Package ‘pubh’

March 2, 2020

Title A Toolbox for Public Health and Epidemiology

Version 1.1.6

Maintainer Josie Athens <josie.athens@otago.ac.nz>

Description A toolbox for making R functions and capabilities more accessible to students and professionals from Epidemiology and Public Health related disciplines. Includes a function to report coefficients and confidence intervals from models using robust standard errors (when available), functions that expand ‘ggplot2’ plots and functions relevant for introductory papers in Epidemiology or Public Health. Please note that use of the provided data sets is for educational purposes only.

Depends R (>= 3.6.0), emmeans, ggformula, magrittr, stats

Imports car, dplyr, Epi, epiR, epitools, finalfit, ggplot2, Hmisc, lmtest, sandwich, sjlabelled, sjPlot, survival

Suggests broom, bookdown, GGally, ggeffects, ggpubr, ggsci, haven, ISwR, kableExtra, knitr, latex2exp, lme4, MASS, moonBook, mosaic, nlme, nnet, ordinal, psych, reshape2, rmarkdown, rms, scales, tidyverse

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr

URL https://github.com/josie-athens/pubh

BugReports https://github.com/josie-athens/pubh/issues

NeedsCompilation no

Author Josie Athens [aut, cre],
Frank Harell [ctb],
John Fox [ctb],
R-Core [ctb]

Repository CRAN

Date/Publication 2020-03-02 21:40:03 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>axis_labs</td>
<td>3</td>
</tr>
<tr>
<td>bar_error</td>
<td>4</td>
</tr>
<tr>
<td>Bernard</td>
<td>5</td>
</tr>
<tr>
<td>bland_altman</td>
<td>6</td>
</tr>
<tr>
<td>box_plot</td>
<td>7</td>
</tr>
<tr>
<td>Brenner</td>
<td>9</td>
</tr>
<tr>
<td>bst</td>
<td>9</td>
</tr>
<tr>
<td>chisq.fisher</td>
<td>10</td>
</tr>
<tr>
<td>coef_det</td>
<td>11</td>
</tr>
<tr>
<td>contingency</td>
<td>12</td>
</tr>
<tr>
<td>contingency2</td>
<td>13</td>
</tr>
<tr>
<td>cross_tab</td>
<td>14</td>
</tr>
<tr>
<td>diag_test</td>
<td>15</td>
</tr>
<tr>
<td>diag_test2</td>
<td>16</td>
</tr>
<tr>
<td>estat</td>
<td>17</td>
</tr>
<tr>
<td>expand_df</td>
<td>18</td>
</tr>
<tr>
<td>Fentress</td>
<td>19</td>
</tr>
<tr>
<td>freq_cont</td>
<td>19</td>
</tr>
<tr>
<td>gen_bst_df</td>
<td>20</td>
</tr>
<tr>
<td>geo_mean</td>
<td>21</td>
</tr>
<tr>
<td>gf_star</td>
<td>22</td>
</tr>
<tr>
<td>glm_coef</td>
<td>23</td>
</tr>
<tr>
<td>harm_mean</td>
<td>25</td>
</tr>
<tr>
<td>hist_norm</td>
<td>26</td>
</tr>
<tr>
<td>Hodgkin</td>
<td>27</td>
</tr>
<tr>
<td>inv_logit</td>
<td>28</td>
</tr>
<tr>
<td>jack_knife</td>
<td>29</td>
</tr>
<tr>
<td>Kirkwood</td>
<td>29</td>
</tr>
<tr>
<td>knife_mean</td>
<td>30</td>
</tr>
<tr>
<td>leverage</td>
<td>31</td>
</tr>
<tr>
<td>logistic_gof</td>
<td>31</td>
</tr>
<tr>
<td>Macmahon</td>
<td>32</td>
</tr>
<tr>
<td>mhor</td>
<td>33</td>
</tr>
<tr>
<td>multiple</td>
<td>34</td>
</tr>
<tr>
<td>odds_trend</td>
<td>35</td>
</tr>
<tr>
<td>Oncho</td>
<td>36</td>
</tr>
<tr>
<td>predict_inv</td>
<td>37</td>
</tr>
<tr>
<td>prop_or</td>
<td>38</td>
</tr>
<tr>
<td>pseudo_r2</td>
<td>38</td>
</tr>
<tr>
<td>qq_plot</td>
<td>39</td>
</tr>
<tr>
<td>rank_influence</td>
<td>40</td>
</tr>
<tr>
<td>rank_leverage</td>
<td>41</td>
</tr>
<tr>
<td>reference_range</td>
<td>42</td>
</tr>
<tr>
<td>rel_dis</td>
<td>42</td>
</tr>
<tr>
<td>Roberts</td>
<td>43</td>
</tr>
<tr>
<td>Rothman</td>
<td>44</td>
</tr>
</tbody>
</table>
axis_labs

Apply labels from variables to axis-labels in plots.

Description

axis_labs takes labels from labelled data to use them as axis-labels for plots generated by gformula or ggplot2.

Usage

axis_labs(object)

Arguments

object ggplot2 object (see examples).

Details

This function is helpful when data has been already labelled by sjlabelled. It retrieves variable labels and use them for plotting.

Value

A ggplot2 object.

Examples

data(kfm, package = "ISwR")
require(sjlabelled)
kfm = kfm %>%
 var_labels(
 dl.milk = 'Breast-milk intake (dl/day)',
 sex = 'Sex',
 weight = 'Child weight (kg)',
 ml.suppl = 'Milk substitute (ml/day)',
 mat.weight = 'Maternal weight (kg)',
 mat.height = 'Maternal height (cm)')
```

kfm %>%
gf_point(weight ~ dl.milk) %>%
gf_lm(col = 2, interval = "confidence", col = 2) %>%
axis_labs()

kfm %>%
box_plot(dl.milk ~ sex, fill='thistle', alpha = 0.8) %>%
axis_labs() %>%
gf_star(x1 = 1, y1 = 10.9, x2 = 2, y2 = 11, y3 = 11.2)
```

bar_error

Bar charts with error bars.

Description

`bar_error` constructs bar charts in with error bars showing 95 confidence intervals around mean values. High of bars represent mean values.

Usage

```r
bar_error(
  object = NULL,
  formula = NULL,
  data = NULL,
  fill = "indianred3",
  col = "black",
  alpha = 0.7,
  ...
)
```

Arguments

- **object**: When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
- **formula**: A formula with shape: `y ~ x` or `y ~ x | z` where `y` is a numerical variable and both `x` and `z` are factors.
- **data**: A data frame where the variables in the formula can be found.
- **fill**: Colour used to fill the bars.
- **col**: Colour used for the borders of the bars.
- **alpha**: Opacity of the colour fill (0 = invisible, 1 = opaque).
- **...**: Additional information passed to `gf_summary`.

Examples

```r
require(dplyr)
require(sjlabelled)
data(birthwt, package = "MASS")
birthwt <- birthwt %>%
  mutate(
    smoke = factor(smoke, labels = c("Non-smoker", "Smoker")),
    Race = factor(race > 1, labels = c("White", "Non-white"))
  ) %>%
  var_labels(
    bwt = 'Birth weight (g)',
    smoke = 'Smoking status'
  )

birthwt %>%
  bar_error(bwt ~ smoke, fill = 'plum3') %>%
  axis_labs()

birthwt %>%
  bar_error(bwt ~ smoke|Race, fill = 'plum3') %>%
  axis_labs()

birthwt %>%
  bar_error(bwt ~ smoke, fill = ~ Race) %>%
  axis_labs()

birthwt %>%
  bar_error(bwt ~ smoke, col = ~ Race, fill = 'white') %>%
gf_refine(ggsci::scale_color_jama()) %>%
axis_labs()
```

Bernard Survival of patients with sepsis.

