Package ‘ptools’

October 14, 2022

Title Tools for Poisson Data
Version 1.0.1
Maintainer Andrew Wheeler <apwheele@gmail.com>
Description Functions used for analyzing count data, mostly crime counts. Includes checking difference in two Poisson counts (e-test), checking the fit for a Poisson distribution, small sample tests for counts in bins, Weighted Displacement Difference test (Wheeler and Ratcliffe, 2018) <doi:10.1186/s40163-018-0085-5>, to evaluate crime changes over time in treated/control areas. Additionally includes functions for aggregating spatial data and spatial feature engineering.
License MIT + file LICENSE
URL https://github.com/apwheele/ptools
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Imports partitions, sp, raster, igraph, RANN, spatstat.geom, spatstat.utils, rgeos, stats, methods
Depends R (>= 3.0.0)
VignetteBuilder knitr
NeedsCompilation no
Author Andrew Wheeler [aut, cre] (<https://orcid.org/0000-0003-2255-1316>)
Repository CRAN
Date/Publication 2022-07-21 14:40:02 UTC

R topics documented:

bisq_xy ... 2
check_pois .. 4
count_xy ... 5
bisq_xy

Bisquare weighted sum

Description

Given a base X/Y dataset, calculates bisquare weighted sums of points from feature dataset

Usage

```
bisq_xy(base, feat, bandwidth, weight = 1)
```

Arguments

- **base**: base dataset (e.g., gridcells), needs to be `SpatialPolygonsDataFrame`
- **feat**: feature dataset (e.g., another crime generator), needs to be `SpatialPointsDataFrame`
- **bandwidth**: distances above this value do not contribute to the bi-square weight
- **weight**: if 1 (default), does not use attribute weights, else pass in string that is the variable name for weights in `feat`
Details

This generates bi-square distance weighted sums of features within specified distance of the base centroid. Bisquare weights are calculated as:

\[w_{ij} = \left[1 - \left(\frac{d_{ij}}{b} \right)^2 \right]^2 \]

where \(d_{ij} \) is the Euclidean distance between the base point and and the feature point. If \(d < b \), then \(w_{ij} \) equals 0. These are then multiplied and summed so each base point gets a cumulative weighted sum. See the GWR book for a reference. Uses loops and calculates all pairwise distances, so can be slow for large base and feature datasets. Consider aggregating/weighting feature dataset if it is too slow. Useful for quantifying features nearby (Groff, 2014), or for egohoods (e.g. spatial smoothing of demographic info, Hipp & Boessen, 2013).

Value

A vector of bi-square weighted sums

References

See Also

dist_xy() for calculating distance to nearest
count_xy() for counting points inside polygon
kern_xy() for estimating gaussian density of points for features at base polygon xy coords
bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords
idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

Examples

data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,10000)
gr_nyc$bscafe <- bisq_xy(gr_nyc,nyc_cafe,12000)
check_pois
Checks the fit of a Poisson Distribution

Description

Provides a frequency table to check the fit of a Poisson distribution to empirical data.

Usage

```r
check_pois(counts, min_val, max_val, pred, silent = FALSE)
```

Arguments

- `counts`: vector of counts, e.g. c(0,5,1,3,4,6)
- `min_val`: scaler minimum value to generate the grid of results, e.g. 0
- `max_val`: scaler maximum value to generate the grid of results, e.g. max(counts)
- `pred`: can either be a scaler, e.g. mean(counts), or a vector (e.g. predicted values from a Poisson regression)
- `silent`: boolean, do not print mean/var stat messages, only applies when passing scaler for pred (default FALSE)

Details

Given either a scaler mean to test the fit, or a set of predictions (e.g. varying means predicted from a model), checks whether the data fits a given Poisson distribution over a specified set of integers. That is it builds a table of integer counts, and calculates the observed vs the expected distribution according to Poisson. Useful for checking any obvious deviations.

Value

A dataframe with columns

- `Int`, the integer value
- `Freq`, the total observed counts within that Integer value
- `PoisF`, the expected counts according to a Poisson distribution with mean/pred specified
- `ResidF`, the residual from `Freq - PoisF`
- `Prop`, the observed proportion of that integer (0-100 scale)
- `PoisD`, the expected proportion of that integer (0-100 scale)
- `ResidD`, the residual from `Prop - PoisD`
Examples

Example use for constant over the whole sample
set.seed(10)
lambda <- 0.2
x <- rpois(10000, lambda)
pfit <- check_pois(x, 0, max(x), mean(x))
print(pfit)
82% zeroes is not zero inflated -- expected according to Poisson!

Example use if you have varying predictions, eg after Poisson regression
n <- 10000
ru <- runif(n, 0, 10)
x <- rpois(n, lambda = ru)
check_pois(x, 0, 23, ru)

If you really want to do a statistical test of fit
chi_stat <- sum((pfit$Freq - pfit$PoisF)^2/pfit$PoisF)
df <- length(pfit$Freq) - 2
stats::dchisq(chi_stat, df) # p-value
I prefer evaluating specific integers though (e.g. zero-inflated, longer-tails, etc.)

