer

Examples

From Arthur et al
data(ABht32)
FunnelPlot(ABht32)

From Hunter et al
data(HSJt35)
FunnelPlot(HSJt35)

HSJt35 Table 3.5 Hunter et al.

Description

This is a useful and fictious example for conducting Meta-Analysis. It appeared in Hunter et al (1982)

Usage

data(HSJt35)

Format

A data frame with 8 observations on the following 7 variables.

- study Study code
- Rxy Published correlation
- n Sample size
- Rxx Reliability of predictor
ICC.CI

- R_{yy} Reliability of criterion
- α Range Restriction Ratio
- moderator none <na>

Details

This example has been replicated a number of times (e.g., Hunter & Schmidt, 2004). It is useful in illustrating the basic concepts of validity generalization. The data can be used to demonstrate bare-bones MA as well as correction for artifacts. This data format is the format necessary for the R functions in the psychometric package.

References

Examples

data(HSJt35)
rbar(HSJt35)
FunnelPlot(HSJt35)
CredIntRho(HSJt35)

ICC.CI

Confidence interval for the Intra-class Correlation

Description

Computes the CI at the desired level for the ICC1 and ICC2

Usage

```
ICC1.CI(dv, iv, data, level = 0.95)
ICC2.CI(dv, iv, data, level = 0.95)
```

Arguments

- `dv` The dependent variable of interest
- `iv` cluster or grouping variable
- `data` data.frame containing the data
- `level` Significance Level for constructing the CI, default is .95
Details

Computes the ICC from a one-way ANOVA. The CI is then computed at the desired level using formulae provided by McGraw & Wong (1996). They use the terminology ICC(1) and ICC(k) for ICC1 and ICC2 respectively.

Value

A table with 3 elements:

- LCL: lower confidence limit if CI
- ICC: intra-class correlation
- UCL: upper confidence limit if CI

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

ICC.lme, ICC1, ICC2

Examples

library(multilevel)
data(bh1996)
ICC1.CI(HRS, GRP, bh1996)
ICC2.CI(HRS, GRP, bh1996)
Usage

ICC1.lme(dv, grp, data)

ICC2.lme(dv, grp, data, weighted = FALSE)

Arguments

dv The dependent variable of interest
grp cluster or grouping variable
data data.frame containing the data
weighted Whether or not a weighted mean is used in calculation of ICC2

Details

First a lme() model is computed from the data. Then ICC1 is computed as \(\frac{\tau_0}{\tau_0 + \sigma^2} \), where \(\tau_0 \) is the variance in intercept of the model and \(\sigma^2 \) is the residual variance for the model. The ICC2 is computed by computing the ICC2 for each group \(\frac{\tau_0}{\tau_0 + \sigma^2/n_j} \) where \(n_j \) is the size of group j. The mean across all groups is then taken to be the ICC2. However, one can specify that the mean should be weighted by group size such that larger groups are given more weight. The calculation of the individual group ICC2 is done by Bliese's gmeanRel function.

An alternate specification not used here, but sometimes seen in the literature for ICC2 is to use the formula above for the total data set, but replace \(n_j \) with the average group size. This is the method used in Bliese's mult.icc.

Value

ICC1 or ICC2

Warning

If data used are attached, you will sometimes receive a warning that can be ignored. The warning states that the following variables ... are masked. This is because the function first attaches the data and then detaches it within the function.

Note

ICC1.lme and ICC2.lme should in principle be equal an ICC computed from a one-way ANOVA only when the data are balanced (equal group sizes for all groups and no missing data). The ICC.lme should be a more accurate measure of ICC in all other instances. The three specifications of ICC2 mentioned above (details) will be similar by not exactly equal because of group variability.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
References

See Also

ICC.CI, mult.icc, GmeanRel

Examples

library(nlme)
library(multilevel)
data(bh1996)
ICC1.lme(HRS, GRP, data=bh1996)
ICC2.lme(HRS, GRP, data=bh1996)

item.exam

Description

Conducts an item level analysis. Provides item-total correlations, Standard deviation in items, difficulty, discrimination, and reliability and validity indices.

Usage

item.exam(x, y = NULL, discrim = FALSE)

Arguments

x matrix or data.frame of items
y Criterion variable
discrim Whether or not the discrimination of item is to be computed

Details

If someone is interested in examining the items of a dataset contained in data.frame x, and the criterion measure is also in data.frame x, one must parse the matrix or data.frame and specify each part into the function. See example below. Otherwise, one must be sure that x and y are properly merged/matched. If one is not interested in assessing item-criterion relationships, simply leave out that portion of the call. The function does not check whether the items are dichotomously coded, this is user specified. As such, one can specify that items are binary when in fact they are not. This has the effect of computing the discrimination index for continuously coded variables.

The difficulty index (p) is simply the mean of the item. When dichotomously coded, p reflects the proportion endorsing the item. However, when continuously coded, p has a different interpretation.
Value

A table with rows representing each item and columns representing:

- **Sample SD**: Standard deviation of the item
- **Item total**: Correlation of the item with the total test score
- **Item Tot. woi**: Correlation of item with total test score (scored without item)
- **Difficulty**: Mean of the item (p)
- **Discrimination**: Discrimination of the item (u-l)/n
- **Item Criterion**: Correlation of the item with the Criterion (y)
- **Item Reliab**: Item reliability index
- **Item Rel. woi**: Item reliability index (scored without item)
- **Item Validity**: Item validity index

Warning

Be cautious when using data with missing values or small data sets.

