Package ‘qbld’

October 13, 2022

Type Package
Title Quantile Regression for Binary Longitudinal Data
Version 1.0.3
Date 2022-01-05
Author Ayush Agarwal [aut, cre], Dootika Vats [ctb]
Maintainer Ayush Agarwal<ayush.agarwal50@gmail.com>
Description Implements the Bayesian quantile regression model for binary longitudinal data (QBLD) developed in Rahman and Vossmeyer (2019) <DOI:10.1108/S0731-90532019000040B009>. The model handles both fixed and random effects and implements both a blocked and an unblocked Gibbs sampler for posterior inference.
License GPL-3
Imports Rcpp, stats, grDevices, graphics, mcmcse, stableGR, RcppDist, knitr, rmarkdown
LinkingTo Rcpp, RcppArmadillo, RcppDist
Depends R (>= 3.5)
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-06 00:20:02 UTC

R topics documented:

qbld-package ... 2
airpollution ... 3
aldmix ... 4
gig ... 6
locust ... 7
Description

Implements the Bayesian quantile regression model for binary longitudinal data (QBLD) developed in Rahman and Vossmeyer (2019) <DOI:10.1108/S0731-90532019000040B009>. The model handles both fixed and random effects and implements both a blocked and an unblocked Gibbs sampler for posterior inference.

Details

Package: qbld
Type: Package
Version: 1.0
Date: 2020-08-17
License: GPL (>= 3)

The package contains the following functions:

- **model.qbld**: Runs the QBLD sampler as in Rahman and Vossmeyer(2019) and outputs a ‘qbld’ class object.
- **summary.qbld**: S3 method that summarizes the outputs of the model.qbld function.
- **plot.qbld**: S3 method that plots ‘qbld’ class object.
- **aldmix**: Cumulative density, probability distribution function, quantile function and random generation for the asymmetric Laplace distribution.
- **gig**: Probability distribution function, random generation for the generalised inverse Gaussian.
- **airpollution, locust**: In-built datasets

Author(s)

Ayush Agarwal [aut, cre], Dootika Vats [ctb]
Maintainer: Ayush Agarwal<ayush.agarwal50@gmail.com>

References

Vats, Dootika and Christina Knudson. “Revisiting the Gelman-Rubin Diagnostic.” arXiv

Examples

```r
# Dataset
data(airpollution)

# output will be a qbld class object
output <- model.qbld(fixed_formula = wheeze~smoking+I(age^2)-1, data = airpollution, id="id",
                      random_formula = ~1, p=0.25, nsim=1000, method="block", burn=0,
                      summarize=FALSE, verbose=FALSE)

# summary
summary(output, epsilon=0.1)

# plots
plot(output)

# GIG sampler
rgig(n = 1, lambda = 0.5, a = 1, b = 2)

# ALD sampler
raldmix(n = 10, mu = 5, sigma = 10, p = 0.5)
```

airpollution

Dataset

Description

This example is a subset of data from Six Cities study, a longitudinal study of the health effects of air pollution (Ware, J. H. et al., 1984).

Usage

data(airpollution)
Format

A data frame with 128 observations on the following 5 variables.

- `id` identifies the number of the individual profile. This vector contains observations of 537 individual profiles.
- `wheeze` a numeric vector that identifies the wheezing status (1="yes", 0="no") of a child at each occasion.
- `age` a numeric vector corresponding to the age in years.
- `smoking` a factor that identifies if the mother smoked (1="smoke", 0="no smoke").
- `counts` a numeric vector corresponding to the replications of each individual profile.

Details

The data set presented by Fitzmaurice and Laird (1993) contains complete records on 537 children from Steubenville, Ohio, each woman was examined annually at ages 7 through 10. The repeated binary response is the wheezing status (1="yes", 0="no") of a child at each occasion. Although mother's smoking status could vary with time, it was determined in the first interview and was treated as a time-independent covariate. Maternal smoking was categorized as 1 if the mother smoked regularly and 0 otherwise.

Source

References

aldmix

Asymmetric Laplace distribution

Description

Cumulative density, probability distribution function, quantile function and random generation for the asymmetric Laplace distribution with quantile p, location parameter μ and scale parameter σ.
Usage

raldmix(n, mu, sigma, p)
daldmix(x, mu = 0, sigma = 1, p = 0.5)
paldmix(q, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)
qaldmix(prob, mu = 0, sigma = 1, p = 0.5, lower.tail = TRUE)

Arguments

n : number of observations
mu : location parameter
sigma : scale parameter
p, prob : probability at which to calculate quantile
x, q : vector of quantiles
lower.tail : logical; decides b/w \(P(X \leq p) \) or \(P(X > p) \) for p/q

Details

The asymmetric Laplace distribution (ALD), which has the following pdf:

\[
f(x; \mu, \sigma, p) = \frac{p(1-p)}{\sigma} \exp\left\{-\frac{(x-\mu)}{\sigma}(p - I(x \leq \mu))\right\}
\]

If not specified, \(p = 0.5, \mu = 0, \sigma = 1 \).

Value

- raldmix returns a vector of random numbers from \(\text{AL}(\mu,\sigma,p) \).
- daldmix returns density of \(\text{AL}(\mu,\sigma,p) \) at point \(x \).
- paldmix returns CDF prob of \(\text{AL}(\mu,\sigma,p) \) at quantile \(q \).
- qaldmix returns inverse CDF quantile of \(\text{AL}(\mu,\sigma,p) \) at prob.

References

See Also

rgig for random sampling from GIG distribution
Examples

raldmix(n = 10, mu = 5, sigma = 10, p = 0.5)
daldmix(c(4,5),mu = 0,sigma = 1,p = 0.5)
paldmix(c(1,4),mu = 0,sigma = 1,p = 0.5,lower.tail=TRUE)
qaldmix(0.5,mu = 0,sigma = 1,p = 0.5,lower.tail=TRUE)

gig

Generalised Inverse Gaussian

Description

Probability distribution function, random generation for the Generalised Inverse Gaussian with three parameters $a(\chi), b(\psi), p$.

Usage

dgig(x, a, b, p, log_density)

tgig(n, lambda, a, b)

Arguments

- **x**: Argument of pdf
- **a**: χ parameter. Must be nonnegative for positive lambda and positive else.
- **b**: ψ parameter. Must be nonnegative for negative lambda and positive else.
- **log_density**: logical; returns log density if TRUE
- **n**: number of observations
- **lambda, p**: lambda parameter

Details

The Generalised Inverse Gaussian distrubtion(GIG), which has the following pdf

$$f(x) = x^{\lambda-1} \exp\left\{-\frac{\omega}{2}(x + \frac{1}{x})\right\}$$

Value

- **rgig** returns a vector of random numbers from GIG(a,b,p).
- **dgig** returns returns density of a GIG(a,b,p) at point x.
References

See Also

raldmix for random sampling from Asymmetric Laplace distribution

Examples

rgig(n = 1, lambda = 0.5, a = 1, b = 2)
dgig(x = 1, a = 1, b = 2, p = 0.5, log_density = FALSE)

locust

Dataset

Description

This data set was presented by MacDonald and Raubenheimer (1995) and analyze the effect of hunger on locomotory behaviour of 24 locust (Locusta migratoria) observed at 161 time points. The subjects were divided in two treatment groups (“fed” and “not fed”), and within each of the two groups, the subjects were alternatively “male” and “female”. For the purpose of this analysis the categories of the response variable were "moving" and "not moving". During the observation period, the behavior of each of the subjects was registered every thirty seconds.

Usage

data(locust)

Format

A data frame with 3864 observations on the following 7 variables.

id a numeric vector that identifies de number of the individual profile.
move a numeric vector representing the response variable.
sex a factor with levels 1 for "male" and 0 for "female".
time a numeric vector that identifies de number of the time points observed. The time vector considered was obtained dividing (1:161) by 120 (number of observed periods in 1 hour).
feed a factor with levels 0 "no" and 1 "yes".
Details

The response variable, move is the binary type coded as 1 for "moving" and 0 for "not moving". The sex covariate was coded as 1 for "male" and 0 for "female". The feed covariate indicating the treatment group, was coded as 1 for "fed" and 0 for "not fed". Azzalini and Chiogna (1997) also have analyze this data set using their S-plus package rm.tools.

Source

References

model.qbld

QBLD Sampler

Description

Runs the QBLD sampler as in Rahman and Vossmeyer(2019) and outputs a 'qbld' class object which consists of Markov chains for Beta(the fixed effects estimate), Alpha(the random effects estimate), and Varphi2 (as per the model), of which Beta and Varphi2 are of interest.

Usage

model.qbld(fixed_formula, data, id = "id", random_formula = ~1, p = 0.25,
b0 = 0, B0 = 1, cl = 9, d1 = 10, method = c("block","unblock"),
nsim, burn = 0, summarize = FALSE, verbose = FALSE)

Arguments

fixed_formula : a description of the model to be fitted of the form response~fixed effects predictors i.e Xi in the model. See vignette for more information.
data : data frame, NAs not allowed and should throw errors, factor variables are auto-converted, find airpollution.rda and locust.rda built into the package.
id : variable name in the dataset that specifies individual profile. By default, id="id" and data is expected to contain an id variable. This is omitted while modelling.
random_formula : a description of the model to be fitted of the form response~random effects predictors i.e Si in the model. This defaults to Si being only an intercept. See vignette for more information.
p : quantile for the AL distribution on the error term, p = 0.25 by default. For very low (\(<= 0.025\)) or very high (\(>= 0.970\)) values of p, sampler forces to unblock version to avoid errors.
model.qbld

b0, B0 : Prior model parameters for Beta. These are defaulted to 0 vector, and Identity matrix.
c1, d1 : Prior model parameters for Varphi2. These are defaulted to 9,10 (arbitrary) respectively.
method : Choose between the "Block" vs "Unblock" sampler, Block is slower but produces lower correlation.
nsim : number of simulations to run the sampler.
burn : Burn in percentage, number between (0,1). Burn-in values are discarded and not used for summary calculations.
summarize : Outputs a summary table (same as summary(output)), in addition also prints Model fit AIC/BIC/Log-likelihood values. False by default.
verbose : False by default. Spits out progress reports while the sampler is running.

Details

For a detailed information on the sampler, please check the vignette. Data are contained in a data.frame. Each element of the data argument must be identifiable by a name. The simplest situation occurs when all subjects are observed at the same time points. The id variable represent the individual profiles of each subject, it is expected a variable in the data.frame that identifies the correspondence of each component of the response variable to the subject that it belongs, by default is named id variable. Hence NA values are not valid. For very low (< 0.025) or very high (> 0.970) values of p, sampler forces to unblock version to avoid errors. Block version in this case may lead to machine tolerance issues.

'qbld' object contains markov chains and sampler run information as attributes, and is compatible with S3 methods like summary, plot. make.qbld function can be used to convert a similar type-object to 'qbld' class.

Value

Returns 'qbld' class object. 'qbld' class contains the following:

- Beta: Matrix of MCMC samples of fixed-effects parameters.
- Alpha: 3-dimensional matrix of MCMC samples of random-effects parameters.
- Varphi2: Matrix of MCMC samples for varphi2.
- nsim: Attribute; No. of simulations of chain run.
- burn: Attribute; Whether or not burn-in used.
- which: Attribute; "block" or "unblock" sampler used

References

plot.qbld

See Also

A qbld object may be summarized by the summary function and visualized with the plot function.

summary.qbld, plot.qbld

Datasets: airpollution, locust

Examples

data(airpollution)

output <- model.qbld(fixed_formula = wheeze~smoking+I(age^2), data = airpollution, id="id",
 random_formula = ~1, p=0.25, nsim=1000, method="block", burn=0,
 summarize=TRUE, verbose=FALSE)

plot(output)

plot.qbld

Plot QBLD

Description

Plots 'qbld' class object.

Usage

S3 method for class 'qbld'
plot(x, trace = TRUE, density = TRUE, auto.layout = TRUE, ask = dev.interactive(), ...)

Arguments

x : 'qbld' class object to plot.
trace : Whether or not to plot trace plots for covariates, TRUE by default
density : Whether or not to plot density for covariates, TRUE by default.
auto.layout : Auto set layout or not, TRUE as default. Plots according to the local settings if false.
ask : For Interactive plots
... : