Package ‘ptest’

November 12, 2016

Type Package
Title Periodicity Tests in Short Time Series
Version 1.0-8
Date 2016-11-12
Author Yuanhao Lai and A.I. McLeod
Maintainer A.I. McLeod <aimcleod@uwo.ca>
Depends R (>= 3.0),
Description Implements p-value computations using an approximation to the cumulative distribution function for a variety of tests for periodicity. These tests include harmonic regression tests with normal and double exponential errors as well as modifications of Fisher's g test. An accompanying vignette illustrates the application of these tests.
License GPL (>= 2)
LazyData true
NeedsCompilation yes
Imports quantreg (>= 5.0)
RoxygenNote 5.0.1
Suggests knitr, boot, lattice, rmarkdown, GeneCycle,
VignetteBuilder knitr
Repository CRAN
Date/Publication 2016-11-12 21:41:37

R topics documented:

alpha .. 2
B1 .. 3
B2 .. 4
B3 .. 5
Cc .. 6
cdc15 ... 7
cdc28 .. 7
Microarray time series experiment for yeast cell cycle from alpha experiment

Description

6,178 yeast genes expression measures (log-ratios) with series length 18 from the alpha factor experiment.

Usage

`data(alpha)`

Format

Matrix with 6178 rows and 18 columns. Some missing data. Rows and columns are labelled. -

- attr(*, "dimnames")=List of 2 ..$: chr [1:6178] "YAL001C" "YAL002W" "YAL003W" "YAL004W"
 $: chr [1:18] "alpha0" "alpha7" "alpha14" "alpha21" ...

Source

The data is extracted from the ExpressionSet of the R package yeastCC.

References

Examples

``` r
data(alpha)
qqnorm(colMeans(alpha, na.rm=TRUE))
qqnorm(rowMeans(alpha, na.rm=TRUE))
```
Benchmark set B1

Description

List for yeast genes which are most likely to be periodic (the benchmark set 1 in de Lichtenberg et al. (2005)).

Usage

data(B1)

Format

A vector containing 113 genes’ names.

Details

A total of 113 genes previously identified as periodically expressed in small-scale experiments. The set encompasses the 104 genes used by Spellman et al. (1998) and nine genes added by Johansson et al. (2003).

Source

References

Examples

data(alpha)
data(B1)
alphaB1 <- alpha[rownames(alpha) %in% B1,]
Benchmark set B2

Description

List for yeast genes which are most likely to be periodic (the benchmark set 2 in de Lichtenberg et al. (2005)).

Usage

data(B2)

Format

A vector containing 352 genes’ names.

Details

Genes whose promoters were bound (P-value below 0.01) by at least one of nine known cell cycle transcription factors in both of the Chromatin IP studies by Simon et al. (2001) and Lee et al. (2002). To obtain a benchmark set that is independent of B1, we removed all genes included in B1 (50). The resulting benchmark set, B2, consists of 352 genes of which many should be expected to be cell cycle regulated, since their promoters are associated with known stage-specific cell cycle transcription factors.

Source

References

Examples

data(alpha)
data(B2)
alphaB2 <- alpha[rownames(alpha) %in% B2,]
Benchmark set B3

Description

List for yeast genes which are less likely to be periodic (the benchmark set 3 in de Lichtenberg et al. (2005)).

Usage

data(B3)

Format

A vector containing 518 genes’ names.

Details

Genes annotated in MIPS (Mewes et al., 2002) as ‘cell cycle and DNA processing’. From these, we removed genes annotated specifically as ‘meiosis’ and genes included in B1 (67), leaving 518 genes. As a large number of genes involved in the cell cycle are not subject to transcriptional regulation (not periodic), and because B1 was explicitly removed, a relatively small fraction of these genes should be expected to be periodically expressed.

Source

References

Examples

data(alpha)
data(B3)
alphaB3 <- alpha[rownames(alpha) %in% B3,]
Microarray time series experiment for Caulobacter crescentus bacterial cell cycle

Description

In this microarray experiment there are 3062 genes measured every 1 hour. There are 19 missing gene labels and these have been given labels ORFna1,...,ORFna19. There 310 with duplicate labels. Of these duplicate labels, 295 are duplicated twice, 12 are duplicated 3 times and 3 are duplicated 4 times. Duplicate labels are renamed ORF... to ORF...a and ORF...b etc.

Usage
data(Cc)

Format

Matrix with 3062 rows and 11 columns. Some missing data. Rows and columns are labelled.
- attr(*, "dimnames")=List of 2 ..$: chr [1:3062] "ORF06244a" "ORF03152a" "ORF03156a" "ORF03161a" ...
 ..$: chr [1:11] "1" "2" "3" "4" ...

Details

Gene expression from synchronized cultures of the bacterium Caulobacter crescentus (Laub et al., 2000). (Laub et al., 2000) identified 553 genes whose messenger RNA levels varied as a function of the cell cycle but their statistical analysis was not very sophisticated and they probably identified too many genes. Wichert et al. (2004) found that 44 genes were found which displayed periodicity based on the Fisher’s g-test using a FDR with q=0.05.

References

Examples
data(Cc)
qqnorm(colMeans(Cc, na.rm=TRUE))
qqnorm(rowMeans(Cc, na.rm=TRUE))
Microarray time series experiment for yeast cell cycle from cdc15 experiment

Description
6,178 yeast genes expression measures (log-ratios) with series length 24 from the cdc15 experiment.

Usage
data(cdc15)

Format
Matrix with 6178 rows and 24 columns. Some missing data. Rows and columns are labelled.

attr(*, "dimnames")=
List of 2
..$: chr [1:6178] "Y AL001C" "Y AL002W" "Y AL003W" "Y AL004W"

..$: chr [1:24] "cdc15.10" "cdc15.30" "cdc15.50" "cdc15.70"

Source
The data is extracted from the ExpressionSet of the R package yeastCC.

References

Examples
data(cdc15)
qqnorm(colMeans(cdc15, na.rm=TRUE))
qqnorm(rowMeans(cdc15, na.rm=TRUE))

Microarray time series experiment for yeast cell cycle from cdc28 experiment

Description
6,178 yeast genes expression measures (log-ratios) with series length 17 from the cdc28 experiment.
Usage

data(cdc28)

Format

Matrix with 6178 rows and 17 columns. Some missing data. Rows and columns are labelled. -
attr(*, "dimnames") = List of 2 ..$: chr [1:6178] "YAL001C" "YAL002W" "YAL003W" "YAL004W"
... ..$: chr [1:17] "cdc28.0" "cdc28.10" "cdc28.20" "cdc28.30" ...

Source

The data is extracted from the ExpressionSet of the R package yeastCC.

References

Examples

data(cdc28)
qqnorm(colMeans(cdc28, na.rm=TRUE))
qqnorm(rowMeans(cdc28, na.rm=TRUE))

fitHReg

Fits Three Parameter Harmonic Regression

Description

Estimates A, B and f in the harmonic regression, y(t)=mu+A*cos(2*pi*f*t)+B*sin(2*pi*f*t)+e(t).
The default algorithm is enumerative but an exact non-linear LS option is also provided.

Usage

fitHReg(y, t = 1:length(y), algorithm = c("enumerative", "exact"))

Arguments

y series.
t Time points.
algorithm method for the optimization
Details

Program is interfaced to C for efficient computation.

Value

Object of class "HReg" produced.

Author(s)

A.I. McLeod and Yuanhao Lai

Examples

```r
set.seed(193)
z <- simHReg(10, f=2.5/10, 1, 1)
ans <- fitHReg(z)
ans$freq #optimal frequency = 0.2376238

# ORF86806 in Cc dataset.
z <- c(0.42, 0.89, 1.44, 1.98, 2.21, 2.04, 0.82, 0.62, 0.56, 0.8, 1.33)
ans2 <- fitHReg(z, algorithm="exact")
sum(resid(ans2)^2) #0.2037463
ans1 <- fitHReg(z)
sum(resid(ans1)^2) #0.242072

# compare with nls()
t <- 1:length(z)
ans <- nls(z ~ mu+alpha*cos(2*pi*lambda*t+phi),
   start=list(mu=1, alpha=1, lambda=0.1, phi=pi))
coefficients(ans)
sum(resid(ans)^2) #0.2037
```
Arguments

\(z \)
Time series vector of length \(n \), say.

\(fr \)
Use "default" for usual Fourier frequencies, \(1/n, \ldots, \text{floor}(n/2)/n \). Set \(fr = N \), to evaluate the periodogram at the Fourier frequencies corresponding to a time series of length \(N \). Finally set \(fr \) to any desired set of frequencies. Note frequencies are in cycles per unit time sometimes called temporal frequency to distinguish from angular frequency. Both are widely used in time series.

method
Either periodogram or regression

Details

Uses FFT. So if the length of \(z \) is a highly composite number, the computation is very efficient. Otherwise the usual DFT is used.

Value

Periodogram evaluated at the Fourier frequencies or R-square.

Author(s)

A.I. McLeod and Yuanhao Lai

Examples

\begin{verbatim}
z <- sunspot.year
n <- length(z)
I <- pgram(z)
f <- I[,1]
I <- I[,2]
plot(f, I, xlab="f", ylab="f", type="l")
title(main="Periodogram for Annual Sunpots, 1700-1988")

z <- c(0.42, 0.89, 1.44, 1.98, 2.21, 2.04, 0.82, 0.62, 0.56, 0.8, 1.33)
fr <- (1:50)/101
pgram(z)
pgram(z, fr=101)
pgram(z, fr=fr)
pgram(z, method="regression")
pgram(z, method="regression", fr=101)
pgram(z, method="regression", fr=fr)
\end{verbatim}
Description
This function is used to test the existence of the periodicity for a short time series (length <= 100). Several methods based on periodograms are provided with the response surface method implemented for efficiently obtaining accurate p-values.

Usage
```r
testg(z, method = c("Fisher", "robust", "extended", "extendedRobust", "FisherRSR"), multiple = FALSE)
```

Arguments
- `z` A series or a matrix containing series as columns
- `method` The statistical test to be used. See details for more information.
- `multiple` Indicating whether `z` contains multiple series.

Details
The null hypothesis is set as no periodicities, H0: f=0. Descriptions of different test statistics (methods) are as follows:

- Fisher: The Fisher's g test statistic. The p-value is computed directly from the exact distribution.
- robust: The robust g test proposed in Ahdesmaki et al. (2005), where the p-value is computed by the response surface regression method.
- extended: The extended Fisher's g test statistic, which extends the Fisher's g test by enlarging the searching region of the frequency from the Fourier frequencies to be $E_n = j/101 | j = 1, \ldots, 50|adj/101 \geq 1/n$. The p-value is computed by the response surface regression method.
- extendedRobust: Extend the frequency searching region of the robust $E_n = j/101 | j = 1, \ldots, 50|adj/101 \geq 1/n$. The p-value is computed by the response surface regression method.
- FisherRSR: Only for experimental purposes, the Fisher's g test with p-value computed from the response surface regression method.

Value
Object of class "Htest" produced.
An object of class "Htest" is a list containing the following components:

- `obsStat` Vector containing the observed test statistics.
- `pvalue` Vector containing the p-values of the selected tests.
- `freq` Vector containing the estimated frequencies.
Author(s)

Yuanhao Lai and A.I. McLeod

References

See Also

ptestReg

Examples

Simulate the harmonic regression model with standard Gaussian error terms
set.seed(193)
Non-Fourier frequency
z <- simHReg(n = 14, f=2/10, A = 2, B = 1, model="Gaussian", sig=1)
ptestg(z,method="Fisher")
ptestg(z,method="robust")
ptestg(z,method="extended")
ptestg(z,method="extendedRobust")
ptestg(z,method="FisherRSR")

Performe tests on the alpha factor experiment
data(alpha)
Eliminate genes with missing observations
alpha.nonNA <- alpha[complete.cases(alpha),]
Using the multiple option to do the test for all the genes
Transpose the data set so that each column stands for a gene
alpha.nonNA <- t(alpha.nonNA)
result <- ptestg(alpha.nonNA, method = "extended",multiple=TRUE)
str(result)

The mvoitivating example: gene ORF06806 in Cc
data(Cc)
x <- Cc[which(rownames(Cc)=="ORF06806"),]
plot(1:length(x),x,type="b", main="ORF06806",
 xlab="time",ylab="Gene expression")
ptestg(x,method="Fisher") #Fail to detect the periodicity
ptestg(x,method="robust")
ptestg(x,method="extended")
Description

This function is used to test the existence of the periodicity for a short time series (length≤100). Likelihood ratio tests under the Gaussian or the Laplace assumptions are provided with the response surface method implemented for efficiently obtaining accurate p-values.

Usage

`ptestReg(z, method = c("LS", "L1"), multiple = FALSE)`

Arguments

- `z`: A series or a matrix containing series as columns.
- `method`: The statistical test to be used. See details for more information.
- `multiple`: Indicating whether `z` contains multiple series.

Details

The null hypothesis is set as no periodicities, $H_0: \phi = 0$. Descriptions of different test statistics (methods) are as follows:

- `LS`: The $-2 \log$ likelihood ratio test statistic based on the likelihood ratio test with normal noises, where the p-values are efficiently computed by the response surface method.
- `L1`: The $-2 \log$ likelihood ratio test statistic based on the likelihood ratio test with Laplace noises, where the p-values are efficiently computed by the response surface method.

Value

An object of class "Htest" produced.

An object of class "Htest" is a list containing the following components:

- `obsStat`: Vector containing the observed test statistics.
- `pvalue`: Vector containing the p-values of the selected tests.
- `freq`: Vector containing the estimated frequencies.

Author(s)

Yuanhao Lai and A.I. McLeod
References

See Also

fitHReg, ptestg

Examples

Simulate the harmonic regression model with standard Gaussian error terms
set.seed(193)
Non-Fourier frequency
z <- simHReg(n = 14, f=2/10, A = 2, B = 1, model ="Gaussian", sig=1)
ptestReg(z,method = "LS") #Normal likelihood ratio test
ptestReg(z,method = "L1") #Laplace likelihood ratio test
fitHReg(z, algorithm="exact") #the nls fitted result

Performe tests on the alpha factor experiment
data(alpha)
Eliminate genes with missing observations
alpha.nonNA <- alpha[complete.cases(alpha),]
Using the multiple option to do the test for all the genes
Transpose the data set so that each column stands for a gene
alpha.nonNA <- t(alpha.nonNA)
result <- ptestReg(alpha.nonNA, method = "LS",multiple=TRUE)
str(result)

The motvating example: gene ORF06806 in Cc
data(Cc)
x <- Cc[which(rownames(Cc)=="ORF06806"),]
plot(1:length(x),x,type="b", main="ORF06806",
 xlab="time",ylab="Gene expression")
ptestg(x,method="Fisher") #Fail to detect the periodicity
ptestReg(x,method="LS") #The periodicity is significantly not zero
ptestReg(x,method="L1") #The periodicity is significantly not zero
Description

Simulates a harmonic regression. Possible types of models are normal, t(5), Laplace, cubic and AR1.

Usage

```r
simHReg(n, f, A, B, model = c("Gaussian", "t5", "Laplace", "cubic", "AR1"),
phi = 0, sig = 1)
```

Arguments

- `n`: Length of series.
- `f`: Frequency.
- `A`: Cosine amplitude.
- `B`: Sine amplitude.
- `model`: The model used for generating the error term. See details.
- `phi`: Only used if AR1 error distribution is selected.
- `sig`: The standard error of the series.

Details

Generate a harmonic series y with length n, where $y_t = A \times \cos(2 \times \pi \times f \times t) + B \times \sin(2 \times \pi \times f \times t) + \text{sig} \times \epsilon_t$, $t = 1, \ldots, n$, and ϵ comes from one of the following specified distributions with mean 0 and standard error 1:

- **Gaussian**: A standard normal distribution (i.i.d.).
- **t5**: A t distribution with 5 degrees of freedom (i.i.d., standardized to mean 0 and variance 1).
- **Laplace**: A Laplace (double exponential) distribution (i.i.d., standardized to mean 0 and variance 1).
- **cubic**: A standard normal distribution for ϵ, but $y = y^3$ this time.
- **AR1**: An AR(1) series with autocorrelation paramater ϕ (standardized to mean 0 and variance 1).

Value

Vector of length n, simulated harmonic series.

Author(s)

A.I. McLeod and Yuanhao Lai

References

See Also

`fitHReg`, `ptestReg`

Examples

```r
# Simulate the harmonic regression model with standard Gaussian error terms
z <- simHReg(10, f=2/10, 1, 2, model="Gaussian", sig=1) # Fourier Frequency
plot(1:10,z,type="b")

# Simulate the AR(1) errors
z <- simHReg(10, f=0/10, 0, 0, model="AR1", phi=0.2, sig=1)
acf(z)
```
Index

*Topic datasets
 alpha, 2
 B1, 3
 B2, 4
 B3, 5
 Cc, 6
 cdc15, 7
 cdc28, 7
*Topic ts
 fitHReg, 8
 pgram, 9
 ptestg, 11
 ptestReg, 13
 simHReg, 14

alpha, 2
B1, 3
B2, 4
B3, 5
Cc, 6
cdc15, 7
cdc28, 7
fitHReg, 8, 14, 16
pgram, 9
ptestg, 11, 14
ptestReg, 12, 13, 16
simHReg, 14