Listwise deletion is employed for both X (matrix of items to be analyzed) and Y (criterion). When the datasets are small, such listwise deletion can make a big impact. Further, since the upper and lower groups are defined as the upper and lower 1/3, the stability of this division of examinees is greatly increased with larger N.

Note

Most all text books suggest the point-biserial correlation for the item-total. Since the point-biserial is equivalent to the Pearson r, the cor function is used to render the Pearson r for each item-total. However, it might be suggested that the polyserial is more appropriate. For practical purposes, the Pearson is sufficient and is used here.

If discrim = TRUE, then the discrimination index is computed and returned EVEN IF the items are not dichotomously coded. The interpretation of the discrimination index is then suspect. discrim computes the number of correct responses in the upper and lower groups by summation of the '1s' (correct responses). When data are continuous, the discrimination index represents the difference in the sum of the scores divided by number in each group (1/3*N).

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

alpha, discrim

Examples

data(TestScores)
Look at the data
TestScores
Examine the items
item.exam(TestScores[,1:10], y = TestScores[,11], discrim=TRUE)

MetaTable

Summary function for 'Complete' Meta-Analysis

Description

Computes and returns the major functions involved in a Meta-Analysis. It is generic in the sense that no options are available to alter defaults.

Usage

MetaTable(x)

Arguments

x A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see EnterMeta

Details

For a set of correlations for each study (i), the following calculations are made and returned:

- r-bar \(\bar{r} \), variance in r-bar \(\text{varr} \), variance due to sampling error (not approximated) \(\text{vare} \), percent of variance due to sampling error \(\text{pvse} \), 95% CI for r-bar (using both the heterogenous and homogenous SE) \(\text{CIrbar} \), rho (corrected r-bar) \(\text{rhoCA} \), variance in rho \(\text{varRCA} \), percent of variance attributable to artifacts \(\text{pvaar} \), 90% Credibility interval \(\text{CredIntRho} \)

Value

Data.frame with various statistics returned - see details above

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
References

See Also

`rbar`, `rhoCA`

Examples

```r
# From Arthur et al
data(ABht32)
MetaTable(ABht32)
# From Hunter et al
data(HSjt35)
MetaTable(HSjt35)
```

pvaaa

Percent of Variance Accounted for by Artifacts in Rho

Description

Computes the percentage variance attributed to attenuating artifacts (sampling error, restriction of range, reliability in predictor and criterion.

Usage

```r
pvaaa(x, approx = FALSE)
```

Arguments

- `x`: A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see `EnterMeta`
- `approx`: Logical test to determine if the approximate or exact var e is used

Details

Percent of variance is computed as:

\[
\frac{\text{vare} + \text{varAv}}{\text{varr}} \times 100
\]

Value

A numeric value representing the percent of variance accounted for by artifacts
Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

vare, *varAV*, *varr*, *pvse*

Examples

```r
# From Arthur et al
data(ABHt32)
pvaaa(ABHt32)

# From Hunter et al
data(HSjt35)
pvaaa(HSjt35)
```

pvse | *Percent of variance due to sampling error*

Description

Ratio of sampling error variance to weighted variance in correlations for a meta-analysis. This value is compared to 75 (e.g., 75% rule) to determine the presence of moderators.

Usage

`pvse(x)`

Arguments

- `x` | A matrix or data.frame with columns `Rxy` and `n`: see `EnterMeta`

Details

`pvse <- vare/varr*100`
Qrbar

Value

A single numeric value of class matrix representing the % of variance accounted for by sampling error

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

varr, vare

Examples

From Arthur et al
data(ABHt32)
pvse(ABHt32)
From Hunter et al
data(HSJt35)
pvse(HSJt35)

<table>
<thead>
<tr>
<th>Qrbar</th>
<th>Meta-Analytic Q statistic for r-bar</th>
</tr>
</thead>
</table>

Description

Provides a chi-square test for significant variation in sample weighted correlation, rbar

Usage

Qrbar(x)
aprox.Qrbar(x)

Arguments

x A matrix or data.frame with columns Rxy and n: see EnterMeta
Details

Q is distributed as chi-square with df equal to the number of studies - 1. Multiple equations exist presumably because of a need to do the calculations ‘by hand’ in the past. A significant Q statistic implies the presence of one or more moderating variables operating on the observed correlations.

Value

A table containing the following items:

<table>
<thead>
<tr>
<th>CHISQ</th>
<th>Chi-square value</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>p-val</td>
<td>probabiltiy value</td>
</tr>
</tbody>
</table>

Warning

The test is presented by Hunter et al. 1982, but is NOT recommended nor mentioned by Hunter & Schmidt (2004). The test is sensitive to the number of studies included in the meta-analysis. Large meta-analyses may find significant Q statistics when variation in the population is not present, and small meta-analyses may find lack of significant Q statistics when moderators are present. Hunter & Schmidt (2004) recommend the credibility interval, CredIntRho, or the 75% rule, pvse, as determinants of the presence of moderators.

Note

Qrbar is computed as: \(\sum(((n - 1) \times (r - r_b)^2)/(1 - r_b^2)^2), na.rm = TRUE) \)

aproxNqrbar is computed as: \((N/(1 - r_b^2)^2) \times vr \)

where n is sample size of study i, N is total sample size across studies, rb is rbar, r is the correlation of study i, and vr is varr.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

varr, vare, rbar, CredIntRho, pvse
Qrho

Examples

From Arthur et al
data(ABHt32)
aprox.Qrbar(ABHt32)

From Hunter et al
data(HSIt35)
Qrbar(HSIt35)
aprox.Qrbar(HSIt35)

Qrho Meta-Analytic Q statistic for rho

Description

Provides a chi-square test for significant variation in sample weighted correlation corrected for attenuating artifacts

Usage

Qrho(x, aprox = FALSE)

Arguments

x
A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see EnterMeta

aprox Logical test to determine if the approximate or exact value is used

Details

Q is distributed as chi-square with df equal to the number of studies - 1. A significant Q statistic implies the presence of one or more moderating variables operating on the observed correlations after corrections for artifacts.

Value

A table containing the following items:

<table>
<thead>
<tr>
<th>CHISQ</th>
<th>Chi-square value</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>p-val</td>
<td>probablity value</td>
</tr>
</tbody>
</table>
Warning

The test is sensitive to the number of studies included in the meta-analysis. Large meta-analyses may find significant Q statistics when variation in the population is not present, and small meta-analyses may find lack of significant Q statistics when moderators are present. Hunter & Schmidt (2004) recommend the credibility interval, CredIntRho, or the 75% rule, pvse, as determinants of the presence of moderators.

Note

Q is defined as: \(\frac{k \cdot vr}{vav + ve} \)

where, \(k \) is the number of studies, \(vr \) is \(varr \), \(vav \) is \(varAV \), and \(ve \) is \(vare \)

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

\(varr, vare, rbar, CredIntRho, pvse \)

Examples

```r
# From Arthur et al
data(ABht32)
Qrho(ABht32)
#
# From Hunter et al
data(HSJt35)
Qrho(HSJt35)
```

Description

Performs a two-tailed t-test of the H0 that \(r = 0 \)
Usage

\[r2z(r, n) \]

Arguments

- **r**: Correlation coefficient
- **n**: Sample Size

Value

Returns a table with 4 elements:

- `'H0:rNot0'`: correlation to be tested
- **t**: t value for the H0
- **df**: degrees of freedom
- **p**: p value

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

`rdif.nul`, `CIfdif`

Examples

```r
# From ch. 2 in Cohen et al (2003)
r2z(c(0.657, 15))
```

Description

Converts a Pearson correlation coefficient to Fishers z’

Usage

\[r2z(x) \]
Arguments

x Pearson correlation coefficient

Details

\[z' = 0.5 \times \log\left(\frac{(1+r)}{(1-r)}\right) \]

Value

Fisher z’

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

z2r, C1r,

Examples

From ch. 2 in Cohen et al (2003)
\[r^{2z}(0.657) \]

\[r_{bar} \]

Sample size weighted mean correlation

Description

Computes the weighted mean correlation from a data object of the general format found in EnterMeta

Usage

rbar(x)

Arguments

x A matrix or data.frame with columns Rxy and n: see EnterMeta

Details

For a set of correlations for each study (i), rbar is computed as: \(\frac{\sum(N_i \times r_i)}{\sum(N_i)} \) where, \(N_i \) is the sample size of study i and \(r_i \) is the correlation in study i.
Value

Sample Weighted Average Correlation: uncorrected for artifacts other than sampling error

Note

This is the mean correlation across studies corrected for sampling error. It is also known as bare-bones meta-analysis.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

`varr`, `rhoCA`

Examples

```r
# From Arthur et al
data(ABHt32)
rbar(ABHt32)
# From Hunter et al
data(HSJt35)
rbar(HSJt35)
```

`rdif.nul`
Null hypothesis for difference in two correlations

Description

Tests the hypothesis that two correlations are significantly different

Usage

`rdif.nul(r1, r2, n1, n2)`
Arguments

- `r1`: Correlation 1
- `r2`: Correlation 2
- `n1`: Sample size for `r1`
- `n2`: Sample size for `r2`

Details

First converts `r` to `z'` for each correlation. Then constructs a `z` test for the difference
\[z \leftarrow \frac{(z_1 - z_2)}{\sqrt{1/(n_1-3) + 1/(n_2-3)}} \]

Value

Returns a table with 2 elements

- `zdif`: `z` value for the H0
- `p`: `p` value

Note

Does not test alternate hypotheses (e.g., difference = .1)

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

- `r-nil`, `Cirdif`

Examples

```r
# From ch. 2 in Cohen et al (2003)
rdif.nul(.657, .430, 62, 143)
```
rhoCA

Meta-Analytically Derived Correlation Coefficient Corrected for Artifacts

Description

This represents the population correlation coefficient free from attenuation due to artifacts (sampling error, range-restriction, reliability in the predictor and criterion).

Usage

```
rhoCA(x)
```

Arguments

- `x` A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see `entermeta`

Details

This is the sample weighted correlation coefficient `rbar` divided by the compound attenuation factor, `CAFAA`.

Value

A numeric value representing the corrected correlation coefficient.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

`CAFAA`, `rbar`
SE.Meas

Standard Errors of Measurement (test scores)

Description

These functions will calculate the three Standard Errors of Measurement as described by Dudek (1979). They are useful in constructing CI about observed scores, true scores and predicting observed scores on parallel measures.

Usage

SE.Meas(s, rxx)
SE.Est (s, rxx)
SE.Pred(sy, rxx)

Arguments

s Standard Deviation in tests scores on test x
sy Standard Deviation in tests scores on parallel test y = x
rxx Reliability of test x

Details

Dudek (1979) notes that in practice, individuals often misinterpret the SEM. In fact, most textbooks misinterpret these measures. The SE.Meas \((s \times \sqrt{1 - rxx})\) is useful in the construction of CI about observed scores, but should not be interpreted as indicating the TRUE SCORE is necessarily included in the CI. The SE.Est \((s\times\sqrt{rxx\times(1-rxx)})\) is useful in the construction of CI about the TRUE SCORE. The estimate of a CI for a TRUE SCORE also requires the calculation of a TRUE SCORE (due to regression to the mean) from observed scores. The SE.Pred \((sy \times \sqrt{1 - rxx^2})\) is useful in predicting the score on a parallel measure (Y) given a score on test X. SE.Pred is usually used to estimate the score of a re-test of an individual.

Value

The returned value is the appropriate standard error.
Note

Since strictly parallel tests have the same SD, s and sy are equivalent in these functions. SE.Meas() is used by CI.obs. SE.Est() is used by CI.tscore. You must use Est.true to first compute the estimated true score from an observed score accounting for regression to the mean.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

Est.true, CI.obs, CI.tscore

Examples

Examples from Dudek (1979)
Suppose a test has mean = 500, SD = 100 rxx = .9
If an individual scores 700 on the test
The three SE are:
SE.Meas(100, .9)
SE.Est(100, .9)
SE.Pred(100, 9)

CI about the true score
CI.tscore(700, 500, 100, .9)

CI about the observed score
CI.obs(700, 100, .9)

Standard Error for Sample Size Weighted Mean Correlation

Description

The standard error of homogenous or heterogenous samples is computed to be used for construction of confidence intervals about the Sample Size Weighted Mean Correlation in meta-analysis. Use SERHOM if no moderators are present (population is homogenous), and use SERHET if moderators are present (population is heterogenous).
Usage

SERHOM(x)
SERHET(x)

Arguments

x A matrix or data.frame with columns Rxy and n: see EnterMeta

Details

The formula for each are:
SERHOM <- (1 - rb^2)/sqrt(N - k)
SERHET <- sqrt((1 - rb^2)^2/(N - k) + varRes(x)/k)

where, rb is rbar, N is the total sample size, k is the number of studies.

Value

A numeric value, the standard error

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

CIrb, rbar

Examples

From Arthur et al
data(ABht32)
SERHOM(ABht32)
SERHET(ABht32)
CIrb(ABht32)

From Hunter et al
data(HSJt35)
SERHOM(HSJt35)
SERHET(HSJt35)
CIrb(HSJt35)
SEz

Standard Error of Fishers z prime

Description

Given a sample size, n, will compute the approximate standard error for z prime. This is useful for constructing confidence intervals about a correlation.

Usage

```r
SEz(n)
```

Arguments

- `n`: sample size

Details

\[SEz = \frac{1}{\sqrt{n-3}} \]

Value

The approximate standard error for Fisher’s z prime

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

- `r2z`, `C1r`, `C1z`, `z2r`

Examples

```r
# From ch. 2 in Cohen et al (2003)
zp <- r2z(.657)
zp
SEz(15)
```
Description
These two functions are various manipulations of the Spearman-Brown Prophecy Formula. They are useful in determining reliability if test length is changed or length of a new test if reliability were to change.

Usage
\[
\text{SBrel}(Nlength, rxx) \\
\text{SBLength}(rxxp, rxx)
\]

Arguments
- \(Nlength \): New length of a test in relation to original
- \(rxx \): Reliability of test \(x \)
- \(rxxp \): Reliability of desired (parallel) test \(x \)

Details
\(Nlength \) represents a ratio of new to original. If the new test has 10 items, and the original test has 5 items, \(Nlength \) is 2. Likewise, if the original test has 5 items, and the new test has 10 items, \(Nlength \) is .5. In general, researchers should aim for reliabilities > .9.

\text{SBrel} \ is used to address the question, what if I increased/decreased my test length? What will the new reliability be? This is used when computing split-half reliabilities and when concerned about reducing test length.

\text{SBLength} \ is used to address the question, how long must my test be (in relation to the original test) in order to achieve a desired reliability?

The formulae for each are:
\[
\begin{align*}
\text{rxxp} & \leftarrow Nlength\times rxx/(1+(Nlength-1)\times rxx) \\
N & \leftarrow rxxp^* (1-rxx)/(rxx^* (1-rxxp))
\end{align*}
\]

Value
- \(rxxp \): the prophesized reliability
- \(N \): Ratio of new test length to original test length

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References
See Also

alpha

Examples

Given a test with rxx = .7, 10 items
Desire a test with rxx=.9, how many items are needed?
new.length <- SBlength(.9, .7)
new.length * 10
39 items are needed
what is the reliability of a test 1/2 as long
SBrel(.5, .7)

<table>
<thead>
<tr>
<th>TestScores</th>
<th>Fictitious Test Scores for Illustrative Purposes</th>
</tr>
</thead>
</table>

Description

These data were created to correspond to scores for 30 examinees on 10 items of test X plus a score on criterion Y.

Usage

data(TestScores)

Format

A matrix with 30 observations on the following 11 variables.

i1 item1 on test x
i2 item2 on test x
i3 item3 on test x
i4 item4 on test x
i5 item5 on test x
i6 item6 on test x
i7 item7 on test x
i8 item8 on test x
i9 item9 on test x
i10 item10 on test x
y Score on criterion Y

Details

These data are constructed such that items 1 - 10 are coded 0,1 for incorrect/correct responses. The data illustrate that some items are better for maintaining internal consistency, whereas others may be more useful for relating to external criteria.
Marginal and Total Utility of a Test

Description

Computes the marginal or total utility of a test.

Usage

MargUtil(Rxy, Sy, MXg, COST, Nselected)

TotUtil(Rxy, Sy, MXg, COST, Nselected)

Arguments

- *Rxy*
 Correlation of Test X with Criterion Y
- *Sy*
 Standard Deviation of Y in monetary units
- *MXg*
 Mean of selected group on test X in standard score units
- *COST*
 Total cost of testing
- *Nselected*
 number of applicants selected

Details

Marginal utility is the gain expected in the outcome (i.e., job performance), in monetary units, for a person from the predictor selected subgroup compared to a person who is randomly selected.

Total utility is the total gain in the outcome (i.e., job performance), in monetary units, expected for those selected using the test.

Value

Marginal or Total Utility of a Test (a numeric value in monetary units)
Note

Computation for marginal and total utility are:

\[MU \leftarrow R_{xy} * S_y * M_x * g - \text{COST/}N_{\text{selected}} \]
\[TU \leftarrow N_{\text{selected}} * R_{xy} * S_y * M_x * g - \text{COST} \]

The computation of \(S_y \) should be done locally (within an organization) and is often difficult.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

`ClassUtil`

Examples

```r
# Rxy = .35
# Each year 72 workers are hired
# SD of performance in dollars is $4000
# 1 out of 10 applicants are selected
# cost per test = $5
# average test score for those selected = 1.76
MargUtil(.35, 4000, 1.76, 720*5, 72)
TotUtil (.35, 4000, 1.76, 720*5, 72)
```

varAV

<table>
<thead>
<tr>
<th>Variances Due to Attenuating Artifacts</th>
</tr>
</thead>
</table>

Description

Since the presence of artifacts may inflate the observed variance in correlations, one needs to compute the variance attributed to the artifacts.

Usage

`varAV(x)`

Arguments

- **x**: A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see `EnterMeta`
Details

\[\text{varAV} \] is computed as \(\text{rhoCA}^2 \times \text{CAFAA}^2 \times \text{CVF} \)

\[\text{varAV} \] is used to compute the residual variance in correlations \(\text{varResT} \)

Value

A numeric value representing the variance due to attenuating artifacts

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

CAFAA, rhoCA, CVF

Examples

```r
# From Arthur et al
data(ABHt32)
varAV(ABHt32)

# From Hunter et al
data(HSJt35)
varAV(HSJt35)
```

<table>
<thead>
<tr>
<th>vare</th>
<th>Sampling Error Variance</th>
</tr>
</thead>
</table>

Description

Computes sampling error variance in correlations from a data object of the general format found in EnterMeta

Usage

vare(x)
aprox.vare(x)
vare36(x)
Arguments

x A matrix or data.frame with columns Rxy and n: see EnterMeta

Details

t is the 'core' equation for estimating the sampling error variance. Presumably because of the history of meta-analysis and lack of desktop computing power, hand-calculations were needed. Thus, two additional equations were developed. The aprox.vare appears in many textbooks and is used often (Arthur et al.). Another variation is presented by Hunter & Schmidt (2004) as their equation 3.6 vare36.

Value

Sampling error variance (exact, approximate, or alternate approximate)

Note

The equations for each function are:

\[\text{vare} \leftarrow \frac{\sum(n \times (1 - r^2)^2)/(n - 1)}{\sum(n, na.rm = \text{TRUE})} \]

\[\text{aprox.vare} \leftarrow \frac{(1 - r^2)^2}{\text{mean}(n, na.rm = \text{TRUE}) - 1} \]

\[\text{vare36} \leftarrow \frac{(1 - r^2)^2 \times k}{T} \]

where k is number of studies and T is total sample size

These are only presented here for completeness. The recommended equation is vare.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

varr, rbar

Examples

From Arthur et al
data(AHt32)
vare(AHt32)
aprox.vare(AHt32)
vare36(AHt32)
From Hunter et al
data(HSJt35)
Description

Computes the weighted variance in correlations from a data object of the general format found in
[EnterMeta](#).

Usage

\[\text{varr}(x) \]

Arguments

- **x**

 A matrix or data.frame with columns Rxy and n: see [EnterMeta](#).

Details

For a set of correlations for each study (i), varr is computed as:

\[
\text{sum}(N_i \ast (r_i - rbar)^2) / \text{sum}(N_i)
\]

where, \(N_i\) is the sample size of study i and \(r_i\) is the correlation in study i and \(rbar\) is the weighted mean correlation.

Value

Sample weighted variance in correlations: uncorrected for artifacts other than sampling error

Note

This is the variance in correlations across studies corrected for sampling error. It is also known as bare-bones meta-analysis.

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

varRCA

See Also

tvar, rbar

Examples

From Arthur et al
data(ABHt32)
varr(ABHt32)
From Hunter et al
data(HSJT35)
varr(HSJT35)

<table>
<thead>
<tr>
<th>varRCA</th>
<th>Variance in Meta-Analytic Rho</th>
</tr>
</thead>
</table>

Description

Computes the estimate of the variance in the corrected correlation coefficient.

Usage

varRCA(x, aprox = FALSE)

Arguments

x A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see EnterMeta
aprox Logical test to determine if the approximate or exact var e is used

Details

Variance in Rho is computed as: VarResT/CAFFA²
This is used to construct credibility intervals for rho CredIntRho

Value

A numeric value representing the variance in the population correlation coefficient

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>
References

See Also

rhoCA, CAFAA, varResT, varResCredIntRho

Examples

From Arthur et al
data(ABHt32)
varRCA(ABHt32)

From Hunter et al
data(HSJt35)
varRCA(HSJt35)

varRes
 Residual Variance in Meta-Analytic Correlation

Description

Computes the residual variance in the sample-weighted correlation coefficient by removing variance due to sampling error.

Usage

varRes(x)

Arguments

x
A matrix or data.frame with columns Rxy and n: see EnterMeta

Details

computed as varr - vare

Useful in the construction of the SE for heterogenous populations SERHET

Value

A numeric value representing the residual variance
varResT

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also
varr, vare, SERHET

Examples

From Arthur et al
data(ABHt32)
varRes(ABHt32)

From Hunter et al
data(HSJT35)
varRes(HSJT35)

| varResT | True residual variance in correlations |

Description
Residual variance attributed to both the variance due to sampling error and artifacts.

Usage
varResT(x, aprox = FALSE)

Arguments
x A matrix or data.frame with columns Rxy, n and artifacts (Rxx, Ryy, u): see EnterMeta
aprox Logical test to determine if the approximate or exact var e is used

Details
varResT <- varr - vare - varAV
varResT is used in the computation of the variance in rho, varRCA
Value
A numeric value representing the True residual variance

Author(s)
Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also
varr, vare, varAV, varRCA

Examples
From Arthur et al
data(ABHt32)
varResT(ABHt32)

From Hunter et al
data(HSJt35)
varResT(HSJt35)

z2r

Fisher z’ to r

Description
Converts a Fishers z’ to Pearson correlation coefficient

Usage
z2r(x)

Arguments
x z’ (Fishers z prime)

Details
\[r = \frac{\exp(2z)-1}{\exp(2z)+1} \]
Value

A Pearson Correlation coefficient

Author(s)

Thomas D. Fletcher <tom.fletcher.mp7e@statefarm.com>

References

See Also

`r2z, C1r, CIz, SEz`

Examples

```
# From ch. 2 in Cohen et al (2003)
zp <- r2z(.657)
zp
z2r(zp)
```
Index

*Topic datasets
 ABHt32, 5
 HSJt35, 32
 TestScores, 55

*Topic distribution
 Est.true, 29
 SE.Meas, 50

*Topic htest
 CI.Rsq, 11
 CI.Rsqlm, 12
 CI.tscore, 13
 Cir, 15
 Cirb, 16
 Cirdif, 17
 Ciz, 19
 CredIntRho, 21
 cRrr, 22
 CVF, 24
 ICC.CI, 33
 ICC.1me, 34
 item.exam, 36
 MetaTable, 38
 pvaaa, 39
 pvse, 40
 Qrbar, 41
 Qrho, 43
 r.nil, 44
 r2z, 45
 rdif.nul, 47
 SE.Meas, 50
 SEz, 53
 z2r, 64

*Topic manip
 EnterMeta, 27

*Topic models
 alpha, 6
 alpha.CI, 7
 artifacts, 8
 CAFAA, 10
 CI.Rsq, 11
 CI.Rsqlm, 12
 CI.tscore, 13
 Cir, 15
 Cirb, 16
 Cirdif, 17
 Ciz, 19
 CredIntRho, 21
 cRrr, 22
 CVF, 24
 discrim, 26
 Est.true, 29
 FileDrawer, 30
 FunnelPlot, 31
 ICC.CI, 33
 ICC.1me, 34
 item.exam, 36
 MetaTable, 38
 pvaaa, 39
 pvse, 40
 Qrbar, 41
 Qrho, 43
 r.nil, 44
 r2z, 45
 rbar, 46
 rdif.nul, 47
 rhoCA, 49
 SEz, 53
 SpearmanBrown, 54
 varAV, 57
 vare, 58
 varr, 60
 varRCA, 61
 varRes, 62
 varResT, 63
 z2r, 64

*Topic package
 psychometric-package, 2

*Topic univar
 alpha, 6
 alpha.CI, 7
 artifacts, 8
 CAFAA, 10
 Cirb, 16
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassUtil</td>
<td>20, 57</td>
</tr>
<tr>
<td>CredIntRho</td>
<td>21</td>
</tr>
<tr>
<td>CVF</td>
<td>24</td>
</tr>
<tr>
<td>CVratio</td>
<td>25</td>
</tr>
<tr>
<td>discrim</td>
<td>26</td>
</tr>
<tr>
<td>FileDrawer</td>
<td>30</td>
</tr>
<tr>
<td>FunnelPlot</td>
<td>31</td>
</tr>
<tr>
<td>ICC.CI</td>
<td>33</td>
</tr>
<tr>
<td>ICC.1me</td>
<td>34</td>
</tr>
<tr>
<td>item.exam</td>
<td>36</td>
</tr>
<tr>
<td>MetaTable</td>
<td>38</td>
</tr>
<tr>
<td>pvaaa</td>
<td>39</td>
</tr>
<tr>
<td>pvse</td>
<td>40</td>
</tr>
<tr>
<td>Qrbar</td>
<td>41</td>
</tr>
<tr>
<td>Qrho</td>
<td>43</td>
</tr>
<tr>
<td>rbar</td>
<td>46</td>
</tr>
<tr>
<td>rhoCA</td>
<td>49</td>
</tr>
<tr>
<td>SErbar</td>
<td>51</td>
</tr>
<tr>
<td>SpearmanBrown</td>
<td>54</td>
</tr>
<tr>
<td>Utility</td>
<td>56</td>
</tr>
<tr>
<td>varAV</td>
<td>57</td>
</tr>
<tr>
<td>vare</td>
<td>58</td>
</tr>
<tr>
<td>varr</td>
<td>60</td>
</tr>
<tr>
<td>varCA</td>
<td>61</td>
</tr>
<tr>
<td>varRes</td>
<td>62</td>
</tr>
<tr>
<td>varResT</td>
<td>63</td>
</tr>
<tr>
<td>abht</td>
<td>5</td>
</tr>
<tr>
<td>alpha</td>
<td>6, 8, 38, 55</td>
</tr>
<tr>
<td>alpha.CI</td>
<td>6, 7</td>
</tr>
<tr>
<td>approx.Qrbar</td>
<td>Qrbar, 41</td>
</tr>
<tr>
<td>approx.vare</td>
<td>vare, 58</td>
</tr>
<tr>
<td>apt</td>
<td>2</td>
</tr>
<tr>
<td>artifacts</td>
<td>8</td>
</tr>
<tr>
<td>aRxx</td>
<td>10, 24</td>
</tr>
<tr>
<td>aRxx(artifacts)</td>
<td>8</td>
</tr>
<tr>
<td>brRyy</td>
<td>10, 24</td>
</tr>
<tr>
<td>brRyy(artifacts)</td>
<td>8</td>
</tr>
<tr>
<td>CAFAA</td>
<td>8, 10, 24, 49, 58, 62</td>
</tr>
<tr>
<td>CI.alpha</td>
<td>(alpha.CI), 7</td>
</tr>
<tr>
<td>CI.obs</td>
<td>51</td>
</tr>
<tr>
<td>CI.obs(CI.tscore)</td>
<td>13</td>
</tr>
<tr>
<td>CI.Rsq</td>
<td>11, 12, 13</td>
</tr>
<tr>
<td>CI.Rsqlm</td>
<td>12, 12</td>
</tr>
<tr>
<td>CI.tscore</td>
<td>13, 29, 51</td>
</tr>
<tr>
<td>CIR</td>
<td>15, 19, 46, 53, 65</td>
</tr>
<tr>
<td>CIRb</td>
<td>16, 22, 38, 52</td>
</tr>
<tr>
<td>CIRbar(CIRb)</td>
<td>16</td>
</tr>
<tr>
<td>CIRdif</td>
<td>17, 45, 48</td>
</tr>
<tr>
<td>CIZ</td>
<td>16, 19, 53, 65</td>
</tr>
<tr>
<td>ClassUtil</td>
<td>20, 57</td>
</tr>
<tr>
<td>CredIntRho</td>
<td>16, 21, 38, 42, 44, 61, 62</td>
</tr>
<tr>
<td>cRR</td>
<td>10, 23, 24</td>
</tr>
<tr>
<td>cRR(artifacts)</td>
<td>8</td>
</tr>
<tr>
<td>cRRr</td>
<td>22</td>
</tr>
<tr>
<td>CVF</td>
<td>24, 58</td>
</tr>
<tr>
<td>CVratio</td>
<td>25</td>
</tr>
<tr>
<td>discrim</td>
<td>26, 37, 38</td>
</tr>
<tr>
<td>EnterMeta</td>
<td>8, 10, 16, 21, 24, 27, 30, 31, 38–41, 43, 46, 49, 52, 57–63</td>
</tr>
<tr>
