Package ‘pvLRT’

March 7, 2023

Title Likelihood Ratio Test-Based Approaches to Pharmacovigilance
Version 0.5.1
Maintainer Saptarshi Chakraborty <chakra.saptarshi@gmail.com>
Date 2023-03-06
Description A suite of likelihood ratio test based methods to use in pharmacovigilance. Contains various testing and post-processing functions.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Imports stats, methods, utils, magrittr (>= 2.0.0), progress, data.table, bit64, glue, RColorBrewer, ggplot2, ggfittext
Depends R (>= 3.6.0)
Suggests furrr, plotly, patchwork
BugReports https://github.com/c7rishi/pvLRT/issues
NeedsCompilation no
Author Saptarshi Chakraborty [aut, cre], Marianthi Markatou [aut], Anran Liu [ctb]
Repository CRAN
Date/Publication 2023-03-06 23:30:02 UTC

R topics documented:

 pvLRT-package .. 2
 all.equal.pvlrt .. 2
 as.matrix.pvlrt .. 3
 convert_raw_to_contin_table ... 4
 extract_AE_names .. 7
 extract_lrstat_matrix ... 8
pvLRT-package

pvLRT: An R package implementing various Likelihood Ratio Test-based approaches to pharmacovigilance

Description

pvLRT is an R package that implements a suite of likelihood ratio test based methods to use in pharmacovigilance. It can handle adverse events data on several simultaneous drugs, with possibly zero inflated report counts. Several testing and post-processing functions are implemented.

all.equal.pvlrt

Test if two pvlrt objects are (Nearly) Equal

Description

Test if two pvlrt objects are (Nearly) Equal

Usage

S3 method for class 'pvlrt'
all.equal(target, current, ...)

as.matrix.pvlrt

Arguments
- `target`: First `pvlrt` object (output of `pvlrt`).
- `current`: Second `pvlrt` object.
- `...`: Arguments passed to `all.equal.default`.

Details
Compares all values and attributes of target and current `pvlrt` objects except running times. See `all.equal.default` for details on the generic function.

See Also
- `all.equal.default`

Description
Casting a `pvlrt` object as a matrix of log LR statistics

Usage
```r
## S3 method for class 'pvlrt'
as.matrix(x, ...)
```

Arguments
- `x`: a `pvlrt` object; an output of function `pvlrt()`.
- `...`: other input parameters. Currently unused.

Value
Returns a matrix with the same dimensions as the input contingency table in the original `pvlrt` call, with each cell providing the corresponding value of the observed log-likelihood ratio test statistic.

See Also
- `pvlrt`
Examples

```r
# 500 bootstrap iterations (nsim) in the example below
# are for quick demonstration only --
# we recommended setting nsim to 10000 (default) or bigger

test1 <- pvlrt(statin46, nsim = 500)
as.matrix(test1)
```

convert_raw_to_contin_table

Convert raw AE-Drug incidence data into a contingency table

Description

Convert raw AE-Drug incidence data into a contingency table

Usage

```r
convert_raw_to_contin_table(
  rawdata,
  Drug_col_name = "DRUG",
  AE_col_name = "AE",
  id_col_name = "CASEID",
  count_col_name = "COUNT",
  aggregated = FALSE,
  create_other_Drug_col = FALSE,
  other_Drug_excludes = NULL,
  other_Drug_colname = "Other_Drug",
  create_other_AE_row = FALSE,
  other_AE_excludes = NULL,
  other_AE_rowname = "Other_AE",
  ...
)
```

Arguments

- **rawdata**: a data.frame or an object that can be converted to a data.frame. Must contain 3 columns (i) DRUG: the drug names/labels, (ii) AE: the AE names, and either (iii) CASEID: case ids corresponding to each combination of AE and DRUG, (if aggregated is FALSE), or (iii') COUNT: the total number of incidences of each AE and DRUG combination (if aggregated is TRUE). If these columns are named differently in rawdata, supply the appropriate column names through Drug_col_name, AE_col_name, id_col_name and count_col_name.
- **Drug_col_name**, **AE_col_name**, **id_col_name**, **count_col_name**: Drug, AE, case id and count column names in rawdata. Defaults to DRUG, AE, CASEID and COUNT.
convert_raw_to_contin_table

aggregated boolean. Has the incidences been already aggregated/summarized into counts in rawdata? If TRUE then the COUNT column is used to produce the output contingency table. If FALSE (default) incidences are first aggregated into counts before converting to contingency tables.

create_other_Drug_col boolean. Add a column in the contingency table for "Other Drugs"? This column plays the role of a "baseline" group of drugs that typically do not indicate an adverse event association with the signal of interest. Care should be taken while determining which drugs to include in this group; See Ding et al (2020) for guidance.

other_Drug_excludes character vector cataloging Drugs that are NOT to be included in the column for Other Drugs. If NULL (default) then no Drugs are included in Other Drugs (i.e., other_Drug_excludes contains all Drugs in the raw data). Ignored if create_other_Drug_col = FALSE.

other_Drug_colname character. Row name for the "Other Drug" column created. Ignored if create_other_Drug_col = FALSE.

create_other_AE_row boolean. Add a row in the contingency table for "Other AEs"? This can aid computation in situations where there are certain AEs of primary interest. See other_AE_excludes for details on how to specify the "Other AE" row.

other_AE_excludes character vector cataloging AEs that are NOT to be included in the row for Other AEs. If NULL (default) then no AEs are included in Other AEs (i.e., other_AE_excludes contains all AEs in the raw data). Ignored if create_other_AE_row = FALSE.

other_AE_rowname character. Row name for the "Other AE" row created. Defaults to "Other AE". Ignored if create_other_AE_row = FALSE.

... unused.

Details

This is a convenience function that creates a contingency table cataloging counts of AE-Drug incidences from a raw Drug/AE incidence data frame. It accepts both raw incidence data (each row is one incidence of a Drug-AE combination, indexed by case ids) and summarized count data (each row catalogs the total counts of incidences of each Drug-AE pair). The output is a matrix (contingency table) enumerating total count of cases for each pair of AE (along the rows) and drug (along the columns) with appropriately specified row and column names, and can be passed to a pvlrt() call. See the examples for more details.

The output can be fed into pvlrt or its wrappers as contin_table

References

Examples

convert to contingency table form incidence (non-aggregated) raw data
AE subset = AEs in statin46
Durg subset = union of statin46 and gbca drugs
convert_raw_to_contin_table(
 rawdata = faers22q3raw,
 Drug_col_name = "DRUG",
 AE_col_name = "AE",
 id_col_name = "CASEID",
 aggregated = FALSE,
 other_AE_excludes = rownames(statin46),
 other_Drug_excludes = union(colnames(gbca), colnames(statin)),
 create_other_Drug_col = TRUE,
 create_other_AE_row = FALSE
)

convert to contingency table AFTER aggregating and counting
the total number of incidences of each (AE, Drug) pair
Same AE and Drug subsets as before
aggregation (counting) done using data.table dt[i, j, by] syntax
uses magrittr %>% pipe
convert_raw_to_contin_table(
 rawdata = faers22q3raw,
 Drug_col_name = "DRUG",
 AE_col_name = "AE",
 count_col_name = "COUNT",
 aggregated = TRUE,
 other_AE_excludes = rownames(statin46),
 other_Drug_excludes = union(colnames(gbca), colnames(statin)),
 create_other_Drug_col = TRUE,
 create_other_AE_row = FALSE
)

all.equal(tab1, tab2)

use the contingency table produced above in pvlrt()
500 bootstrap iterations (nsim) in the example below
is for quick demonstration only --
we recommended setting nsim to 10000 (default) or bigger
pvlrt(tab1, nsim = 500)
extract_AE_names

| extract_AE_names | Extracting and setting AE and Drug names from a pvlrt object |

Description

Extracting and setting AE and Drug names from a pvlrt object

Usage

extract_AE_names(object)

extract_Drug_names(object)

set_AE_names(object, old, new)

set_Drug_names(object, old, new)

Arguments

- object: a pvlrt object, which is the output of the function pvlrt or one of its wrappers such as lrt_zi_poisson, lrt_poisson and lrt_vanilla_poisson.
- old: character vector containing the old names
- new: character vector containing the new names

Value

- extract_AE_names returns a character vector of the names of the AEs in the input pvlrt object
- extract_Drug_names returns a character vector of the names of the Drugs in the input pvlrt object
- set_AE_names returns a new pvlrt object with updated AE names as specified through the arguments old and new.
- set_Drug_names returns a new pvlrt object with updated Drug names as specified through the arguments old and new.

Note

Because a pvlrt object is simply a reclassified matrix, the AE (rows) and Drug (columns) names can also be extracted/modified through rownames and colnames respectively.

See Also

pvlrt
Examples

500 bootstrap iterations (nsim) in the example below
are for quick demonstration only --
we recommended setting nsim to 10000 (default) or bigger

test1 <- pvlrt(statin46, test_zi = TRUE, nsim = 500)
extract_AE_names(test1)
extract_Drug_names(test1)

set_AE_names(test1, old = "Rhabdomyolysis", new = "Rhabdo")
set_Drug_names(test1, old = "Other", new = "Other-Drugs")

can be chained with pipes `%>%`:
test2 <- test1 %>%
 set_AE_names(old = "Rhabdomyolysis", new = "Rhabdo") %>%
 set_Drug_names(old = "Other", new = "Other-Drugs")

see the summary for changed labels
summary(test2)

extract_lrstat_matrix

Extract various summary measures from a pvlrt object

Description

Extract various summary measures from a pvlrt object

Usage

extract_lrstat_matrix(object, ...)
extract_p_value_matrix(object, ...)
extract_zi_probability(object, ...)
extract_n_matrix(object, ...)
extract_significant_pairs(object, significance_level = 0.05, ...)
extract_run_time(object, ...)

Arguments

object a pvlrt object, which is the output of the function pvlrt or one of its wrappers such as lrt_zi_poisson, lrt_poisson and lrt_vanilla_poisson.
...
other input parameters. Currently unused.
significance_level
numeric. Level of significance.

Value

• extract_lrstat_matrix returns the matrix of the computed log-likelihood ratio test statistics for signals. This produces a result identical to applying as.matrix.
• extract_p_value_matrix returns the matrix of computed p-values associated with the likelihood ratio tests.
• extract_zi_probability returns a vector of (estimated) zero-inflation probabilities.
• extract_n_matrix returns the original contingency table (matrix) used.
• extract_significant_pairs returns a data.table listing the AE/drug pairs determined to be significant at the provided significance level. This is essentially a subset of the data.table obtained through summary.pvlrt() that satisfies the provided significance threshold.
• extract_run_time returns a difftime object measuring the total CPU time needed to run the original pvlrt call.

See Also

pvlrt

Examples

500 bootstrap iterations (nsim) in the example below
are for quick demonstration only --
we recommended setting nsim to 10000 (default) or bigger

test1 <- pvlrt(statin46, test_zi = TRUE, nsim = 500)
extract_lrstat_matrix(test1)
extract_p_value_matrix(test1)
extract_zi_probability(test1)
extract_n_matrix(test1)
extract_significant_pairs(test1)
An object of class `data.table` (inherits from `data.frame`) with 496312 rows and 3 columns.

Details

obtained from the FDA FAERS database for the quarters 2014Q3 - 2020Q4

This is a raw incidence data stored as a data.table with each row corresponding to a specific incidence index by case ids. It contains the following columns:

- **CASEID** - case ids for each incidence
- **DRUG** - names of the drugs
- **AE** - names of the adverse events

Source

An object of class `matrix` (inherits from `array`) with 1707 rows and 10 columns.

Details

Data are stored in the form of a contingency table, with drugs listed across the columns and the 1707 AEs presented across the rows. Each cell in the contingency table represents the total report counts associated with that drug/AE pair and detected in the FDA FAERS database during 2014Q3 - 2020Q4.

The dataset contains 6 Gadolinium-Based Contrast Agents (GBCAs) as drugs: gadobenate, gadobutrol, gadodiamide, gadoxetate, gadopentetate, gadoteridol, gadoversetamide, gadoxetate

Corresponding to all 1707 observed adverse events (AEs) as curated in FAERS database.

Source

heatmap_pvlrt

Heatmap, barplot and bubbleplot displaying likelihood ratio test results in a pvlrt object

Description

Heatmap, barplot and bubbleplot displaying likelihood ratio test results in a pvlrt object

Usage

heatmap_pvlrt(
 object,
 AE = NULL,
 Drug = NULL,
 grep = FALSE,
 fill_measure = "p_value",
 show_n = FALSE,
 show_lrstat = FALSE,
 show_p_value = FALSE,
 p_value_lower = 0,
 p_value_upper = 1,
 lrstat_lower = 0,
 lrstat_upper = Inf,
 n_lower = 0,
 n_upper = Inf,
 arrange_alphabetical = FALSE,
 remove_outside = FALSE,
 digits = 2,
 border_color = "black",
 fill_gradient_range = c("darkred", "white"),
 ...
)

S3 method for class 'pvlrt'

barplot(
 height,
 AE = NULL,
 Drug = NULL,
 grep = FALSE,
 x_axis_measure = "lrstat",
 fill_measure = "p_value",
 show_n = FALSE,
 arrange_alphabetical = FALSE,
 show_p_value = FALSE,
 show_lrstat = FALSE,
 p_value_lower = 0,
 p_value_upper = 1,
Arguments

object, height pvlrt object; output of pvlrt()

AE input parameter determining which adverse events to show in the plot. This can be a numeric scalar specifying the number of top (in terms of computed LRT values) adverse events to show. Alternatively, it can be a character vector, specifying the exact adverse events to show. It can also be a vector of patterns
to match (ignores cases) against the full names of all available adverse events, provided `grep` is set to TRUE. Defaults to adverse events corresponding to the top M pairs where M = max(number of possible pairs, 50). Set AE = Inf to force display of all adverse events.

Drug

Input parameter determining which drugs to show in the plot. This can be a numeric scalar specifying the number of top (in terms of computed LRT values) drugs to show. Alternatively, it can be a character vector, specifying the exact drugs to show. It can also be a vector of patterns to match (ignores cases) against the full names of all available drugs, provided `grep` is set to TRUE. Defaults to drugs corresponding to the top M pairs where M = max(number of possible pairs, 50). Set Drug = Inf to force display all drugs.

grep

Logical. Match patterns against the supplied AE or Drug names? Ignores if neither AE nor Drug is a character vector.

fill_measure

Measure to govern the filling color in each cell (in heatmap) or bar (in barplot) or circle/bubble (in bubbleplot) for each drug/AE combination. Defaults to "p_value". Available choices are: "p.value", "lrstat", and "n".

show_n

Logical. Show the sample size as inscribed text on each cell?

show_lrstat

Logical. Show the computed LRT statistic (on log-scale) inscribed text on each cell?

show_p_value

Logical. Show the computed p-value as inscribed text on each cell?

p_value_lower, p_value_upper

Lower and upper limits on the computed p-values to display on the plot.

lrstat_lower, lrstat_upper

Lower and upper limits on the computed LRT values to display on the plot.

n_lower, n_upper

Lower and upper limits on the computed sample sizes to display on the plot.

arrange_alphabetical

Logical. Should the rows (AEs) and columns (Drugs) be arranged in alphabetical orders? Defaults to FALSE, in which case the orderings of the computed LRT values are used.

remove_outside

Logical. Should the values for pairs with p-value, LRT statistics or sample sizes falling outside of the provided ranges through p_value_lower, p_value_upper etc., be replaced with NA? Defaults to FALSE. Setting this to TRUE may help distinguish drugs or AEs which has some pairs falling within and some pairs falling outside of the provided ranges better.

digits

Numeric. Number of decimal places to show on the inscribed texts on the plot.

border_color

Character string. Specifies the border color of cells/bars.

fill_gradient_range

Character vector. Specifies the range of gradient colors used for fill_measure. Passed into the `colours` argument of `scale_fill_gradientn` from `ggplot2`.

...

Other arguments. Currently ignored

x_axis_measure

Measure to show on the x-axis of the (horizontal) bar plots. Defaults to "lrstat" available choices are "lrstat", "p_value" and "n".