If you want an example with real data, see the WaPo fatal officer involved shootings
w1 <- 'https://raw.githubusercontent.com/washingtonpost/
too long url!
w2 <- 'data-police-shootings/master/fatal-police-shootings-data.csv'
wapo_url <- paste0(w1, w2)
oid <- read.csv(wapo_url, stringsAsFactors = FALSE)
Now aggregating to count per day
oid$date_val <- as.Date(oid$date)
may be biased low if several recent days with 0
date_range <- paste0(seq(as.Date('2015-01-01'), max(oid$date_val), by='days'))
day_counts <- as.data.frame(table(factor(oid$date, levels=date_range)))
check_pois(day_counts$Freq, 0, max(day_counts$Freq)+1, mean(day_counts$Freq))

Example with varying predictions from a model
day_counts$wd <- weekdays(as.Date(day_counts$Var1))
mod <- stats::glm(Freq ~ as.factor(wd) - 1, family='poisson', data=day_counts)
lin_pred <- exp(predict(mod))
pfit_wd <- check_pois(day_counts$Freq, 0, 11, lin_pred)
print(pfit_wd)

\[
\text{count}_\text{xy} \quad \text{Count of points in polygon}
\]

Description

Given a base X/Y dataset, calculates number of feature points that fall inside
Usage

count_xy(base, feat, weight = 1)

Arguments

base base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame
feat feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame
weight if 1 (default), does not use weights, else pass in string that is the variable name for weights in feat

Details

This generates a count (or weighted count) of features inside of the base areas. Both should be projected in the same units. Uses sp::over() methods in the function.

Value

A vector of counts (or weighted sums)

References

See Also

dist_xy() for calculating distance to nearest
dcount_xy() for counting points within distance of base polygon
kern_xy() for estimating gaussian density of points for features at base polygon xy coords
bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords
idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

Examples

data(nyc_liq); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,5000)
gr_nyc$liq_cnt <- count_xy(gr_nyc,nyc_liq)

gr_nyc$table_cnt <- count_xy(gr_nyc,nyc_cafe,'SWC_TABLES')
head(gr_nyc@data)
sp::spplot(gr_nyc,zcol='liq_cnt')
dcount_xy

Count of points within distance of polygon

Description

Given a base X/Y dataset, calculates number of feature points that are within particular distance

Usage

dcount_xy(base, feat, d, weight = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame</td>
</tr>
<tr>
<td>feat</td>
<td>feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame</td>
</tr>
<tr>
<td>d</td>
<td>scaler distance to count (based on polygon boundary for base, not centroid)</td>
</tr>
<tr>
<td>weight</td>
<td>if 1 (default), does not use weights, else pass in string that is the variable name for weights in feat</td>
</tr>
</tbody>
</table>

Details

This generates a count (or weighted count) of features within specified distance of the base polygon border. Both should be projected in the same units. Uses raster::buffer() on feat dataset (which calls rgeos) and sp::over functions.

Value

A vector of counts (or weighted sums)

References

See Also

dist_xy() for calculating distance to nearest
count_xy() for counting points inside polygon
kern_xy() for estimating gaussian density of points for features at base polygon xy coords
bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords
idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords
Examples

```r
data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,6000)
gr_nyc$dcafe_8k <- dcount_xy(gr_nyc,nyc_cafe,8000)
gr_nyc$dtabl_5k <- dcount_xy(gr_nyc,nyc_cafe,5000,'SWC_TABLES')
head(gr_nyc@data)
sp::spplot(gr_nyc,zcol='dcafe_8k') #total tables within 8k feet of grid cell
```

```r
dist_xy
```

dist_xy

Distance to nearest based on centroid

Description

Given a base X/Y dataset, calculates distance to nearest for another feature X/Y dataset

Usage

```
dist_xy(base, feat, bxy = c("x", "y"), fxy = c("x", "y"))
```

Arguments

- `base` base dataset (eg gridcells)
- `feat` feature dataset (eg another crime generator)
- `bxy` vector of strings that define what the base xy fields are defined as, defaults `c('x', 'y')`
- `fxy` vector of strings that define what the base xy fields are defined as, defaults `c('x', 'y')`

Details

This generates a distance to nearest, based on the provided x/y coordinates (so if using polygons pass the centroid). This uses kd-trees from RANN, so should be reasonably fast. But I do no projection checking, that is on you. You should not use this with spherical coordinates. Useful for feature engineering for crime generators.

Value

A vector of distances from base dataset xy to the nearest feature xy

References

e_test

See Also

count_xy() for counting points inside of base polygon
dcount_xy() for counting points within distance of base polygon
kern_xy() for estimating gaussian density of points for features at base polygon xy coords
bisq_xy() for estimate bi-square kernel of points for features at base polygon xy coords
idw_xy() for estimate inverse distance weighted of points for features at base polygon xy coords

Examples

data(nyc_bor); data(nyc_cafe)
gr_nyc <- prep_grid(nyc_bor,5000,clip_level=0.3)
gr_nyc$dist_cafe <- dist_xy(gr_nyc,nyc_cafe)
head(gr_nyc@data)

sp::spplot(gr_nyc,zcol='dist_cafe')

e_test Poisson E-test

Description

Tests differences in two Poisson means or rates.

Usage

e_test(k1, k2, n1 = 1, n2 = 1, d = 0, eps = 1e-20, silent = FALSE)

Arguments

k1 scaler Poisson count
k2 scaler Poisson count
n1 scaler divisor for k1 (e.g. rate per unit time or per area), default 1
n2 scaler divisor for k2 (e.g. rate per unit time or per area), default 1
d scaler amends the null test by a constant amount, default 0
eps scaler where to terminate sum in testing larger deviations, default 1e-20
silent boolean if TRUE, does not print error messages
Details

This e-test tests the differences in two Poisson counts or rates. The null is more formally:

\[k_1/n_1 = k_2/n_2 + d \]

Note, I would be wary using the test for Poisson counts over 100 (the tail approximation in the sums will have issues, as the PMF is so spread out). (It is also the case with very large k's, e.g. \(e\text{-test}(4000, 4000) \) my function could run out of memory.) In that case may use the n arguments to make it a rate per some unit time (which can change the p-value, although for smaller counts/rates should be very close).

Value

A scaler p-value. Will return -1 if inputs don’t make sense and print an error message, e.g. \(e\text{-test}(0,0) \) is undefined and will return a -1.