Description

A randomised, double-blind, placebo-controlled trial of intravenous ibuprofen in 455 patients who had sepsis, defined as fever, tachycardia, tachypnea, and acute failure of at least one organ system.

Usage

Bernard

Format

A labelled tibble with 455 rows and 9 variables:

- **id** Patient ID
- **treat** Treatment, factor with levels "Placebo" and "Ibuprofen".
race Race/ethnicity, factor with levels "White", "African American" and "Other".

fate Mortality status at 30 days, factor with levels "Alive" and "Dead".

apache Baseline APACHE score.

o2del Oxygen delivery at baseline.

followup Follow-up time in hours.

temp0 Baseline temperature in centigrades.

temp10 Temperature after 36 hr in centigrades.

Source

Examples

data(Bernard)
require(moonBook)

mytable(fate ~ treat, data = Bernard, show.total = TRUE)

contingency(fate ~ treat, data = Bernard)

bland_altman Bland-Altman agreement plots.

Description

Bland-Altman agreement plots.

Usage

bland_altman(
 object = NULL,
 formula = NULL,
 data = NULL,
 pch = 20,
 size = 1,
 col = "black",
 transform = FALSE,
 ...
)

box_plot

Construct box plots.

Arguments

- **object**: When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

- **formula**: A formula with shape: \(y \sim x \) (see details).

- **data**: A data frame where the variables in the formula can be found.

- **pch**: Symbol for plotting data.

- **size**: Size of the symbol using to plot data.

- **col**: Colour used for the symbol to plot data.

- **transform**: Logical, should ratios instead of difference be used to construct the plot?

- **...**: Further arguments passed to `gf_point`.

Details

`bland_altman` constructs Bland-Altman agreement plots.

Variables in `formula` are continuous paired observations. When the distribution of the outcome is not normal, but becomes normal with a log-transformation, `bland_altman` can plot the ratio between outcomes (difference in the log scale) by using option `transform = TRUE`.

Examples

```r
data(wright, package = "ISwR")

wright %>%
bland_altman(mini.wright ~ std.wright, pch = 16,
ylab = "Large-mini expiratory flow rate (l/min)",
  xlab = "Mean expiratory flow rate (l/min)") %>%
gf_labs(y = "Large-mini expiratory flow rate (l/min)",
  x = "Mean expiratory flow rate (l/min)") %>%
gf_theme(theme = sjPlot::theme_sjplot2(base_size = 9))

data(Sharple)

Sharple %>%
bland_altman(srweight ~ weight, transform = TRUE) %>%
gf_labs(x = "Mean of weights (kg)", y = "Measured weight / Self-reported weight") %>%
gf_theme(theme = sjPlot::theme_sjplot2(base_size = 9))
```

Description

`box_plot` is a wrap function that calls `gf_boxplot` to construct more aesthetic box plots.
Usage

```r
box_plot(
  object = NULL,
  formula = NULL,
  data = NULL,
  fill = "indianred3",
  alpha = 0.7,
  outlier.shape = 20,
  outlier.size = 1,
  ...
)
```

Arguments

- **object**: When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
- **formula**: A formula with shape: `y ~ x` where `y` is a numerical variable and `x` is a factor.
- **data**: A data frame where the variables in the `formula` can be found.
- **fill**: Colour used for the box passed to `gf_boxplot`.
- **alpha**: Opacity (0 = invisible, 1 = opaque).
- **outlier.shape**: Shape (pch) used as symbol for the outliers.
- **outlier.size**: Size of the outlier symbol.
- **...**: Further arguments passed to `gf_boxplot`.

Examples

```r
data(kfm, package = "ISwR")
require(sjlabelled)
kfm = kfm %>%
  var_labels(
    dl.milk = 'Breast-milk intake (dl/day)',
    sex = 'Sex',
    weight = 'Child weight (kg)',
    ml.suppl = 'Milk substitute (ml/day)',
    mat.weight = 'Maternal weight (kg)',
    mat.height = 'Maternal height (cm')
  )

kfm %>%
  box_plot(dl.milk ~ sex, fill = 'thistle', alpha = 0.8) %>%
  axis_labs()

t.test(dl.milk ~ sex, data = kfm)

kfm %>%
  box_plot(dl.milk ~ sex, fill = 'thistle', alpha = 0.8) %>%
  axis_labs() %>%
  gf_star(1, 10.9, 2, 11, 11.4, legend = 'p = 0.035', size = 2.5)
```
Description

A data set containing the prevalence of Helicobacter pylori infection in preschool children according to parental history of duodenal or gastric ulcer.

Usage

Brenner

Format

A labelled tibble with 863 rows and 2 variables:

- **ulcer** History of duodenal or gastric ulcer, factor with levels "No" and "Yes".
- **infected** Infected with Helicobacter pylori, factor with levels "No" and "Yes".

Source

Examples

```r
data(Brenner)

Brenner %>%
cross_tab(infected ~ ulcer)

contingency(infected ~ ulcer, data = Brenner, method = "cross.sectional")
```

bst

Bootstrap Confidence Intervals.

Description

bst estimates confidence intervals around the **mean**, **median** or **geo_mean**.

Usage

```r
bst(x, stat = "mean", n = 1000, CI = 95, digits = 2)
```
chisq.fisher

Arguments

x A numerical variable. Missing observations are removed by default.
stat Statistic, either "mean" (default), "median" or "gmean" (geometric mean).
n Number of replicates for the bootstrap (n=1000 by default).
CI Confidence intervals (CI=95 by default).
digits Number of digits for rounding (default = 2).

Value

A data frame with the estimate and confidence intervals.

Examples

data(IgM, package = "ISwR")
bst(IgM, "median")
bst(IgM, "gmean")

chisq.fisher Internal test for chi-squared assumption. Fisher (2 by 2). If results = T, it fails

Description

chisq.fisher is an internal function called by contingency and contingency2 that uses the Fisher exact test if results from the assumptions for the chi-squared test fail.

Usage

chisq.fisher(tab)

Arguments

tab A numeric two by two table.
coef_det

Coefficient of determination.

Description

coef_det estimates the coefficient of determination (r-squared) from fitted (predicted) and observed values. Outcome from the model is assumed to be numerical.

Usage

coef_det(obs, fit)

Arguments

obs Vector with observed values (numerical outcome).
fit Vector with fitted (predicted) values.

Value

A scalar, the coefficient of determination (r-squared).

Examples

Linear regression:
Riboflavin <- seq(0, 80, 10)
OD <- 0.0125*Riboflavin + rnorm(9, 0.6, 0.03)
titration <- data.frame(Riboflavin, OD)
model1 <- lm(OD ~ Riboflavin, data = titration)
summary(model1)
coef_det(titration$OD, fitted(model1))

Non-linear regression:
library(nlme)
data(Puromycin)
mm.tx <- gnls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,
 subset = state == "treated")
summary(mm.tx)
coef_det(Puromycin$rate[1:12], mm.tx$fitted)
contingency

Measures of association from two by two contingency tables (formula).

Description

contingency is a wrap that calls epi.2by2 from package epiR.

Usage

contingency(
 object = NULL,
 formula = NULL,
 data = NULL,
 method = "cohort.count",
 ...
)

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
formula A formula with shape: outcome ~ exposure.
data A data frame where the variables in the formula can be found.
method A character string with options: "cohort.count", "cohort.time", "case.control", or "cross.sectional".
... Further arguments passed to epi.2by2.

Details

contingency uses a formula as a way to input variables.
contingency displays the contingency table as a way for the user to check that the reference levels in the categorical variables (outcome and exposure) are correct. Then displays measures of association (table from epi.2by2). It also reports either chi-squared test or exact Fisher’s test; contingency checks which one of the tests two is appropriate.

See Also

epi.2by2.

Examples

A case-control study on the effect of alcohol on oesophageal cancer.
Freq <- c(386, 29, 389, 171)
status <- gl(2, 1, 4, labels=c("Control", "Case"))
alcohol <- gl(2, 2, labels=c("0-39", "40+"))
cancer <- data.frame(Freq, status, alcohol)
contingency2

Measures of association from two by two contingency tables (direct input).

Description

contingency2 is a wrap that calls epi.2by2 from package epiR.

Usage

contingency2(aa, bb, cc, dd, ...)

Arguments

aa Number of cases where both exposure and outcome are present.
bb Number of cases where exposure is present but outcome is absent.
cc Number of cases where exposure is absent but outcome is present.
dd Number of cases where both exposure and outcome are absent.
...
Further arguments passed to epi.2by2.

See Also

epi.2by2.

Examples

A case-control study on the effect of alcohol on oesophageal cancer.
Freq <- c(386, 29, 389, 171)
status <- gl(2, 1, 4, labels=c("Control", "Case"))
alcohol <- gl(2, 2, labels=c("0-39", "40+"))
cancer <- data.frame(Freq, status, alcohol)
cancer <- expand_df(cancer)
contingency2(171, 389, 29, 386, method = "case.control")
cross_tab

Cross-tabulation.

Description

cross_tab is a wrapper to functions from package finalfit to construct tables of descriptive statistics stratified by levels of a categorical outcome.

Usage

cross_tab(object = NULL, formula = NULL, data = NULL, label = NULL, ...)

Arguments

object
When chaining, this holds an object produced in the earlier portions of the chain.
Most users can safely ignore this argument. See details and examples.

formula
A formula with shape: y ~ x, where y is a categorical outcome and x is the explanatory variable or a set of explanatory variables (see Details and Examples).

data
A data frame where the variables in the formula can be found.

label
A character, label used to name the first column of the data frame.

...
Additional arguments passed to summary_factorlist.

Details

Function cross_tab is a relatively simple wrapper to functions of package finalfit. Its main purpose is to construct contingency tables but it can also be used to report a table with descriptives for all variables as long as they are still stratified by the outcome. Please see examples to see how to list explanatory variables. For categorical explanatory variables, the function reports column percentages by default; row proportions can be obtained with additional argument: column = FALSE.
If data is labelled with sjlabelled, the label of the outcome (dependent) variable is used to name the first column of the resulting data frame; this name can be changed with argument label.

Value

A data frame with descriptive statistics stratified by levels of the outcome.

See Also

summary_factorlist, mytable.

Examples

data(Oncho)

A two by two contingency table:
Oncho %>%
cross_tab(mf ~ area)
Reporting row proportions (risks) instead of column proportions:
Oncho %>%
cross_tab(mf ~ area, column = FALSE)

Removing the name of the first column:
Oncho %>%
cross_tab(mf ~ area, label = "")

Contingency table for both sex and area of residence:
Oncho %>%
cross_tab(mf ~ sex + area, p = TRUE)

Descriptive statistics for all variables in the `Oncho` data set except `id`.
require(dplyr)
Oncho %>%
select(- id) %>%
cross_tab(mf ~ ., label = "Parameter")

diag_test

Diagnostic tests from variables.

Description

diag_test is a wrap function that calls epi.tests from package epiR. It computes sensitivity, specificity and other statistics related with screening tests.

Usage

diag_test(object = NULL, formula = NULL, data = NULL, ...)

Arguments

- **object**
 - When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
- **formula**
 - A formula with shape: outcome ~ predictor (see details).
- **data**
 - A data frame where the variables in the formula can be found.
- **...**
 - Further arguments passed to epi.tests.

Details

For the formula, the outcome is the gold standard and the explanatory variable is the new (screening) test. See examples.

See Also

epi.tests.
Examples

```r
## We compare the use of lung's X-rays on the screening of TB against the gold standard test.
Freq <- c(1739, 8, 51, 22)
BCG <- gl(2, 1, 4, labels=c("Negative", "Positive"))
Xray <- gl(2, 2, labels=c("Negative", "Positive"))
tb <- data.frame(Freq, BCG, Xray)
tb <- expand_df(tb)

tb %>%
  diag_test(BCG ~ Xray)
```

diag_test2

Diagnostic tests from direct input.

Description

diag_test2 is a wrap that calls epi.tests from package epiR. It computes sensitivity, specificity and other statistics related with screening tests.

Usage

diag_test2(aa, bb, cc, dd)

Arguments

- **aa**: Number of cases where both screening test and the gold standard are positive.
- **bb**: Number of cases where screening test is positive but gold standard is negative.
- **cc**: Number of cases where screening test is negative but gold standard is positive.
- **dd**: Number of cases where both screening test and the gold standard are negative.

Details

diag_test uses direct input variables.

See Also

epi.tests.

Examples

```r
## We compare the use of lung's X-rays on the screening of TB against the gold standard test.
diag_test2(22, 51, 8, 1739)
```
estat

Descriptive statistics for continuous variables.

Description

estat calculates descriptives of numerical variables.

Usage

estat(object = NULL, formula = NULL, data = NULL, digits = 2, label = NULL)

Arguments

- **object**: When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
- **formula**: A formula with shape: ~ x or ~ x|z (for groups).
- **data**: A data frame where the variables in the formula can be found.
- **digits**: Number of digits for rounding (default = 2).
- **label**: Label used to display the name of the variable (see examples).

Value

A data frame with descriptive statistics.

See Also

summary, mytable.

Examples

data(kfm, package = "ISwR")
require(sjlabelled)
kfm = kfm %>%
 var_labels(
 dl.milk = 'Breast-milk intake (dl/day)',
 sex = 'Sex',
 weight = 'Child weight (kg)',
 ml.suppl = 'Milk substitute (ml/day)',
 mat.weight = 'Maternal weight (kg)',
 mat.height = 'Maternal height (cm')
)

kfm %>%
estat(~ dl.milk)

kfm %>%
estat(~ dl.milk|sex, data = kfm)

kfm %>%
estat(~ weight|sex)
expand_df

Description

expand_df expands a data frame by a vector of frequencies.

Usage

expand_df(aggregate.data, index.var = "Freq", retain.freq = FALSE)

Arguments

aggregate.data A data frame.
index.var A numerical variable with the frequencies (counts).
retain.freq Logical expression indicating if frequencies should be kept.

Details

This is a generic function that resembles weighted frequencies in other statistical packages (for example, Stata). expand_df was adapted from a function developed by deprecated package epicalc (now package epiDisplay).

Value

An expanded data frame with replicates given by the frequencies.