Drug_nrow

Number of rows in the panels for Drugs for the barplots.
logLik.pvlrt

x_axis_logscale
logical. Should the x axis measure in the bar plot or the bubble plot be log transformed (more precisely, "log1p" transformed with the function \(f(x) = \log(1 + x) \))? Defaults to TRUE.

size_measure
measure to govern sizes of the circles in the bubble plot. Defaults to "n". Available choices are "lrstat", "p_value" and "n".

size_logscale
logical. Should the circle size measure in the bubble plot be log transformed (more precisely, "log1p" transformed with the function \(f(x) = \log(1 + x) \))? Defaults to TRUE.

Value
A `ggplot` object.

See Also
pvlrt

Examples
```r
# 500 bootstrap iterations (nsim) in the example below
# are for quick demonstration only --
# we recommended setting nsim to 10000 (default) or bigger
test1 <- pvlrt(statin46, nsim = 500)
bubbleplot_pvlrt(test1)
heatmap_pvlrt(test1)
barplot(test1)
```

logLik.pvlrt

Overall Log-likelihood for a pvlrt object

Description
Overall Log-likelihood for a pvlrt object

Usage
```r
## S3 method for class 'pvlrt'
logLik(object, type = "full-zip", ...)
```

Arguments

object
a `pvlrt` object, which is the output of the function `pvlrt` or one of its wrappers such as `lrt_zi_poisson`, `lrt_poisson` and `lrt_vanilla_poisson`.

type
Type of model and hypothesis combination. Available choices are "full-poisson", "null-poisson", "full-zip" (default), and "null-zip". See details.

...
other input parameters. Currently unused.
Details

The function extracts the overall log-likelihood and degrees of freedom (the number of estimated parameters) from a `pvlrt` object. There are four possible choices of distribution and hypothesis combinations, supplied through the argument `type`, with the default being `type = "full-zip"`. In a "full" model the signal parameters lambdas are estimated for all cells in the contingency table from the data (subject to the condition lambda >= 1), whereas under a "null" model each lambda is fixed at 1 for each cell. In a "zip" model (type = "full-zip" and type = "null-zip") the log-likelihood under a zero-inflated Poisson model with estimated or supplied zero inflation parameters (through `zi_prob` in `pvlrt`) is returned. The degrees of freedom reflects whether the zero-inflation parameters are estimated. Note that if an ordinary Poisson LRT is run either by setting `zi_prob = 0` in `pvlrt` or equivalently through `lrt_poisson` then "full-zip" and "null-zip" refer to zero-inflated poisson models with presepecified zero-inflation probabilities equal to 0. Thus, in such cases the results with type = "full-zip" and type = "null-zip" are identical to type = "full-poisson" and type = "null-poisson" respectively. See examples.

Value

An object of class `logLik`. See Details.

Note

The overall log likelihood must be computed during the original `pvlrt` run. This is ensured by setting `return_overall_loglik = TRUE`, and `parametrization = "lambda"` (or `parametrization = "rrr"`) while running `pvlrt()`.

See Also

`pvlrt`; `AIC`

Examples

```r
# 500 bootstrap iterations (nsim) in each example below
# are for quick demonstration only --
# we recommended setting nsim to 10000 (default) or bigger

set.seed(100)
# estimates zero inflation probabilities
test1 <- pvlrt(statin46, nsim = 500)
logLik(test1)
AIC(test1)
BIC(test1)

# compare with and without zero inflation
BIC(logLik(test1, type = "full-zip"))
BIC(logLik(test1, type = "full-poisson"))

# ordinary poisson model
## equivalent to pvlrt(statin46, zi_prob = 0, nsim = 500)
test2 <- lrt_poisson(statin46, nsim = 500)
```
all.equal(logLik(test2, "full-zip"), logLik(test2, "full-poisson"))

lovastatin

FDA lovastatin dataset

Description
A Drug-Adverse event (AE) count dataset (contingency table) obtained from the FDA FAERS database for the quarters 2014Q3 - 2020Q4

Usage
lovastatin

Format
An object of class matrix (inherits from array) with 47 rows and 3 columns.

Details
Data are stored in the form of a contingency table, with drugs listed across the columns and the 46 AEs presented across the rows. Each cell in the contingency table represents the total report counts associated with that drug/AE pair and detected in the FDA FAERS database during 2014Q3 - 2020Q4.

The dataset contains 1 column for the lovastatin drug, and one column for all other drugs combined.

Source

lrt_poisson

Likelihood Ratio Test under the (vanilla, non-zero-inflated) Poisson model

Description
Likelihood Ratio Test under the (vanilla, non-zero-inflated) Poisson model

Usage
lrt_poisson(contin_table, nsim = 10000, parametrization = "rrr", ...)
lrt_vanilla_poisson(contin_table, nsim = 10000, parametrization = "rrr", ...)
lrt_zi_poisson

Arguments

- **contin_table**: IxJ contingency table showing pairwise counts of adverse events for I AE (along the rows) and J Drugs (along the columns)
- **nsim**: Number of simulated null contingency table to use for computing the p-value of the test
- **parametrization**: Type of parametrization to use in the LR test. Available choices are "rrr", "lambda", "rr", and "p-q". The relative reporting ratio (default) parametrization of the test is used when `parametrization %in% c("rrr", "lambda")`, and the reporting rate parametrization is used otherwise. NOTE: zero inflation can be handled only for the relative reporting ratio parametrization.

 ... additional arguments. Currently unused.

Value

Returns a `pvlrt` object. See `pvlrt` for more details.

Note

`lrt_poisson()` and `lrt_vanilla_poisson()` are both wrappers for `pvlrt()` with `omega_vec = rep(0, ncol(contin_table))`

See Also

`pvlrt`

Examples

```r
data("statin46")

# 500 bootstrap iterations (nsim) in the example below
# are for quick demonstration only --
# we recommended setting nsim to 10,000 (default) or bigger

# no grouping -- each drug forms its own class
test1 <- lrt_poisson(lovastatin, nsim = 500)
```

lrt_zi_poisson

Pseudo Likelihood Ratio Test under the zero-inflated Poisson model with relative reporting rate parametrization

Description

Pseudo Likelihood Ratio Test under the zero-inflated Poisson model with relative reporting rate parametrization
Usage

lrt_zi_poisson(contin_table, nsim = 10000, ...)

Arguments

- contin_table: IxJ contingency table showing pairwise counts of adverse events for I AE (along the rows) and J Drugs (along the columns)
- nsim: Number of simulated null contingency table to use for computing the p-value of the test
- ...: additional arguments passed to pvlrt

Value

Returns a pvlrt object. See pvlrt for more details.

Note

lrt_zi_poisson() is a wrapper for pvlrt() with parametrization = "rrr".

See Also

- pvlrt

Examples

data("statin46")

500 bootstrap iterations (nsim) in the example below
are for quick demonstration only --
we recommended setting nsim to 10000 (default) or bigger

test1 <- lrt_zi_poisson(statin46, nsim = 500)

plot.pvlrt

Plotting method for a pvlrt object

Description

Plotting method for a pvlrt object

Usage

S3 method for class 'pvlrt'
plot(x, type = "bubbleplot", ...)

plot.pvlrt

Plotting method for a pvlrt object
print.pvlrt

Arguments

 x a pvlrt object; an output of function pvlrt().
 type character string determining the type of plot to show. Available choices are "bubbleplot" which calls bubbleplot_pvlrt, "heatmap" which calls heatmap_pvlrt, and "barplot" which calls barplot.pvlrt, with the additional arguments supplied in ...
 ... additional arguments passed to heatmap_pvlrt or barplot.pvlrt depending on type.

Value

 A ggplot object.

See Also

 pvlrt; bubbleplot_pvlrt; heatmap_pvlrt; barplot.pvlrt

Examples

 # 500 bootstrap iterations (nsim) in the example below
 # are for quick demonstration only --
 # we recommended setting nsim to 10000 (default) or bigger

 test1 <- pvlrt(statin46, nsim = 500)
 plot(test1, type = "bubbleplot")
 plot(test1, type = "barplot")
 plot(test1, type = "heatmap")

print.pvlrt

 Print method for pvlrt objects

Description

 Print method for pvlrt objects

Usage

 ## S3 method for class 'pvlrt'
 print(
 x,
 significance_level = 0.05,
 topn = 12,
 digits = 2,
 show_test_summary = FALSE,
 ...
)
Arguments

- **x**: a `pvlrt` object; an output of function `pvlrt()`.
- **significance_level**: numeric. Level of significance.
- **topn**: number of top (with respect to likelihood ratio statistic value) pairs to show at the given significance level.
- **digits**: number of digits to show after the decimal place.
- **show_test_summary**: logical. Should a brief summary showing the top few test results be displayed? defaults to FALSE.
- **...**: other input parameters. Currently unused.

Value

Invisibly returns the input `pvlrt` object.

See Also

- `pvlrt`

Examples

```r
# 500 bootstrap iterations (nsim) in the example below
# are for quick demonstration only --
# we recommended setting nsim to 10000 (default) or bigger

test1 <- pvlrt(statin46, nsim = 500)
print(test1)
```

pvlrt

Pseudo Likelihood Ratio Test for determining significant AE-Drug pairs under Poisson and zero-inflated Poisson models for pharmacovigilance

Description

Pseudo Likelihood Ratio Test for determining significant AE-Drug pairs under Poisson and zero-inflated Poisson models for pharmacovigilance
Usage

pvlrt(
 contin_table,
 nsim = 10000,
 omega_vec = NULL,
 zi_prob = NULL,
 no_zi_idx = NULL,
 test_drug_idx = seq_len(max(ncol(contin_table) - 1, 0)),
 drug_class_idx = list(test_drug_idx),
 grouped_omega_est = FALSE,
 test_zi = NULL,
 test_omega = NULL,
 pval_ineq_strict = FALSE,
 parametrization = "rrr",
 null_boot_type = "parametric",
 is_zi_structural = TRUE,
 return_overall_loglik = TRUE,
 ...
)

Arguments

contin_table
IxJ contingency table showing pairwise counts of adverse events for I AE (along the rows) and J Drugs (along the columns)

nsim
Number of simulated null contingency table to use for computing the p-value of the test

zi_prob, omega_vec
Alias, determining zero inflation probabilities in the model. Can be a vector, providing different zero inflation probabilities for different drugs, or a scalar, providing the common zero inflation probability for all drugs. If NULL (default), then is estimated from the data. See also the description of the argument grouped_omega_est. If omega_vec = rep(0, ncol(contin_table)), then test reduces to an ordinary (non-zero inflated) Poisson test. NOTE: zi_prob and omega_vec are alias.

no_zi_idx
List of pairs (i, j) where zero inflation is not allowed. To specify the entirety i-th row (or j-th column) use c(i, 0) (or c(0, j)). See examples.

test_drug_idx
integer (position) or character (names) vector indicating the columns (drugs indices or drug labels) of contin_table to be tested for signal using LRT. Defaults to all except the last columns (which is typically the column for "Other Drugs").