References

See Also

\(wdd() \), can use that function for a normal based approximation to the difference in Poisson means as well as pre/post designs

Examples

For small N, changes in rates should result in same p-value minus floating point differences
\[e\text{-test}(3,0) \]
\[e\text{-test}(3,0,2,2) \]

Not defined
\[e\text{-test}(0,0) \] #returns -1 and prints warning

The same rates
\[e\text{-test}(20,10,4,2) \]
\[e\text{-test}(10,5,2,1) \] #not quite the same

Order of counts/rates should not matter
\[e\text{-test}(6,2) \] #second example from Krishnamoorthy article
\[e\text{-test}(2,6) \] #when d=0, can switch arguments and get the same p-value

These are not the same however, due to how the variance estimates work
\[e\text{-test}(3,2) \]
\[e\text{-test}(3,1,d=1) \]
hex_area

Get area of hexagon given length of side

Description

The length of the side is half of the length from vertex to vertex (so height in geom_hex).

Usage

hex_area(side)

Arguments

side scaler

Details

For use with ggplot and geom_hex binwidth arguments, which expects arguments in width/height. I want hexagons in maps to be a specific area. See this blog post for a specific use case with ggplot.

Value

A scaler for the width

See Also

hex_wd() for estimating the width given the height hex_dim() for estimating width/height given area

Examples

area_check <- 1000
wh <- hex_dim(area_check^2) # e.g. a square kilometer if spatial units are in meters
area <- hex_area(wh[1]/2) # inverse operation
all.equal(area_check,sqrt(area))
wi <- hex_wd(wh[1])
all.equal(wh[2],wi)
hex_dim

Get dimensions of hexagon given area

Description
Get dimensions of hexagon given area

Usage
hex_dim(area)

Arguments
area scaler

Details
For use with ggplot and geom_hex binwidth arguments, which expects arguments in width/height. I want hexagons in maps to be a specific area. See this blog post for a specific use case with ggplot.

Value
a vector with two elements, first element is the height (vertex to vertex), the second element is the width (side to side)

See Also
hex_wd() for estimating the width given the height hex_area() for estimating the area given side length

Examples
area_check <- 1000
wh <- hex_dim(area_check^2) #e.g. a square kilometer if spatial units are in meters
area <- hex_area(wh[1]/2) #inverse operation
all.equal(area_check,sqrt(area))
w1 <- hex_wd(wh[1])
all.equal(wh[2],w1)
hex_wd

Get width of hexagon given height

Description
Get width of hexagon given height

Usage
hex_wd(height)

Arguments
height scaler

Details
For use with ggplot and geom_hex binwidth arguments, which expects arguments in width/height. I want hexagons in maps to be a specific area. See this blog post for a specific use case with ggplot.

Value
A scaler for the width

See Also
hex_area() for estimating the area given side length hex_dim() for estimating width/height given area

Examples
area_check <- 1000
wh <- hex_dim(area_check^2) #e.g. a square kilometer if spatial units are in meters
area <- hex_area(wh[1]/2) #inverse operation
all.equal(area_check,sqrt(area))
wi <- hex_wd(wh[1])
all.equal(wh[2],wi)
idw_xy
Inverse distance weighted sums

Description

Given a base X/Y dataset, calculates clipped inverse distance weighted sums of points from feature dataset.

Usage

```r
idw_xy(base, feat, clip = 1, weight = 1)
```

Arguments

- `base` base dataset (e.g., gridcells), needs to be SpatialPolygonsDataFrame
- `feat` feature dataset (e.g., another crime generator), needs to be SpatialPointsDataFrame
- `clip` scaler minimum value for weight, default 1 (so weights cannot be below 0)
- `weight` if 1 (default), does not use weights, else pass in string that is the variable name for weights in `feat`

Details

This generates an inverse distance weighted sum of features within specified distance of the base centroid. Weights are clipped to never be below `clip` value, which prevents division by 0 (or division by a very small distance number) Uses loops and calculates all pairwise distances, so can be slow for large base and feature datasets. Consider aggregating/weighting feature dataset if it is too slow. Useful for quantifying features nearby (Groff, 2014), or for egohoods (e.g., spatial smoothing of demographic info, Hipp & Boessen, 2013).

Value

A vector of IDW weighted sums

References

See Also

- `dist_xy()` for calculating distance to nearest
- `count_xy()` for counting points inside polygon
- `kern_xy()` for estimating gaussian density of points for features at base polygon xy coords
- `bisq_xy()` to estimate bi-square kernel weights of points for features at base polygon xy coords
- `idw_xy()` to estimate inverse distance weights of points for features at base polygon xy coords
Examples

```r
data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,6000)
gr_nyc$idwcafe <- idw_xy(gr_nyc,nyc_cafe)

gr_nyc$idwtabl <- idw_xy(gr_nyc,nyc_cafe,weight="SWC_TABLES")
head(gr_nyc@data)
sp::spplot(gr_nyc,zcol="idwtabl") #inverse distance weighted tables
```

kern_xy

Kernel density of nearby areas

Description

Given a base X/Y dataset, calculates gaussian kernel density for nearby points in feat dataset

Usage

```r
kern_xy(base, feat, bandwidth, weight = 1)
```

Arguments

- **base**: base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame or SpatialPointsDataFrame
- **feat**: feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame
- **bandwidth**: scaler bandwidth for the normal KDE
- **weight**: if 1 (default), does not use weights, else pass in string that is the variable name for weights in feat

Details

This generates a density of nearby features at particular control points (specified by base). Useful for risk terrain style feature engineering given nearby crime generators. Loops through all pairwise distances (and uses dnorm()). So will be slow for large base + feature datasets (although should be OK memory wise). Consider aggregating/weighting data if feat is very large.