Examples

Freq <- c(5032, 5095, 41, 204)
Mortality <- gl(2, 2, labels=c("No", "Yes"))
Calcium <- gl(2, 1, 4, labels=c("No", "Yes"))
anyca <- data.frame(Freq, Mortality, Calcium)
anyca
anyca.exp <- expand_df(anyca)
with(anyca.exp, table(Calcium, Mortality))
Description

Randomised control trial on children suffering from frequent and severe migraine. Control group represents untreated children. The active treatments were either relaxation alone or relaxation with biofeedback.

Usage

Fentress

Format

A labelled tibble with 18 rows and 2 variables:

- **pain**: Reduction in weekly headache activity expressed as percentage of baseline data.
- **group**: Group, a factor with levels "Untreated", "Relaxation" (alone) and "Biofeedback" (relaxation and biofeedback).

Source

Examples

data(Fentress)

Fentress %>%
 strip_error(pain ~ group) %>%
 axis_labs()

freq_cont

Relative and Cumulative Frequency.

Description

freq_cont tabulates a continuous variable by given classes.

Usage

freq_cont(x, bks, dg = 2)
Arguments

x A numerical (continuous) variable. Ideally, relatively long (greater than 100 observations).
bks Breaks defining the classes (see example).
dg Number of digits for rounding (default = 2).

Value

A data frame with the classes, the mid-point, the frequencies, the relative and cumulative frequencies.

Examples

data(IgM, package="ISwR")
Ab <- data.frame(IgM)
estat(~ IgM, data = Ab)
freq_cont(IgM, seq(0, 4.5, 0.5))

gen_bst_df

Generate a data frame with estimate and bootstrap CIs.

Description

gen_bst_df is a function called that generates a data frame with confidence intervals of a continuous variable by levels of one or two categorical ones (factors).

Usage

gen_bst_df(object = NULL, formula = NULL, data = NULL, stat = "mean", ...)

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
formula A formula with shape: y ~ x or y ~ x|z where y is a numerical variable and both x and z are factors.
data A data frame where the variables in the formula can be found.
stat Statistic used for bst.
... Passes optional arguments to bst.

Value

A data frame with the confidence intervals by level.
Examples

data(kfm, package = "ISwR")
require(sjlabelled)
kfm = kfm %>%
 var_labels(
 dl.milk = 'Breast-milk intake (dl/day)',
 sex = 'Sex',
 weight = 'Child weight (kg)',
 ml.suppl = 'Milk substitute (ml/day)',
 mat.weight = 'Maternal weight (kg)',
 mat.height = 'Maternal height (cm')
)

kfm %>%
gen_bst_df(dl.milk ~ sex)

data(birthwt, package = "MASS")
require(dplyr)
birthwt <- mutate(birthwt,
 smoke = factor(smoke, labels = c("Non-smoker", "Smoker")),
 Race = factor(race > 1, labels = c("White", "Non-white")))

birthwt = birthwt %>%
 var_labels(
 bwt = 'Birth weight (g)',
 smoke = 'Smoking status'
)

gen_bst_df(bwt ~ smoke|Race, data = birthwt)

geo_mean

Geometric mean.

Description

Geometric mean.

Usage

geo_mean(x)

Arguments

- **x**: A numeric variable with no negative values.

Value

A scalar, the calculated geometric mean.
Examples

```r
data(IgM, package = "ISwR")
Ab <- data.frame(IgM)
estat(~ IgM, data = Ab)
geo_mean(IgM)
```

gf_star

Annotating a plot to display differences between groups.

Description

gf_star Is a function used to display differences between groups (see details).

Usage

gf_star(fig, x1, y1, x2, y2, y3, legend = ".", ...)

Arguments

- `fig` A gformula object.
- `x1` Position in x for the start of the horizontal line.
- `y1` Position in y for the start of the vertical line, below to the horizontal line.
- `x2` Position in x for the end of the horizontal line.
- `y2` Position in y where the horizontal line is drawn.
- `y3` Position in y where the text is added.
- `legend` Character text used for annotating the plot.
- `...` Additional information passed to `gf_text`.

Details

This function draws an horizontal line from coordinate (x1, y2) to coordinate (x2, y2). Draws vertical lines below the horizontal line, towards data, from (x1, y1) to (x1, y2) and from (x2, y1) to (x2, y2). Finally, adds text above the horizontal line, at the mid point between x1 and x2. See examples.

Examples

```r
data(kfm, package = "ISwR")
require(sjlabelled)
kfm = kfm %>%
  var_labels(
    dl.milk = 'Breast-milk intake (dl/day)',
    sex = 'Sex',
    weight = 'Child weight (kg)',
    ml.suppl = 'Milk substitute (ml/day)',
    mat.weight = 'Maternal weight (kg)',
```
glm_coef

mat.height = 'Maternal height (cm)'

kfm %>%
 box_plot(dl.milk ~ sex, fill='thistle', alpha = 0.8) %>%
 axis_labs() %>%
 gf_star(x1 = 1, y1 = 10.9, x2 = 2, y2 = 11, y3 = 11.2)

kfm %>%
 box_plot(dl.milk ~ sex, fill='thistle', alpha = 0.8) %>%
 axis_labs() %>%
 gf_star(1, 10.9, 2, 11, 11.4, legend = 'p = 0.035', size = 2.5)

data(energy, package = "ISwR")
energy = energy %>%
 var_labels(
 expend = 'Energy expenditure (MJ/day)',
 stature = 'Stature'
)

energy %>%
 strip_error(expend ~ stature, col = 'red') %>%
 axis_labs() %>%
 gf_star(1, 13, 2, 13.2, 13.4, "**")

glm_coef

Table of coefficients from generalised linear models.

Description

`glm_coef` displays estimates with confidence intervals and p-values from generalised linear models (see Details).

Usage

```r
glm_coef(
  model,
  digits = 2,
  alpha = 0.05,
  labels = NULL,
  se_rob = TRUE,
  type = "cond",
  exp_norm = FALSE
)
```

Arguments

- `model` A model from any of the classes listed in the details section.
- `digits` A scalar, number of digits for rounding the results (default = 2).
alpha Significant level (default = 0.05) used to calculate confidence intervals.
labels An optional character vector with the names of the coefficients (including intercept).
se_rob Logical, should robust errors be used to calculate confidence intervals? (default = TRUE).
type Character, either "cond" (condensed) or "ext" (extended). See details.
exp_norm Logical, should estimates and confidence intervals should be exponentiated? (for family == "gaussian").

Details

glm_coef recognises objects (models) from the following classes: clm, clogit, coxph, gee, glm, glmerMod, lm, lme, multinom, negbin, polr and surveg

For models from logistic regression (including conditional logistic, ordinal and multinomial), Poisson or survival analysis, coefficient estimates and corresponding confidence intervals are automatically exponentiated (back-transformed).

By default, glm_coef uses robust standard errors for calculating confidence intervals.

glm_coef can display two different data frames depending on the option of type, for type type = "cond" (the default), glm_coef displays the standard table of coefficients with confidence intervals and p-values; for type = "ext", glm_coef displays each number in a different column and includes standard errors.

Please read the Vignette on Regression for more details.

Value

A data frame with estimates, confidence intervals and p-values from glm objects.

Examples

```r
## Continuous outcome.
data(birthwt, package = "MASS")
require(dplyr)
birthwt <- mutate(birthwt,
    smoke = factor(smoke, labels = c("Non-smoker", "Smoker")),
    Race = factor(race > 1, labels = c("White", "Non-white")))

model_norm <- glm(bwt ~ smoke + race, data = birthwt)
glm_coef(model_norm)

model_norm %>%
glm_coef(labels=c("Constant", "Smoker vs Non-smoker", "Non-white vs White"))

## Logistic regression.
data(diet, package = "Epi")
model_binom <- glm(chd ~ fibre, data = diet, family = binomial)
model_binom %>%
glm_coef(labels = c("Constant", "Fibre intake (g/day)")))```
model_binom %>%
glm_coef(labels = c("Constant", "Fibre intake (g/day)"), type = "ext")

## Poisson regression.
library(MASS)
data(quine)
levels(quine$Eth) <- list(White = "N", Aboriginal = "A")
levels(quine$Sex) <- list(Male = "M", Female = "F")
model_pois <- glm(Days ~ Eth + Sex + Age, family = poisson, data = quine)

model_pois %>%
  glm_coef()

deviance(model_pois) / df.residual(model_pois) # to check for overdispersion

model_negbin <- glm.nb(Days ~ Eth + Sex + Age, data = quine)
unadj <- glm_coef(model_negbin,
  labels=c("Constant",
           "Race: Aboriginal/White",
           "Sex: Female/Male",
           "F1/Primary",
           "F2/Primary",
           "F3/Primary"))
unadj # Not-adjusted for multiple comparisons

## For more examples, please read the Vignette on Regression.

---

**harm_mean**

*Harmonic mean.*

**Description**

Harmonic mean.

**Usage**

`harm_mean(x)`

**Arguments**

- `x` A numeric variable with no zero values.

**Value**

A scalar, the calculated harmonic mean.
Examples

data(IgM, package = "ISwR")
Ab <- data.frame(IgM)
estat(~ IgM, data = Ab)
harm_mean(IgM)

hist_norm

Histogram with Normal density curve.

Description

hist_norm constructs histograms and adds corresponding Normal density curve.

Usage

hist_norm(
  object = NULL,
  formula = NULL,
  data = NULL,
  bins = 20,
  fill = "indianred3",
  color = "black",
  alpha = 0.4,
  ...
)

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

formula

A formula with shape: y ~ y | x where y is a numerical variable and x is a factor.

data

A data frame where the variables in the formula can be found.

bins

Number of bins of the histogram.

fill

Colour to fill the bars of the histogram.

color

Colour used for the border of the bars.

alpha

Opacity (0 = invisible, 1 = opaque).

... Further arguments passed to gf_dhistogram.
Examples

```r
require(dplyr)
require(sjlabelled)
data(birthwt, package = "MASS")
birthwt <- birthwt %>%
mutate(
 smoke = factor(smoke, labels = c("Non-smoker", "Smoker")),
 Race = factor(race > 1, labels = c("White", "Non-white"))
) %>%
var_labels(
 bwt = "Birth weight (g)",
 smoke = "Smoking status"
)
birthwt %>%
 hist_norm(~ bwt, alpha = 0.7, bins = 20, fill = "cadetblue") %>%
 axis_labs()
birthwt %>%
 hist_norm(~ bwt | smoke, alpha = 0.7, bins = 20, fill = "cadetblue") %>%
 axis_labs()
```

Description

Hodgkin T-cell counts from Hodgkin’s disease patients.

Number of CD4+ T-cells and CD8+ T-cells in blood samples from patients in remission from Hodgkin’s disease or in remission from disseminated malignancies.

Usage

Hodgkin

Format

A labelled tibble with 40 rows and 3 variables:

- **CD4** Concentration of CD4+ T-cells (cells / mm^3).
- **CD8** Concentration of CD8+ T-cells (cells / mm^3).
- **Group** Group, factor with levels "Non-Hodgkin" and "Hodgkin".

Source


inv_logit

Inversion of logit

Description

inv_logit Calculates the inverse of the logit (probability in logistic regression)

Usage

inv_logit(x)

Arguments

x Numerical value used to compute the inverse of the logit.
### jack_knife

*Ranks leverage observations from Jackknife method.*

**Description**

`jack_knife` Ranks the squared differences between mean values from Jackknife analysis (arithmetic mean estimated by removing one observation at a time) and the original mean value.

**Usage**

```
jack_knife(x)
```

**Arguments**

- `x` A numeric variable. Missing values are removed by default.

**Value**

Data frame with the ranked squared differences.

**See Also**

- `rank_leverage`

**Examples**

```r
x <- rnorm(10, 170, 8)
x
mean(x)
jack_knife(x)

x <- rnorm(100, 170, 8)
mean(x)
head(jack_knife(x))
```

---

### Kirkwood

*Body weight and plasma volume.*

**Description**

Body weight and plasma volume in eight healthy men.

**Usage**

Kirkwood
Format

A labelled data frame with 8 rows and 3 variables:

- **subject**: Subject ID.
- **weight**: Body weight in kg.
- **volume**: Plasma volume in litres.

Source


Examples

```r
data(Kirkwood)

Kirkwood %>%
gg_point(volume ~ weight) %>%
gg lm(col = "indianred3", interval = "confidence", fill = "indianred3") %>%
axis_labs()
```

---

knife_mean

Jackknife for means.

Description

knife_mean is an internal function. Calculates arithmetic means by removing one observation at a time.

Usage

```r
knife_mean(x)
```

Arguments

- **x**: A numerical variable. Missing values are removed for the mean calculation.

Value

A vector with the mean calculations.

Examples

```r
x <- rnorm(10, 170, 8)
x
mean(x)
knife_mean(x)
```
**leverage**

* Description

leverage is an internal function called by `rank_leverage`.

* Usage

```r
leverage(x)
```

* Arguments

  * `x` A numeric variable. Missing values are removed by default.

* Details

Estimates the leverage of each observation around the arithmetic mean.

* Value

Variable with corresponding leverage estimations

* Examples

```r
x <- rnorm(10, 170, 8)
x
mean(x)
leverage(x)
rank_leverage(x)
```

**logistic_gof**

* Description

logistic_gof performs the Hosmer and Lemeshow test to test the goodness of fit of a logistic regression model. This function is part of `residuals.lrm` from package `rms`.

* Usage

```r
logistic_gof(model)
```

* Arguments

  * `model` A logistic regression model object.
Author(s)
Frank Harell, Vanderbilt University <f.harrell@vanderbilt.edu>

References

Examples
```r
data(diet, package = "Epi")
model <- glm(chd ~ fibre, data = diet, family = binomial)
glm_coef(model, labels = c("Constant", "Fibre intake (g/day)"))
logistic_gof(model)
```

Description
An international case-control study to test the hypothesis that breast cancer is related to the age that a woman gives childbirth.

Usage

```r
Macmahon
```

Format
A labelled tibble with 185 rows and 2 variables:

- **cancer** Diagnosed with breast cancer, a factor with levels "No" and "Yes".
- **age** Age mother gives childbirth, factor with levels "<20", "20-24", "25-29", "30-34" and ">34".

Source

Examples
```r
data(Macmahon)
Macmahon %>%
cross_tab(cancer ~ age)

odds_trend(cancer ~ age, data = Macmahon)$df
odds_trend(cancer ~ age, data = Macmahon)$fig
mhor

Mantel-Haenszel odds ratio.