drug_class_idx
a list, with the h-th entry providing the h-th group/class of drugs. Relevant only for drugs used for testing (supplied through test_drug_idx). By default all drugs provided in test_drug_idx are included in the same class, which is ensured by supplying drug_class_idx = list(test_drug_idx). If more than one drug is present in a class, an extended LRT is performed for the class (which ensures the correct Type I error rate is preserved). If drug_class_idx excludes any drug present in test_drug_idx, each remaining drug is made to form its own class. See examples.
grouped_omega_est
Logical. When performing a test with grouped drug classes (extended LRT), should the estimated zero-inflation parameter "omega" reflect the corresponding grouping? If TRUE, then the estimated omegas are obtained by combining columns from the same group, and if FALSE (default), then omegas are estimated separately for each drug (column) irrespective of the groups specified through drug_class_idx. Ignored if omega_vec is supplied/non-NULL (i.e., not estimated).

test_zi, test_omega
logical indicators specifying whether to perform a pseudo likelihood ratio test for zero inflation. Defaults to FALSE. Ignored if omega_vec is supplied (is non-NULL). Defaults to FALSE. NOTE: test_omega and test_zi are aliases.

pval_ineq_strict
logical. Use a strict inequality in the definition of the p-values? Defaults to FALSE.

parametrization
Type of parametrization to use in the LR test. Available choices are "rrr", "lambda", "r", and "p-q". The relative reporting ratio (default) parametrization of the test is used when when parametrization %in% c("rrr", "lambda"), and the reporting rate parametrization is used otherwise. NOTE: zero inflation can be handled only for the relative reporting ratio parametrization.

null_boot_type
Type of bootstrap sampling to perform for generating null resamples. Available choices are "parametric" (default) and "non-parametric". NOTE: zero inflation is not handled properly in a non-parametric bootstrap resampling.

is_zi_structural
logical. Do the inflated zeros correspond to structural zeros (indicating impossible AE-Drug combination)? This determines how the bootstrap null zero-inflation indicators are generated. If TRUE (default), then then the null zero-inflation random indicators are randomly generated using the (estimated) conditional probabilities of zero inflation given observed counts. If FALSE, then they are generated using the marginal (drug-specific) estimated probabilities of zero-inflation.

return_overall_loglik
logical. Return overall log-likelihood for the table? This is needed if logLik method is to be used.

Value
The function returns an S3 object of class pvlrt containing test results. A pvlrt object is simply a re-classified matrix containing log likelihood ratio test statistics for cells in the input contingency table, with various other test and input data information (including p-values, estimated zero inflation parameters, overall log-likelihood etc.) embedded as attributes. The following S3 methods and functions are available for an pvlrt object:

Various post processing methods for pvlrt objects are available. This includes:

- bubbleplot_pvlrt
- extract_AE_names
Examples

data("statin46")

500 bootstrap iterations (nsim) in each example below
are for quick demonstration only --
we recommended setting nsim to 10000 (default) or bigger

no grouping -- each drug forms its own class,
default "rrr" (lambda) parametrization, possible zi,
null distribution evaluated using parametric bootstrap

grouped drugs --
group 1: drug 1, drug 2
group 2: drug 3, drug 4
drug 5, 6, in their own groups
7 is not tested, so excluded from test_drug_idx (default)

if needed, include 7 in test_drug_idx

drug_groups <- list(c(1, 2), c(3, 4))
5, 6 not present in drug_groups, so each will form their own groups
set.seed(50)
#
instead of column positions column names can also be supplied
in drug_class_idx and/or test_drug_idx
column name version of drug_groups
drug_groups_colnames <- lapply(drug_groups, function(i) colnames(statin46)[i])
test_drug_colnames <- head(colnames(statin46), -1)
set.seed(50)
test20 <- pvlrt(
 statin46,
 test_drug_idx = test_drug_colnames,
 drug_class_idx = drug_groups_colnames,
 nsim = 500
)
test20
all.equal(test2, test20)

specify no zero inflation at the entirety of the last row and the last column
no_zi_idx <- list(c(nrow(statin46), 0), c(0, ncol(statin46)))
test3 <- pvlrt(statin46, no_zi_idx = no_zi_idx, nsim = 500)
test3

use non-parametric bootstrap to evaluate the null distribution
takes longer, due to computational costs with non-parametric
contingency table generation
test4 <- pvlrt(statin46, null_boot_type = "non-parametric", nsim = 500)
test4

test zi probabilities (omegas)
test5 <- pvlrt(statin46, test_omega = TRUE, nsim = 500)
test5

rv

FDA rotavirus vaccine dataset with 794 adverse events observed among combined old (age >= 1 year) and young (age < 1 year) individuals

Description

A vaccine-Adverse event (AE) count dataset (contingency table) obtained from the FDA VAERS database for the year 1999
Usage

\texttt{rv}

Format

An object of class \texttt{matrix} (inherits from \texttt{array}) with 794 rows and 2 columns.

Details

Data are stored in the forms of contingency table, with the vaccines listed across the columns and the 794 AEs presented across the rows. Each cell in the contingency table represents the total report counts associated with that vaccine/AE pair and detected in the FDA VAERS database for the year 1999.

The dataset contains two columns – one for the rotavirus vaccine, and another for other (37 vaccines combined).

Source

https://vaers.hhs.gov/data/datasets.html

Description

A vaccine-Adverse event (AE) count dataset (contingency table) obtained from the FDA VAERS database for the year 1999.

Usage

\texttt{rvold}

Format

An object of class \texttt{matrix} (inherits from \texttt{array}) with 727 rows and 2 columns.

Details

Data are stored in the forms of contingency table, with the vaccines listed across the columns and the 727 AEs presented across the rows. Each cell in the contingency table represents the total report counts (from "old" individuals with age >= 1 year) associated with that vaccine/AE pair and detected in the FDA VAERS database for the year 1999.

The dataset contains two columns – one for the rotavirus vaccine, and another for other (37 vaccines combined).
Source

https://vaers.hhs.gov/data/datasets.html

| rvyoung | *FDA rotavirus vaccine dataset with 346 adverse events observed among young (infant – 1 year) individuals* |

Description

A vaccine-Adverse event (AE) count dataset (contingency table) obtained from the FDA VAERS database for the year 1999

Usage

rvyoung

Format

An object of class `matrix` (inherits from `array`) with 346 rows and 2 columns.

Details

Data are stored in the forms of contingency table, with the vaccines listed across the columns and the 346 AEs presented across the rows. Each cell in the contingency table represents the total report counts from young individuals with age < 1 year associated with that vaccine/AE pair and detected in the FDA VAERS database for the year 1999.

The dataset contains two columns – one for the rotavirus vaccine, and another for other (37 vaccines combined).

Source

https://vaers.hhs.gov/data/datasets.html

| r_contin_table_zip | *Generate random contingency tables for adverse event (across rows) and drug (across columns) combinations given row and column marginal totals, embedded signals, and possibly with zero inflation* |

Description

Generate random contingency tables for adverse event (across rows) and drug (across columns) combinations given row and column marginal totals, embedded signals, and possibly with zero inflation
r_contin_table_zip

Usage

r_contin_table_zip(
 n = 1,
 row_marginals,
 col_marginals,
 signal_mat = matrix(1, length(row_marginals), length(col_marginals)),
 omega_vec = rep(0, length(col_marginals)),
 no_zi_idx = NULL,
 ...
)

Arguments

n
 number of random matrices to generate.

row_marginals, col_marginals
 (possibly named) vector of row and column marginal totals. Must add up to the same total. If named, the names are passed on to the randomly generated matrix/matrices.

signal_mat
 numeric matrix of dimension length(row_marginals) x length(col_marginals). The (i, j)-th entry of signal_mat determines the signal strength of the i-th adverse event and j-th drug pair. The default is 1 for each pair, which means no signal for the pair.

omega_vec
 vector of zero inflation probabilities. Must be of the same length as col_marginals.

no_zi_idx
 List of pairs (i, j) where zero inflation is not allowed. To specify the entirety i-th row (or j-th column) use c(i, 0) (or c(0, j)). See examples.

...
 Additional arguments. Currently unused.

Value

A list of length n, with each entry being a length(row_marginal) by length(col_marginal) matrix.

Examples

set.seed(42)

first load the 46 statin data
data(statin46)
zero inflation probabilities
omega_tru <- c(rep(0.15, ncol(statin46) - 1), 0)

signal matrix
signal_mat <- matrix(1, nrow(statin46), ncol(statin46))

"positive" signal at the (1, 1) entry
the first column
signal_mat[1, 1] <- 10
Now simulate data with the same row/column marginals
as in statin46, with embedded signals as specified in
the above signal_mat

no zero inflation at (1, 1)
(where signal is elicited) and the last row ("Other PT")
and at the last column ("Other drugs") of the simulated matrix

sim_statin <- r_contin_table_zip(
 n = 1,
 row_marginals = rowSums(statin46),
 col_marginals = colSums(statin46),
 signal_mat = signal_mat,
 omega_vec = omega_tru,
 no_zi_idx = list(
 c(1, 1),
 c(nrow(statin46), 0), # the entire last row
 c(0, ncol(statin46)) # the entire last column
)
)

now analyze the above simulated data

using a pseudo LRT with a ZIP model
test1 <- pvlrt(
 contin_table = sim_statin,
 nsim = 500
 # set to 500 for demonstration purposes only,
 # we recommend the default 10000 or bigger
)
extract_zi_probability(test1)
extract_significant_pairs(test1)

LRT with a poisson model
test2 <- lrt_poisson(
 contin_table = sim_statin,
 nsim = 500
 # set to 500 for demonstration purposes only,
 # we recommend the default 10000 or bigger
)
extract_zi_probability(test2)
extract_significant_pairs(test2)

LRT with true omega supplied
test3 <- pvlrt(
 contin_table = sim_statin,
 zi_prob = omega_tru,
 nsim = 500
 # set to 500 for demonstration purposes only,
 # we recommend the default 10000 or bigger
)
extract_zi_probability(test3)
extract_significant_pairs(test3)

statin

FDA Statin dataset with 6039 adverse events

Description

A Drug-Adverse event (AE) count dataset (contingency table) obtained from the FDA FAERS database for the quarters 2014Q3 - 2020Q4

Usage

`statin`

Format

An object of class `matrix` (inherits from `array`) with 6039 rows and 7 columns.

Details

Data are stored in the form of a contingency table, with drugs listed across the columns and the 6039 AEs presented across the rows. Each cell in the contingency table represents the total report counts associated with that drug/AE pair and detected in the FDA FAERS database during 2014Q3 - 2020Q4.

The dataset catalogs 6 statin drugs (across columns):
- Atorvastatin
- Fluvastatin
- Lovastatin
- Pravastatin
- Rosuvastatin
- Simvastatin

Corresponding to all 6039 observed adverse events (AEs) observed in statins

Source

statin1491

FDA Statin dataset with 1491 adverse events

Description

A Drug-Adverse event (AE) count dataset (contingency table) obtained from the FDA FAERS database for the quarters 2014Q3 - 2020Q4

Usage

`statin1491`
Format

An object of class `matrix` (inherits from `array`) with 1491 rows and 7 columns.