Value

A vector of densities (or weighted densities)

References

near_strings1

Strings of Near Repeats

Description

Identifies cases that are nearby each other in space/time

Usage

near_strings1(dat, id, x, y, tim, DistThresh, TimeThresh)

Arguments

dat data frame
id string for id variable in data frame (should be unique)
x string for variable that has the x coordinates
y string for variable that has the y coordinates
tim string for variable that has the time stamp (should be numeric or datetime)
DistThresh scaler for distance threshold (in whatever units x/y are in)
TimeThresh scaler for time threshold (in whatever units tim is in)

Details

This function returns strings of cases nearby in space and time. Useful for near-repeat analysis, or to identify potentially duplicate cases. This particular function is memory safe, although uses loops and will be approximately $O(n^2)$ time (or more specifically choose(n, 2)). Tests I have done on my machine 5k rows take only ~10 seconds, but ~100k rows takes around 12 minutes with this code.
Value

A data frame that contains the ids as row.names, and two columns:

- **CompId**, a unique identifier that lets you collapse original cases together
- **CompNum**, the number of linked cases inside of a component

References

See Also

`near_strings2()`, which uses kdtrees, so should be faster with larger data frames, although still may run out of memory, and is not 100% guaranteed to return all nearby strings.

Examples

```r
# Simplified example showing two clusters
s <- c(0,0,0,4,4)
ccheck <- c(1,1,1,2,2)
dat <- data.frame(x=1:5,y=0,
                  ti=s,
                  id=1:5)
res1 <- near_strings1(dat,
                      id="id",
                      x="x",
                      y="y",
                      ti="ti",2,1)
print(res1)

# Full nyc_shoot data with this function takes ~40 seconds
library(sp)
data(nyc_shoot)
nyc_shoot$id <- 1:nrow(nyc_shoot) # incident ID can have dups
mh <- nyc_shoot[nyc_shoot$BORO == "MANHATTAN",]
print(Sys.time())
res <- near_strings1(mh@data,id="id",x="XCOORD_CD",y="YCOORD_CD",
                    tim="OCCUR_DATE",DistThresh=1500,TimeThresh=3)
print(Sys.time()) # ~1 second on my machine
```

near_strings2

Strings of Near Repeats using KDtrees

Description

Identifies cases that are nearby each other in space/time

Usage

```r
near_strings2(dat, id, x, y, tim, DistThresh, TimeThresh, k = 300, eps = 1e-04)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>data frame</td>
</tr>
<tr>
<td>id</td>
<td>string for id variable in data frame (should be unique)</td>
</tr>
<tr>
<td>x</td>
<td>string for variable that has the x coordinates</td>
</tr>
<tr>
<td>y</td>
<td>string for variable that has the y coordinates</td>
</tr>
<tr>
<td>tim</td>
<td>string for variable that has the time stamp (should be numeric or datetime)</td>
</tr>
<tr>
<td>DistThresh</td>
<td>scaler for distance threshold (in whatever units x/y are in)</td>
</tr>
<tr>
<td>TimeThresh</td>
<td>scaler for time threshold (in whatever units tim is in)</td>
</tr>
<tr>
<td>k</td>
<td>the k for the max number of neighbors to grab in the nn2 function in RANN package</td>
</tr>
<tr>
<td>eps</td>
<td>the nn2 function returns <=, so to return less (like near_strings1()), needs a small fudge factor</td>
</tr>
</tbody>
</table>

Details

This function returns strings of cases nearby in space and time. Useful for near-repeat analysis, or to identify potentially duplicate cases. This particular function uses kdtrees (from the RANN library). For very large data frames, this will run quite a bit faster than near_strings1 (although still may run out of memory). And it is not 100% guaranteed to grab all of the pairs. Tests I have done on my machine ~100k rows takes around 2 minutes with this code.

Value

A data frame that contains the ids as row.names, and two columns:

- CompId, a unique identifier that lets you collapse original cases together
- CompNum, the number of linked cases inside of a component

References

See Also

near_strings1(), which uses loops but is guaranteed to get all pairs of cases and should be memory safe.

Examples

```r
# Simplified example showing two clusters
s <- c(0,0,0,4,4)
ccheck <- c(1,1,1,2,2)
dat <- data.frame(x=1:5,y=0,
                  ti=s,
                  id=1:5)
res1 <- near_strings2(dat,'id','x','y','ti',2,1)
```
```r
print(res1)

# This runs faster than near_strings1
library(sp)
nyc_shoot$id <- 1:nrow(nyc_shoot)  # incident ID can have dups
print(Sys.time())
res <- near_strings2(nyc_shoot@data, id='id', x='X_COORD_CD', y='Y_COORD_CD',
                    tim='OCCUR_DATE', DistThresh=1500, TimeThresh=3)
print(Sys.time())  # around 4 seconds on my machine
head(res)
```

nyc_bor
NYC Boroughs

Description

Spatial file for New York City Borough outlines without water areas

Usage

nyc_bor

Format

A SpatialPolygonsDataFrame object of the NYC Boroughs. This is projected (same coordinates as shootings). See the Bytes of the Big Apple for any details on the file.

Source

nyc_cafe
NYC Sidewalk Cafes

Description

Point locations for sidewalk cafes in NYC

Usage

nyc_cafe
Format

A SpatialPointsDataFrame with point locations Sidewalk cafes in NYC. Note currently includes only active license locations. Current N around 400 and none in Staten Island.

Source

nyc_liq NYC Alcohol Licenses

Description

Point locations for alcohol locations inside NYC boroughs

Usage

nyc_liq

Format

A SpatialPointsDataFrame with point locations for alcohol licenses inside of NYC. Note that some of these are not the actual sales place, but another address for the business. Currently over 18,000 addresses.

Source

nyc_shoot NYPD Open Data on Shootings

Description

Shootings recorded from the New York City Police Department from 2006 to current.

Usage

nyc_shoot

Format

A SpatialPointsDataFrame with currently over 20k rows and 21 fields, including date/time and address level geocoordinates for the event. Data from 2006 to currently. See the info on Socrata for the field name codebook.
Source

- https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Year-To-Date/-5ucz-vwe8 for current
- https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Historic/-833y-fsy8 for historical

Predictive Accuracy Index

Description

Given a set of predictions and observed counts, returns the PAI (predictive accuracy index), PEI (predictive efficiency index), and the RRI (recovery rate index).

Usage