Description

mhor computes odds ratios by levels of the stratum variable as well as the Mantel-Haenszel pooled odds ratio. The test for effect modification (test for interaction) is also displayed.

Usage

```r
mhor(object = NULL, formula = NULL, data = NULL)
```

Arguments

- **object**: When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
- **formula**: A formula with shape: outcome ~ stratum/exposure.
- **data**: A data frame containing the variables used in `formula`.

Value

Odds ratios with 95% confidence intervals by levels of stratum. The Mantel-Haenszel pooled OR and the test for effect modification is also reported.

See Also

- `mh`

Examples

```r
data(oswego, package = "epitools")
require(dplyr)
require(sjlabelled)
oswego <- oswego %>%
  mutate(
    ill = factor(ill, labels = c("No", "Yes")),
    sex = factor(sex, labels = c("Female", "Male")),
    chocolate.ice.cream = factor(chocolate.ice.cream, labels = c("No", "Yes"))
  ) %>%
  var_labels(
    ill = "Developed illness",
    sex = "Sex",
    chocolate.ice.cream = "Consumed chocolate ice cream"
  )

require(moonBook)
mytable(ill ~ sex + chocolate.ice.cream, data = oswego, show.total = TRUE)

oswego %>%
mhor(ill ~ sex/chocolate.ice.cream)
```
multiple
Multiple comparisons with plot.

Description

multiple displays results from post-doc analysis and constructs corresponding plot.

Usage

```r
multiple(model, formula, adjust = "mvt", digits = 2)
```

Arguments

- `model`: A fitted model supported by emmeans, such as the result of a call to `aov`, `lm`, `glm`, etc.
- `formula`: A formula with shape: `~ y` or `~ y|x` (for interactions). Where `y` is the term of the model that on which comparisons are made and `x` is a term interacting with `y`.
- `adjust`: Method to adjust CIs and p-values (see details).
- `digits`: Number of digits for rounding (default = 2).

Details

The default adjusting method is "mvt" which uses the multivariate t distribution. Other options are: "bonferroni", "holm", "hochberg", "tukey" and "none".

Value

A list with objects: `df` A data frame with adjusted p-values, `fig_ci` a plot with confidence intervals, `fig_pval` a plot comparing adjusted p-values.

See Also

`emmeans`, `pwpp`.

Examples

```r
data(birthwt, package = "MASS")
birthwt$race <- factor(birthwt$race, labels = c("White", "African American", "Other"))

model_1 <- aov(bwt ~ race, data = birthwt)
multiple(model_1, ~ race)$df
multiple(model_1, ~ race)$fig_ci %>%
gf_labs(y = 'Race', x = 'Birth weight (g)')
multiple(model_1, ~ race)$fig_pval %>%
gf_labs(y = 'Race')
```
odds_trend

Function to calculate OR using Wald CI, and plot trend.

Description
odds_trend calculates the odds ratio with confidence intervals (Wald) for different levels (three or more) of the exposure variable, constructs the corresponding plot and calculates if the trend is significant or not.

Usage
odds_trend(formula, data, angle = 45, hjust = 1, ...)

Arguments
- formula: A formula with shape: outcome ~ exposure.
- data: A data frame where the variables in the formula can be found.
- angle: Angle of for the x labels (default = 45).
- hjust: Horizontal adjustment for x labels (default = 1).
- ...: Passes optional arguments to oddsratio.

Details
odds_trend is a wrap function that calls oddsratio from package epitools.

Value
A list with components df a data frame with the results and fig corresponding plot.

See Also
- epitools::oddsratio
- oddsratio.

Examples
A cross-sectional study looked at the association between obesity and a biopsy resulting from mammography screening.
Freq <- c(3441, 34, 39137, 519, 20809, 280, 12419, 196, 11882, 199)
Biopsy <- gl(2, 1, 10, labels = c("No", "Yes"))
Weight <- gl(5, 2, 10, labels = c("Underweight", "Normal", "Over (11-24%)", "Over (25-39%)", "Over (> 39%)"))
breast <- data.frame(Freq, Biopsy, Weight)
breast

breast <- expand_df(breast)
Oncho

require(sjlabelled)

breast = var_labels(breast,
 Weight = 'Weight group'
)

odds_trend(Biopsy ~ Weight, data = breast)$df
odds_trend(Biopsy ~ Weight, data = breast)$fig

Oncho

Onchocerciasis in Sierra Leone.

Description

Study of onchocerciasis ("river blindness") in Sierra Leone, in which subjects were classified according to whether they lived in villages in savannah or rainforest area.

Usage

Oncho

Format

A labelled tibble with 1302 rows and 7 variables:

- **id** Subject ID.
- **mf** Infected with Onchocerciasis volvulus, factor with levels "Not-infected" and "Infected".
- **area** Area of residence, factor with levels "Savannah" and "Rainforest".
- **agegrp** Age group in years, factor with levels "5-9", "10-19", "20-39" and "40+".
- **sex** Subject sex, factor with levels "Male" and "Female".
- **mfload** Microfilariae load.
- **lesions** Severe eye lesions, factor with levels "No" and "Yes".

Source

Examples

data(Oncho)

odds_trend(mf ~ agegrp, data = Oncho)$df
odds_trend(mf ~ agegrp, data = Oncho)$fig
predict_inv

Given y solve for x in a simple linear model.

Description

predict_inv Calculates the value the predictor x that generates value y with a simple linear model.

Usage

predict_inv(model, y)

Arguments

model A simple linear model object (class lm).
y A numerical scalar, the value of the outcome for which we want to calculate the predictor x.

Value

The estimated value of the predictor.

Examples

Spectrophotometry example. Titration curve for riboflavin (nmol/ml). The sample has an absorbance
of 1.15. Aim is to estimate the concentration of riboflavin in the sample.

Riboflavin <- seq(0, 80, 10)
OD <- 0.0125 * Riboflavin + rnorm(9, 0.6, 0.03)
titration <- data.frame(Riboflavin, OD)

require(sjlabelled)
titration <- titration %>%
 var_labels(
 Riboflavin = "Riboflavin (nmol/ml)",
 OD = "Optical density"
)

titration %>%
gf_point(OD ~ Riboflavin) %>%
gf_smooth(col = 'indianred3', se = TRUE, lwd = 0.5, method = 'loess') %>%
axis_labs()

Model with intercept different from zero:
model <- lm(OD ~ Riboflavin, data = titration)
glm_coef(model)
predict_inv(model, 1.15)
prop_or

Proportion, p1 from proportion p2 and OR.

Description

prop_or is a simple function to calculate a proportion, from another proportion and the odds ratio between them.

Usage

```r
prop_or(p2, or)
```

Arguments

- `p2`
The value of a proportion in the unexposed group (p2).
- `or`
The odds ratio of p1/p2.

Value

p1, the proportion in the exposed group (p1).

Examples

```r
flu <- matrix(c(20, 80, 220, 140), nrow = 2)
colnames(flu) <- c("Yes", "No")
rownames(flu) <- c("Vaccine", "Placebo")
flu
```

```r
or <- (20 * 140) / (80 * 220)
p2 <- 80 / 220
prop_or(p2 = p2, or = or)
20 / 240
```

pseudo_r2

Pseudo R2 (logistic regression)

Description

Pseudo R2 (logistic regression) pseudo_r2 Calculates R2 analogues (pseudo R2) of logistic regression.