<td>Est.true</td>
<td>14, 29, 51</td>
</tr>
<tr>
<td>FileDrawer</td>
<td>30, 32</td>
</tr>
<tr>
<td>FISHER r to z (r2z)</td>
<td>45</td>
</tr>
<tr>
<td>Fisher z to r (z2r)</td>
<td>64</td>
</tr>
<tr>
<td>FunnelPlot</td>
<td>31, 31</td>
</tr>
<tr>
<td>GmeanRel</td>
<td>35, 36</td>
</tr>
<tr>
<td>HSJt35</td>
<td>32</td>
</tr>
<tr>
<td>ICC.CI</td>
<td>33, 36</td>
</tr>
<tr>
<td>ICC.1me</td>
<td>34, 34</td>
</tr>
<tr>
<td>ICC1</td>
<td>34</td>
</tr>
<tr>
<td>ICC1.CI (ICC.CI)</td>
<td>33</td>
</tr>
<tr>
<td>ICC1.1me (ICC.1me)</td>
<td>34</td>
</tr>
<tr>
<td>ICC2</td>
<td>34</td>
</tr>
<tr>
<td>ICC2.CI (ICC.CI)</td>
<td>33</td>
</tr>
<tr>
<td>ICC2.1me (ICC.1me)</td>
<td>34</td>
</tr>
<tr>
<td>item.exam</td>
<td>27, 36, 36</td>
</tr>
<tr>
<td>MargUtil</td>
<td>Utility, 56</td>
</tr>
<tr>
<td>MetaTable</td>
<td>38</td>
</tr>
<tr>
<td>mult.icc</td>
<td>35, 36</td>
</tr>
<tr>
<td>psychometric</td>
<td>(psychometric-package), 2</td>
</tr>
<tr>
<td>pvaaa</td>
<td>9, 38, 39</td>
</tr>
<tr>
<td>pvse</td>
<td>38, 40, 40, 42, 44</td>
</tr>
<tr>
<td>Qrbar</td>
<td>41</td>
</tr>
<tr>
<td>Qrho</td>
<td>43</td>
</tr>
<tr>
<td>r nil</td>
<td>44, 48</td>
</tr>
<tr>
<td>r.null</td>
<td>(r.nil), 44</td>
</tr>
<tr>
<td>Term</td>
<td>Page Range</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>r2z</td>
<td>16, 19, 45, 53, 65</td>
</tr>
<tr>
<td>rbar</td>
<td>17, 22, 38, 39, 42, 44, 46, 49, 52, 59, 61</td>
</tr>
<tr>
<td>rdif.nul</td>
<td>18, 45, 47</td>
</tr>
<tr>
<td>read.csv</td>
<td>28</td>
</tr>
<tr>
<td>rhoCA</td>
<td>9, 10, 22, 38, 39, 47, 49, 58, 62</td>
</tr>
<tr>
<td>SBlength (SpearmanBrown)</td>
<td>54</td>
</tr>
<tr>
<td>SBrel (SpearmanBrown)</td>
<td>54</td>
</tr>
<tr>
<td>SE.Est</td>
<td>14, 29</td>
</tr>
<tr>
<td>SE.Est (SE.Meas)</td>
<td>50</td>
</tr>
<tr>
<td>SE.Meas</td>
<td>14, 15, 50</td>
</tr>
<tr>
<td>SE.Pred (SE.Meas)</td>
<td>50</td>
</tr>
<tr>
<td>SERbar</td>
<td>17, 51</td>
</tr>
<tr>
<td>SERHET</td>
<td>62, 63</td>
</tr>
<tr>
<td>SERHET (SERbar)</td>
<td>51</td>
</tr>
<tr>
<td>SERHOM (SERbar)</td>
<td>51</td>
</tr>
<tr>
<td>SEz</td>
<td>16, 19, 53, 65</td>
</tr>
<tr>
<td>SpearmanBrown</td>
<td>54</td>
</tr>
<tr>
<td>TestScores</td>
<td>55</td>
</tr>
<tr>
<td>TotUtil (Utility)</td>
<td>56</td>
</tr>
<tr>
<td>Utility</td>
<td>21, 56</td>
</tr>
<tr>
<td>varAV</td>
<td>9, 24, 40, 44, 57, 64</td>
</tr>
<tr>
<td>vare</td>
<td>38, 40–42, 44, 58, 61, 63, 64</td>
</tr>
<tr>
<td>vare36 (vare)</td>
<td>58</td>
</tr>
<tr>
<td>varrr</td>
<td>38, 40–42, 44, 47, 59, 60, 63, 64</td>
</tr>
<tr>
<td>varRCA</td>
<td>38, 61, 64</td>
</tr>
<tr>
<td>varRes</td>
<td>22, 62, 62</td>
</tr>
<tr>
<td>varResT</td>
<td>9, 58, 62, 63</td>
</tr>
<tr>
<td>z2r</td>
<td>16, 19, 46, 53, 64</td>
</tr>
</tbody>
</table>