```r
pai(dat, count, pred, area, other = c())
```

Arguments

- `dat` - data frame with the predictions, observed counts, and area sizes (can be a vector of ones)
- `count` - character specifying the column name for the observed counts (e.g. the out of sample crime counts)
- `pred` - character specifying the column name for the predicted counts (e.g. predictions based on a model)
- `area` - character specifying the column name for the area sizes (could also be street segment distances, see Drawve & Wooditch, 2019)
- `other` - vector of strings for any other column name you want to keep (e.g. an ID variable), defaults to empty `c()`

Details

Given predictions over an entire sample, this returns a dataframe with the sorted best PAI (sorted by density of predicted counts per area). PAI is defined as:

$$PAI = \frac{c_t/C}{a_t/A}$$

Where the numerator is the percent of crimes in cumulative t areas, and the denominator is the percent of the area encompassed. PEI is the observed PAI divided by the best possible PAI if you were a perfect oracle, so is scaled between 0 and 1. RRI is predicted/observed, so if you have very bad predictions can return Inf or undefined! See Wheeler & Steenbeek (2019) for the definitions of the different metrics. User note, PEI may behave funny with different sized areas.
Value

A dataframe with the columns:

- **Order**, The order of the resulting rankings
- **Count**, the counts for the original crimes you specified
- **Pred**, the original predictions
- **Area**, the area for the units of analysis
- **Cum*, the cumulative totals for Count/Pred/Area
- **PCum*, the proportion cumulative totals, e.g. CumCount/sum(Count)
- **PAI**, the PAI stat
- **PEI**, the PEI stat
- **RRI**, the RRI stat (probably should analyze/graph the log(RRI))

Plus any additional variables specified by other at the end of the dataframe.

References

See Also

`pai_summary()` for a summary table of metrics for multiple pai tables given fixed N thresholds

Examples

```r
# Making some very simple fake data
crime_dat <- data.frame(id=1:6, 
  obs=c(6,7,3,2,1,0), 
  pred=c(8,4,4,2,1,0))

crime_dat$const <- 1
p1 <- pai(crime_dat,'obs','pred','const')
print(p1)

# Combining multiple predictions, making
# A nice table
crime_dat$rand <- sample(crime_dat$obs,nrow(crime_dat),FALSE)

p2 <- pai(crime_dat,'obs','rand','const')
pai_summary(list(p1,p2),c(1,3,5),c('one','two'))
```
Summary Table for Multiple PAI Stats

Description
Takes a list of multiple PAI summary tables (for different predictions) and returns summaries at fixed area thresholds

Usage
pai_summary(pai_list, thresh, labs, wide = TRUE)

Arguments
- **pai_list**: list of data frames that have the PAI stats from the pai function
- **thresh**: vector of area numbers to select, e.g. 10 would select the top 10 areas, c(10,100) would select the top 10 and the top 100 areas
- **labs**: vector of characters that specifies the labels for each PAI dataframe, should be the same length as pai_list
- **wide**: boolean, if TRUE (default), returns data frame in wide format. Else returns summaries in long format

Details
Given predictions over an entire sample, this returns a dataframe with the sorted best PAI (sorted by density of predicted counts per area). PAI is defined as:

\[
PAI = \frac{c_t}{C} \cdot \frac{a_t}{A}
\]

Where the numerator is the percent of crimes in cumulative \(t \) areas, and the denominator is the percent of the area encompassed. PEI is the observed PAI divided by the best possible PAI if you were a perfect oracle, so is scaled between 0 and 1. RRI is predicted/observed, so if you have very bad predictions can return Inf or undefined! See Wheeler & Steenbeek (2019) for the definitions of the different metrics. User note, PEI may behave funny with different sized areas.

Value
A dataframe with the PAI/PEI/RRI, and cumulative crime/predicted counts, for each original table

References

See Also

\texttt{pai()} for a summary table of metrics for multiple pai tables given fixed N thresholds

Examples

\begin{verbatim}
Making some very simple fake data
crime_dat <- data.frame(id=1:6,
 obs=c(6,7,3,2,1,0),
 pred=c(8,4,4,2,1,0))
crime_dat$const <- 1
p1 <- pai(crime_dat,'obs','pred','const')
print(p1)

Combining multiple predictions, making
A nice table
crime_dat$rand <- sample(crime_dat$obs,nrow(crime_dat),FALSE)
p2 <- pai(crime_dat,'obs','rand','const')
pai_summary(list(p1,p2),c(1,3,5),c('one','two'))
\end{verbatim}

\texttt{pois_contour} \hspace{100pt} \textit{Checks the fit of a Poisson Distribution}

Description

Provides contours (for use in graphs) to show changes in Poisson counts in a pre vs post period.

Usage

\begin{verbatim}
pois_contour(
 pre_crime,
 post_crime,
 lev = c(-3, 0, 3),
 lr = 5,
 hr = max(pre_crime) * 1.05,
 steps = 1000
)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{pre_crime}, vector of crime counts in the pre period
 \item \texttt{post_crime}, vector of crime counts in the post period
 \item \texttt{lev}, vector of Poisson Z-scores to draw the contours at, defaults to \texttt{c(-3,0,3)}
 \item \texttt{lr}, scaler lower limit for where to draw the contour lines, defaults to 5
 \item \texttt{hr}, scaler upper limit for where to draw the contour lines, defaults to \texttt{max(pre_crime)*1.05}
 \item \texttt{steps}, scaler how dense to make the lines, defaults to 1000 steps
\end{itemize}
Details

Provides a set of contour lines to show whether increases/decreases in Poisson counts between two periods are outside of those expected by chance according to the Poisson distribution based on the normal approximation. Meant to be used in subsequent graphs. Note the approximation breaks down at smaller N values, so below 5 is not typically recommended.

Value

A dataframe with columns

- \(x \), the integer value
- \(y \), the y-value in the graph for expected changes (will not be below 0)
- \(\text{levels} \), the associated Z-score level

References

Examples

Example use with NYC Shooting Data pre/post Covid lockdowns
Prepping the NYC shooting data
data(nyc_shoot)
begin_date <- as.Date('03/01/2020', format="%m/%d/%Y")
nyc_shoot$Pre <- ifelse(nyc_shoot$OCCUR_DATE < begin_date,1,0)
nyc_shoot$Post <- nyc_shoot$Pre*-1 + 1
Note being lazy, some of these PCTs have changed over time
pct_tot <- aggregate(cbind(Pre,Post) ~ PRECINCT, data=nyc_shoot@data, FUN=sum)
cont_lines <- pois_contour(pct_totPre,pct_totPost)
Now making an ugly graph
sp <- split(cont_lines,cont_lines$levels)
plot(pct_totPre,pct_totPost)
for (s in sp){
 lines(sx,sy,lty=2)
}
Can see it is slightly overdispersed, but pretty close!
See https://andrewpwheeler.com/2021/02/02/the-spatial-dispersion-of-nyc-shootings-in-2020/
For a nicer example using ggplot

powalt

Description

A helper function to calculate power for different alternative distributions
Usage

powalt(SST, p_alt, a = 0.05)

Arguments

SST a small_samptest object created with the small_samptest function
p_alt vector of alternative probabilities to calculate power for
a scaler, alpha level for power estimate, default 0.05

Details

This construct a null distribution for small sample statistics for N counts in M bins. Example use cases are to see if a repeat offender have a proclivity to commit crimes on a particular day of the week (see the referenced paper). It can also be used for Benford’s analysis of leading/trailing digits for small samples.

Value

A PowerSmallSamp object with slots for:

• permutations, a dataframe that contains the exact probabilities and test statistic values for every possible permutation
• power, the estimated power of the scenario
• alternative, the alternative distribution of probabilities specified
• null, the null distribution (taken from the SST object)
• alpha, the specified alpha level

See Also

small_samptest() for generating the SST object needed to estimate the power

Examples

Counts for different days of the week
d <- c(3,1,2,0,0,0,0) #format N observations in M bins
res <- small_samptest(d=d,type="G")
Power if someone only commits crime on 4 days of the week
alt_p <- c(1/4,1/4,1/4,1/4,0,0,0)
rp <- powalt(res,alt_p) #need to use previously created SST object
print(rp)

Example for Benfords analysis
f <- 1:9
p_fd <- log10(1 + (1/f)) #first digit probabilities
#check data from Nigrini page 84
checks <- c(1927.48,27902.31,86241.90,72117.46,81321.75,97473.96,93249.11,89658.17,87776.89,92105.83,79949.16,87602.93,96879.27,91806.47,84991.67,90831.83,93766.67,88338.72,94639.49,83709.28,96412.21,88432.86,71552.16)
To make example run a bit faster
cHECKS <- checks[1:10]
extracting the first digits
FD <- substr(format(checks, trim=TRUE),1,1)
tot <- table(factor(FD, levels=paste(f))
resG <- small_samptest(d=tot, p=pfd, type="Chi")
Lets look at alt under equal probabilities (very conservative)
alt_equal <- rep(1/length(p_fd),length(p_fd))
powalt(resG, alt_equal)

prep_grid

Description

Creates vector grid cells over study area.

Usage

prep_grid(outline, size, clip_level = 0, point_over = NULL, point_n = 0)

Arguments

outline SpatialPolygon or SpatialPolygonDataFrame that defines the area to draw grid
cells over
size scaler for the size of the grid cells (one side), in whatever units the outline is in
clip_level , you can clip grid cells if they are not entirely inside the outlined area, defaults
to 0 so any cells at least touching are included
point_over default NULL, but can pass in SpatialPoints and will only include grid cells that
have at least one point
point_n default 0, only used if passing in point_over. Will return only grid cells with
greater than point_n points

Details

This generates a vector grid over the study area of interest. Intentionally working with vector data
for use with other feature engineering helper functions (that can pass in X/Y).

Value

A SpatialPolygonDataFrame object with columns

- id, integer id value (not the same as row.names!)
- x, x centroid of grid cell
- y, y centroid of grid cell
- cover, proportion that grid cell is covered by outline
- count, optional (only if you pass in point_over)
References

Examples

```r
library(sp) #for sp plot methods
# large grid cells
data(nyc_bor)
res <- prep_grid(nyc_bor,5000)
plot(nyc_bor)
plot(res,border='BLUE',add=TRUE)

# clipping so majority of grid is inside outline
res <- prep_grid(nyc_bor,2000,clip_level=0.5)
plot(nyc_bor)
plot(res,border='BLUE',add=TRUE)

# only grid cells that have at least one shooting
data(nyc_shoot)
res <- prep_grid(nyc_bor,2000,clip_level=0,nyc_shoot)
plot(nyc_bor)
plot(res,border='RED',add=TRUE)
```

`prep_hexgrid`
Creates hexagon grid cells over study area

Description

Creates hexagon grid cells of given area over particular study area.

Usage

```r
prep_hexgrid(outline, area, clip_level = 0, point_over = NULL, point_n = 0)
```

Arguments

- **outline**
 SpatialPolygon or SpatialPolygonDataFrame that defines the area to draw hex-grid cells over

- **area**
 scaler for the area of the grid cells in whatever units the outline is in

- **clip_level**
 you can clip grid cells if they are not entirely inside the outlined area, defaults to 0 so any cells at least touching are included. Specify as proportion (so should not be greater than 1!)
point_over default NULL, but can pass in SpatialPoints and will only include grid cells that have at least one point
point_n default 0, only used if passing in point_over. Will return only grid cells with greater than point_n points

Details

This generates a vector hex grid over the study area of interest. Hexgrids are sometimes preferred over square grid cells to prevent aliasing like artifacts in maps (runs of particular values).

Value

A SpatialPolygonDataFrame object with columns

- id, integer id value (not the same as row.names!)
- x, x centroid of grid cell
- y, y centroid of grid cell
- cover, optional (only if clip_level > 0) proportion that grid cell is covered by outline
- count, optional (only if you pass in point_over), total N of points over

References

Examples

```r
t library(sp) #for sp plot methods
# Base example, some barely touch
hnyc <- prep_hexgrid(nyc_bor, area=20000^2)
plot(hnyc)
plot(nyc_bor,border='red',add=TRUE)

# Example clipping hexagons that have dongle hexagons
hex_clip <- prep_hexgrid(nyc_bor, area=20000^2, clip_level=0.3)
plot(hex_clip,border='blue',add=TRUE)
plot(nyc_bor,border='red',add=TRUE)
summary(hnyc)

# Example clipping hexagons with no overlap crimes
hnyc <- prep_hexgrid(nyc_bor, area=4000^2, point_over=nyc_shoot)
plot(hnyc)
plot(nyc_shoot,pch='.' )
```
Description

Small sample test statistic for counts of N items in bins with particular probability.

Usage

small_samptest(d, p = rep(1/length(d), length(d)), type = "G", cdf = FALSE)

Arguments

d vector of counts, e.g. c(0,2,1,3,1,4,0) for counts of crimes in days of the week
p vector of baseline probabilities, defaults to equal probabilities in each bin
type string specifying "G" for likelihood ratio G stat (the default), "V" for Kuipers test (for circular data), "KS" for Komolgorov-Smirnov test, and "Chi" for Chi-square test
cdf if FALSE (the default) generates a new permutation vector (using exactProb), else pass it a final probability dataset previously created

Details

This construct a null distribution for small sample statistics for N counts in M bins. Example use cases are to see if a repeat offender have a proclivity to commit crimes on a particular day of the week (see the referenced paper). It can also be used for Benford’s analysis of leading/trailing digits for small samples. Referenced paper shows G test tends to have the most power, although with circular data may consider Kuiper’s test.

Value

A small_samptest object with slots for:

- CDF, a dataframe that contains the exact probabilities and test statistic values for every possible permutation
- probabilities, the null probabilities you specified
- data, the observed counts you specified
- test, the type of test conducted (e.g. G, KS, Chi, etc.)
- test_stat, the test statistic for the observed data
- p_value, the p-value for the observed stat based on the exact null distribution
- AggregateStatistics, here is a reduced form aggregate table for the CDF/p-value calculation

If you wish to save the object, you may want to get rid of the CDF part, it can be quite large. It will have a total of choose(n+n-1,m-1) total rows, where m is the number of bins and n is the total counts. So if you have 10 crimes in 7 days of the week, it will result in a dataframe with choose(7 + 10 - 1, 7-1), which is 8008 rows. Currently I keep the CDF part though to make it easier to calculate power for a particular test.
References

See Also

`powalt()` for calculating power of a test under alternative

Examples

Counts for different days of the week
d <- c(3,1,1,0,0,1,1) #format N observations in M bins
res <- small_samptest(d=d,type="G")
print(res)

Example for Benfords analysis
f <- 1:9
p_fd <- log10(1 + (1/f)) #first digit probabilities
#check data from Nigrini page 84
checks <- c(1927.48,27902.31,86241.90,72117.46,81321.75,97473.96,93249.11,89658.17,87776.89,92105.83,79949.16,87602.93,96879.27,91806.47,84991.67,90831.83,93766.67,88338.72,94639.49,83709.28,96412.21,88432.86,71552.16)
To make example run a bit faster
c1 <- checks[1:10]
#extracting the first digits
fd <- substr(format(c1,trim=TRUE),1,1)
tot <- table(factor(fd, levels=paste(f)))
resG <- small_samptest(d=tot,p=p_fd,type="Chi")
resG

#Can reuse the cdf table if you have the same number of observations
c2 <- checks[11:20]
fd2 <- substr(format(c2,trim=TRUE),1,1)
t2 <- table(factor(fd2, levels=paste(f)))
resG2 <- small_samptest(d=t2,p=p_fd,type="Chi",cdf=resG$CDF)

vor_sp

Voronoi tessellation from input points

Description

Given an outline and feature points, calculates Voronoi areas

Usage

`vor_sp(outline, feat)`
Arguments

- `outline`: object that can be coerced to a spatstat window via `as.owin` (so SpatialPolygonDataFrame, SpatialPolygon, owin)
- `feat`: A SpatialPointsDataFrame object (if duplicate X/Y coordinates will get errors)

Details

Outline should be a single polygon area. Uses spatstats dirichlet and window to compute the Voronoi tesselation. Will generate errors if feat has duplicate X/Y points. Useful to create areas for other functions, such as `dcount_xy()` or `count_xy()`. Common spatial unit of analysis used in crime research when using points (e.g. intersections and street midpoints).

Value

A SpatialPolygonsDataFrame object, including the dataframe for all the info in the original feat@data dataframe.

References

Examples