Usage

```r
pseudo_r2(model)
```
Arguments

model A logistic regression model.

Details

pseudo_r2 calculates three pseudo R2 of logistic regression models: 1) Nagelkerke, @0 Cox and Snell, 3) Hosmer and Lemeshow.

Value

A data frame with the calculated pseudo R2 values.

Examples

data(Oncho)
model_oncho <- glm(mf ~ area, data = Oncho, binomial)
glm_coef(model_oncho, labels = c("Constant", "Area (rainforest/savannah)"))
pseudo_r2(model_oncho)

qq_plot

Quantile-quantile plots against the standard Normal distribution.

Description

qq_plot constructs quantile-quantile plots against the standard normal distribution (also known as quantile-normal plots).

Usage

qq_plot(
 object = NULL,
 formula = NULL,
 data = NULL,
 pch = 20,
 col = "indianred3",
 ylab = NULL,
 ...
)

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

formula A formula with shape: ~ x or ~ x|z where x is a numerical variable and z is a factor.

data A data frame where the variables in the formula can be found.

pch Point character passed to gf_qq.
rank_influence

- **col**: Colour of the reference line, passed to `gf_line`.
- **ylab**: Optional character passed as label for the y-axis.
- **...**: Further arguments passed to `gf_qq`.

Examples

```r
data(kfm, package = "ISwR")
require(sjlabelled)
kfm = kfm %>%
  var_labels(
    dl.milk = 'Breast-milk intake (dl/day)',
    sex = 'Sex',
    weight = 'Child weight (kg)',
    ml.suppl = 'Milk substitute (ml/day)',
    mat.weight = 'Maternal weight (kg)',
    mat.height = 'Maternal height (cm')
  )
kfm %>%
  qq_plot(~ dl.milk) %>%
  axis_labs()

qq_plot(~ dl.milk|sex, data = kfm) %>%
  axis_labs()
```

Description

`rank_influence` calculates influence measures of each data observation on models and then ranks them.

Usage

```r
rank_influence(model)
```

Arguments

- **model**: A generalised linear model object.

Details

`rank_influence` is a wrap function that calls `influence.measures`, ranks observations on their significance influence on the model and displays the 10 most influential observations (if they are significant).
rank_leverage

See Also

influence.measures.

Examples

data(diet, package = "Epi")
model <- glm(chd ~ fibre, data = diet, family = binomial)
rank_influence(model)

rank_leverage

Ranks observations by leverage.

Description

rank_leverage ranks observations by their leverage (influence) on the arithmetic mean.

Usage

`rank_leverage(x)`

Arguments

x
A numeric variable. Missing values are removed by default.

Value

A data frame ranking observations by their leverage around the mean.

See Also

jack_knife.

Examples

```r
x <- rnorm(10, 170, 8)
x
mean(x)
rank_leverage(x)
```

```r
x <- rnorm(100, 170, 8)
mean(x)
head(rank_leverage(x))
```
reference_range
Reference range (reference interval).

Description

`reference_range` estimates the reference range (reference interval) of a numerical variable.

Usage

```r
reference_range(avg, std)
```

Arguments

- `avg`
 The arithmetic mean (a scalar numerical value).

- `std`
 The standard deviation (a scalar numerical value).

Details

The reference range assumes normality and represents the limits that would include 95 observations.

Value

A data frame with the reference range limits.

Examples

```r
x <- rnorm(100, 170, 8)
round(mean(x), 2)
round(sd(x), 2)
round(reference_range(mean(x), sd(x)), 2)
```

rel_dis
Relative Dispersion.

Description

Calculates the coefficient of variation (relative dispersion) of a variable. The relative dispersion is defined as the standard deviation over the arithmetic mean.

Usage

```r
rel_dis(x)
```

Arguments

- `x`
 A numerical variable. NA's observations are removed by default.
Value

The coefficient of variation (relative dispersion).

Examples

```r
height <- rnorm(100, 170, 8)
rel_dis(height)
```

Description

A clinical trial on the value of extracorporeal membrane oxygenation for term neonates with severe respiratory failure. RCT compares active treatment against conventional management.

Usage

Roberts

Format

A labelled tibble with 185 rows and 2 variables:

- **emo** Extracorporeal membrane oxygenation treatment, factor with levels "No" and "Yes".
- **survived** One year survival, factor with levels "No" and "Yes".

Source

Examples

```r
data(Roberts)
Roberts %>%
cross_tab(survived ~ emo, column = FALSE)
```
Description

A case-control study of oral contraceptives and stroke in young women with presence or absence of hypertension. Cases represent thrombotic stroke and controls are hospital controls. The group of no hypertension includes normal blood pressure (<140/90 mm Hg) and borderline hypertension (140-159/90-94 mm Hg). Hypertension group includes moderate hypertension (160-179/95-109 mm Hg) and severe hypertension (180+/110+ mm Hg). This data has been used as an example of join exposure by Rothman for measuring interactions (see examples).

Usage

Rothman

Format

A labelled tibble with 477 rows and 3 variables:

stroke Thrombotic stroke, factor with levels "No" and "Yes".
oc Current user of oral contraceptives, factor with levels "Non-user" and "User".
ht Hypertension, factor with levels "No" (<160/95 mm Hg) and "Yes".

Source

Examples

data(Rothman)
cross_tab(stroke ~ oc + ht, data = Rothman)
mhor(stroke ~ ht/oc, data = Rothman)

Model with standard interaction term:
model1 <- glm(stroke ~ ht*oc, data = Rothman, family = binomial)
glm_coef(model1)

Model considering join exposure:
Rothman$join <- 0
Rothman$join[Rothman$oc == "Non-user" & Rothman$ht == "Yes"] <- 1
Rothman$join[Rothman$oc == "User" & Rothman$ht == "No"] <- 2
Rothman$join[Rothman$oc == "User" & Rothman$ht == "Yes"] <- 3
Rothman$join <- factor(Rothman$join, labels=c("Unexposed", "Hypertension", "OC user", "User Non-Hypertension")

Oral contraceptives and stroke.
require(sjlabelled)
Rothman$join <- set_label(Rothman$join, label = "Exposure")
cross_tab(stroke ~ join, data = Rothman)
model2 <- glm(stroke ~ join, data = Rothman, family = binomial)
glm_coef(model2)
odds_trend(stroke ~ join, data = Rothman)$df
odds_trend(stroke ~ join, data = Rothman)$fig

round_pval

Rounding p-values.

Description

round_pval is an internal function called by glm_coef to round p-values from model coefficients.

Usage

round_pval(pval)

Arguments

pval vector of p-values, numeric.

Sandler

Passive smoking in adulthood and cancer risk.

Description

A case-control study to investigate the effects of passive smoking on cancer. Passive smoking was defined as exposure to the cigarette smoke of a spouse who smoked at least one cigarette per day for at least 6 months.

Usage

Sandler

Format

A labelled tibble with 998 rows and 3 variables:

- **passive** Passive smoker, factor with levels "No" and "Yes".
- **cancer** Diagnosed with cancer, factor with levels "No" and "Yes".
- **smoke** Active smoker, factor with levels "No" and "Yes".
Source

Examples

data(Sandler)

Sandler %>%
cross_tab(cancer ~ passive)
cross_tab(cancer ~ passive + smoke, data = Sandler)
mhor(cancer ~ smoke/passive, data = Sandler)

Description

Data on measured and self-reported weight from 40–50 year old participants in the 1989/1990 Life In New Zealand Survey.