Details

Data are stored in the form of a contingency table, with drugs listed across the columns and the 1491 AEs presented across the rows. Each cell in the contingency table represents the total report counts associated with that drug/AE pair and detected in the FDA FAERS database during 2014Q3 - 2020Q4.

The dataset catalogs 6 statin drugs (across columns):

- Atorvastatin, Fluvastatin, Lovastatin, Pravastatin, Rosuvastatin, Simvastatin

The 1491 AEs stored in the dataset represent the intersection of adverse events of the statin class of drugs and the GBCA drugs

Source

See Also

- statin46, statin, gbca

statin46

FDA Statin dataset with 46 adverse events

Description

A Drug-Adverse event (AE) count dataset (contingency table) obtained from the FDA FAERS database for the quarters 2014Q3 - 2020Q4

Usage

- statin46

Format

An object of class `matrix` (inherits from `array`) with 47 rows and 7 columns.

Details

Data are stored in the form of a contingency table, with drugs listed across the columns and the 46 AEs presented across the rows. Each cell in the contingency table represents the total report counts associated with that drug/AE pair and detected in the FDA FAERS database during 2014Q3 - 2020Q4.

The dataset catalogs 6 statin drugs (across columns):

- Atorvastatin, Fluvastatin, Lovastatin, Pravastatin, Rosuvastatin, Simvastatin

The 46 adverse events presented across the rows are considered significant by FDA.
summary.pvlrt

Source

See Also

statin, statin1491, gbca

summary.pvlrt Summary method for a pvlrt object

Description

Summary method for a pvlrt object

Usage

S3 method for class 'pvlrt'
summary(object, show_zi = FALSE, ...)

Arguments

- **object**: a pvlrt object, which is the output of the function pvlrt or one of its wrappers such as lrt_zi_poisson, lrt_poisson and lrt_vanilla_poisson.
- **show_zi**: logical. Should summary of the estimates and tests (if performed) of the zero inflation parameters be returned? Defaults to FALSE. If TRUE, then the zero inflation summary is included as an attribute with name "zi". See examples.
- **...**: other input parameters. Currently unused.

Value

Returns a data.table with rows corresponding to all possible AE/Drug pairs as obtained from the input contingency table, and columns titled "AE", "Drug", "n", "lrstat" (log-likelihood ratio test statistic) and "p_value". Additionally, if show_zi is set to TRUE, then as an attribute named "zi" a data.table with rows corresponding to Drugs (columns in the input contingency table), and columns titled "AE", "zi", "lrstat" (log-likelihood ratio test statistic for zero-inflation), "p_value" and "q_value" (Benjamini-Hochberg adjusted p-values, as obtained through p.adjust) is returned.

See Also

pvlrt
Examples

500 bootstrap iterations (nsim) in the example below
are for quick demonstration only --
we recommended setting nsim to 10000 (default) or bigger

test1 <- pvlrt(statin46, test_zi = TRUE, nsim = 500)
summary(test1)
tmp <- summary(test1, show_zi = TRUE)
print(tmp)
tmp_zi <- attr(tmp, "zi")
print(tmp_zi)
Index

* datasets
 faers22q3raw, 9
 gbca, 10
 lovastatin, 16
 rv, 24
 rvold, 25
 rvyoung, 26
 statin, 29
 statin1491, 29
 statin46, 30

 AIC, 15
 all.equal.default, 3
 all.equal.pvlrt, 2
 as.matrix.pvlrt, 3, 23

 barplot.pvlrt, 19
 barplot.pvlrt(heatmap_pvlrt), 11
 bubbleplot_pvlrt, 19, 22
 bubbleplot_pvlrt(heatmap_pvlrt), 11

 colnames, 7
 convert_raw_to_contin_table, 4

 difftime, 9

 extract_AE_names, 7, 22
 extract_Drug_names, 23
 extract_Drug_names(extract_AE_names), 7
 extract_lrstat_matrix, 8, 23
 extract_n_matrix, 23
 extract_n_matrix
 (extract_lrstat_matrix), 8
 extract_p_value_matrix, 23
 extract_p_value_matrix
 (extract_lrstat_matrix), 8
 extract_run_time
 (extract_lrstat_matrix), 8
 extract_significant_pairs, 23
 extract_significant_pairs
 (extract_lrstat_matrix), 8

 extract_zi_probability, 23
 extract_zi_probability
 (extract_lrstat_matrix), 8

 faers22q3raw, 9
 gbca, 10, 30, 31
 ggplot, 14, 19
 heatmap_pvlrt, 11, 19, 23
 logLik, 15
 logLik.pvlrt, 14, 23
 lovastatin, 16
 lrt_poisson, 7, 8, 14, 15, 16, 23, 31
 lrt_vanilla_poisson, 23
 lrt_vanilla_poisson(lrt_poisson), 16
 lrt_zi_poisson, 7, 8, 14, 17, 23, 31
 p.adjust, 31
 plot.pvlrt, 18, 23
 print.pvlrt, 19, 23
 pvlrt, 3, 5, 7–9, 14, 15, 17–20, 20, 31
 pvLRT-package, 2

 r_contin_table_zip, 23, 26
 rownames, 7
 rv, 24
 rvold, 25
 rvyoung, 26

 set_AE_names, 23
 set_AE_names(extract_AE_names), 7
 set_Drug_names, 23
 set_Drug_names(extract_AE_names), 7
 statin, 29, 30, 31
 statin1491, 29, 31
 statin46, 30, 30
 summary.pvlrt, 23, 31

33