```r
library(sp) # for sample/coordinates
data(nyc_bor)
nyc_buff <- raster::buffer(nyc_bor,50000)
po <- sp::spsample(nyc_buff,50,"hexagonal")
poid <- 1:dim(coordinates(po))[1] # turns into SpatialDataFrame
vo <- vor_sp(nyc_buff,po)
plot(vo)
plot(nyc_buff,border='RED',lwd=3, add=TRUE)
```

wdd

Estimates the WDD Test

Description

Usage

wdd(
 control,
 treated,
 disp_control = c(0, 0),
 disp_treated = c(0, 0),
 time_weights = c(1, 1),
 area_weights = c(1, 1, 1, 1),
 alpha = 0.1,
 silent = FALSE
)

Arguments

control vector with counts in pre,post for control area
treated vector with counts in pre,post for treated area
disp_control vector with counts in pre,post for displacement control area (default c(0, 0))
disp_treated vector with counts in pre,post for displacement treated area (default c(0, 0))
time_weights vector with weights for time periods for pre/post (default c(1, 1))
area_weights vector with weights for different sized areas, order is c(control, treated, disp_control, disp_treated) (default c(1, 1, 1, 1))
alpha scaler alpha level for confidence interval (default 0.1)
silent boolean set to TRUE if you do not want anything printed out (default FALSE)

Details

The wdd (weighted displacement difference) test is an extensions to differences-in-differences when observed count data pre/post in treated control areas. The test statistic (ignoring displacement areas and weights) is:

$$WDD = \Delta T - \Delta Ct$$

where $\Delta T = T_1 - T_0$, the post time period count minus the pre time period count for the treated areas. And ditto for the control areas, Ct. The variance is calculated as:

$$T_1 + T_0 + Ct_1 + Ct_0$$

that is this test uses the normal approximation to the Poisson distribution to calculate the standard error for the WDD. So beware if using very tiny counts – this approximation is less likely to be applicable (or count data that is Poisson, e.g. very overdispersed).

This function also incorporates weights for different examples, such as differing pre/post time periods (e.g. 2 years in pre and 1 year in post), or different area sizes (e.g. a one square mile area vs a two square mile area). The subsequent test statistic can then be interpreted as changes per unit time or changes per unit area (e.g. density) or both per time and density.
Value

A length 9 vector with names:

- Est_Local and SE_Local, the WDD and its standard error for the local estimates
- Est_Displace and SE_Displace, the WDD and its standard error for the displacement areas
- Est_Total and SE_Total, the WDD and its standard error for the combined local/displacement areas
- Z, the Z-score for the total estimate
- and the lower and upper confidence intervals, LowCI and HighCI, for whatever alpha level you specified for the total estimate.

References

See Also

wdd_harm() for aggregating multiple WDD tests into one metric (e.g. based on crime harm weights)
e_test() for checking the difference in two Poisson means

Examples

No weights and no displacement
cont <- c(20,20); treat <- c(20,10)
wdd(cont,treat)

With Displacement stats
disptreat <- c(30,20); dispcont <- c(30,30)
wdd(cont,treat,dispcont,disptreat)

With different time periods for pre/post
wdd(cont,treat,time_weights=c(2,1))

With different area sizes
wdd(cont,treat,dispcont,disptreat,area_weights=c(2,1.5,3,3.2))

You can technically use this even without pre (so just normal based approximation)
just put in 0's for the pre data (so does not factor into variance)
res_test <- wdd(c(0,20),c(0,10))
twotail_p <- pnorm(res_test["Z"])*2
print(twotail_p) #-0.068
e-test is very similar
e_test(20,10) #-0.069
Description

Combines multiple weighted displacement difference tests into one final weighted harm metric.

Usage

wdd_harm(est, se, weight, alpha = 0.1, silent = FALSE)

Arguments

- `est`: vector with WDD estimates (e.g. difference in crime counts for treated vs controls)
- `se`: vector with standard errors for WDD estimates
- `weight`: vector with weights to aggregate results
- `alpha`: scaler alpha level for confidence interval (default 0.1)
- `silent`: boolean, do not print stat messages (default FALSE)

Details

This test combines multiple wdd estimates with different weights. Created to combine tests for crime harm weights.

Value

A length 5 vector with names:

- `HarmEst`, the combined harm estimate
- `SE_HarmEst` its standard error
- `Z`, the Z-score
- the lower and upper confidence intervals, `LowCI` and `HighCI`, for whatever alpha level you specified.

See Also

`wdd()` for estimating the individual wdd outcomes
Examples

Creating wdd tests for three different crimes and combining
rob <- wdd(c(20,20),c(20,10))
burg <- wdd(c(30,30),c(25,20))
theft <- wdd(c(80,60),c(70,20))
dat = data.frame(rbind(rob,burg,theft))
passing those columns now to the wdd_harm function
harm_weights <- c(10,5,1)
wdd_harm(datEst_Local,datSE_Local,harm_weights)
datasets
- nyc_bor, 19
- nyc_cafe, 19
- nyc_liq, 20
- nyc_shoot, 20
- bisq_xy, 2
- bisq_xy(), 3, 6, 7, 9, 14, 16
- check_pois, 4
- count_xy, 5
- count_xy(), 3, 7, 9, 14, 16
- dcount_xy, 7
- dcount_xy(), 6, 9
- dist_xy, 8
- dist_xy(), 3, 6, 7, 14, 16
- e_test, 9
- e_test(), 34
- hex_area, 11
- hex_area(), 12, 13
- hex_dim, 12
- hex_dim(), 11, 13
- hex_wd, 13
- hex_wd(), 11, 12
- idw_xy, 14
- idw_xy(), 3, 6, 7, 9, 14, 16
- kern_xy, 15
- kern_xy(), 3, 6, 7, 9, 14, 16
- near_strings1, 16
- near_strings1(), 18
- near_strings2, 17
- near_strings2(), 17
- nyc_bor, 19
- nyc_cafe, 19
- nyc_liq, 20
- nyc_shoot, 20
- pai, 21
- pai(), 24
- pai_summary, 23
- pai_summary(), 22
- pois_contour, 24
- powalt, 25
- powalt(), 31
- prep_grid, 27
- prep_hexgrid, 28
- small_samptest, 30
- small_samptest(), 26
- vor_sp, 31
- wdd, 32
- wdd(), 10, 35
- wdd_harm, 35
- wdd_harm(), 34