Usage

Sharples

Format

A tibble with 343 rows and 4 variables:

srweight Self-reported weight in kg.
weight Measured weight in kg.
srbmi Body mass index calculated from self-reported weight and self-reported height in kg/m^2.
mbmi Body mass index calculated from measured weight and measured height in kg/m^2.

Source

Examples

Sharples %>%
 bland_altman(srweight ~ weight, transform = TRUE) %>%
 gf_labs(x = "Mean of weights (kg)", y = "Measured weight / Self-reported weight") %>%
 gf_theme(theme = sjPlot::theme_sjplot2(base_size = 9))
Description

ss_jk is an internal function called by jackknife. It calculates the squared difference of a numerical variable around a given value (for example, the mean).

Usage

ss_jk(obs, stat)

Arguments

obs A numerical vector with no missing values (NA's).
stat The value of the statistic that is used as a reference.

Value

The squared difference between a variable and a given value.

Examples

```r
x <- rnorm(10, 170, 8)
xmean(x)
ss_jk(x, mean(x))
jack_knife(x)
```

stats_quotes

Internal function to calculate descriptive statistics.

Description

stats_quotes is an internal function called by estat.

Usage

stats_quotes(x, data2, digits = 2)

Arguments

x a numeric variable
data2 A data frame where x can be found.
digits Number of digits for rounding.
strip_error

Strip plots with error bars.

Description

`strip_error` constructs strip plots with error bars showing 95 confidence intervals around mean values.

Usage

```r
strip_error(
  object = NULL,
  formula = NULL,
  data = NULL,
  pch = 20,
  size = 0.6,
  alpha = 0.7,
  col = "indianred3",
  ...
)
```

Arguments

- **object**: When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
- **formula**: A formula with shape: `y ~ x` or `y ~ x | z` where `y` is a numerical variable and both `x` and `z` are factors.
- **data**: A data frame where the variables in the `formula` can be found.
- **pch**: Point character passed to `gf_point` or `gf_jitter`.
- **size**: Size of the symbol (pch) for representing data values.
- **alpha**: Opacity of the symbol (0 = invisible, 1 = opaque).
- **col**: A colour or formula used for mapping colour.
- **...**: Additional information passed to `gf_jitter` or `gf_point`.

Examples

```r
data(energy, package="ISwR")
require(sjlabelled)
energy = energy %>%
  var_labels(
    expend = 'Energy expenditure (MJ/day)',
    stature = 'Stature'
  )

energy %>%
  strip_error(expend ~ stature, col = 'red') %>%
```
Thall

RCT on the treatment of epilepsy.

Description

Randomised control trial of an antiepileptic drug (prograbide), in which the number of seizures of 59 patients at baseline and other four follow-up visits were recorded.

Usage

Thall
Format

A tibble with 59 rows and 8 variables:

- **id**: Subject ID.
- **treat**: Treatment, factor with levels "Control" and "Prograbide".
- **base**: Number of seizures at baseline.
- **age**: Age in years at baseline.
- **y1**: Number of seizures at year one follow-up.
- **y2**: Number of seizures at year two follow-up.
- **y3**: Number of seizures at year three follow-up.
- **y4**: Number of seizures at year four follow-up.

Source

Examples

data(Thall)

c1 <- cbind(Thall[, c(1:5)], count = Thall$y1)[, c(1:4, 6)]
c2 <- cbind(Thall[, c(1:4, 6)], count = Thall$y2)[, c(1:4, 6)]
c3 <- cbind(Thall[, c(1:4, 7)], count = Thall$y3)[, c(1:4, 6)]
c4 <- cbind(Thall[, c(1:4, 8)], count = Thall$y3)[, c(1:4, 6)]
epilepsy <- rbind(c1, c2, c3, c4)

require(lme4)
model_glmer <- glmer(count ~ treat + base + I(age - mean(age, na.rm = TRUE)) +
 (1|id), data = epilepsy, family = poisson)
glm_coef(model_glmer, labels = c("Treatment (Prograbide/Control)",
 "Baseline count", "Age (years)"))

Tuzson Peak knee velocity in walking at flexion and extension.

Description

Data of peak knee velocity in walking at flexion and extension in studies about functional performance in cerebral palsy.
Vanderpump

Usage

Tuzson

Format

A labelled tibble with 18 rows and 2 variables:

flexion Peak knee velocity in gait: flexion (degree/s).

extension Peak knee velocity in gait: extension (degree/s).

Source

Examples

data(Tuzson)
Tuzson %>%
gf_point(flexion ~ extension) %>%
axis_labs()
cor.test(~ flexion + extension, data = Tuzson)

Vanderpump

Description

Usage

Vanderpump

Format

A labelled tibble with 1314 rows and 3 variables:

vstatus Vitality status, factor with levels "Alive" and "Death".

smoker Smoking status, factor with levels "Non-smoker" and "Smoker".

agegrp Age group, factor with levels "18-44", "45-64" and "64+".
Source

Examples

data(Vanderpump)

Vanderpump %>%
cross_tab(vstatus ~ .)
mhor(vstatus ~ agegrp/smoker, data = Vanderpump)
Index

Topic datasets
- Bernard, 5
- Brenner, 9
- Fentress, 19
- Hodgkin, 27
- Kirkwood, 29
- Macmahon, 32
- Oncho, 36
- Roberts, 43
- Rothman, 44
- Sandler, 45
- Sharples, 46
- Thall, 49
- Tuzson, 50
- Vanderpump, 51

- axis_labs, 3
- bar_error, 4
- Bernard, 5
- bland_altman, 6
- box_plot, 7
- Brenner, 9
- bst, 9, 20

- chisq.fisher, 10
- coef_det, 11
- contingency, 12
- contingency2, 13
- cross_tab, 14

- diag_test, 15
- diag_test2, 16

- emmeans, 34
- epi.2by2, 12, 13
- epi.tests, 15, 16
- estat, 17
- expand_df, 18

- Fentress, 19

- freq_cont, 19
- gen_bst_df, 20
- geo_mean, 9, 21
- gf_boxplot, 7, 8
- gf_dhistogram, 26
- gf_jitter, 48
- gf_line, 40
- gf_point, 7, 48
- gf_qq, 39, 40
- gf_star, 22
- gf_summary, 4
- gf_text, 22
- glm_coef, 23

- harm_mean, 25
- hist_norm, 26
- Hodgkin, 27

- influence.measures, 40, 41
- inv_logit, 28

- jack_knife, 29, 41, 47

- Kirkwood, 29
- knife_mean, 30

- leverage, 31
- logistic_gof, 31

- Macmahon, 32
- mean, 9
- median, 9
- mh, 33
- mhor, 33
- multiple, 34
- mytable, 14, 17

- odds_trend, 35
- oddsratio, 35
- Oncho, 36

53
predict_inv, 37
prop_or, 38
pseudo_r2, 38
pwpp, 34

qq_plot, 39

rank_influence, 40
rank_leverage, 29, 31, 41
reference_range, 42
rel_dis, 42
Roberts, 43
Rothman, 44
round_pval, 45

Sandler, 45
Sharples, 46
ss_jk, 47
stats_quotes, 47
strip_error, 48
summary, 17
summary_factorlist, 14

Thall, 49
Tuzson, 50

Vanderpump, 51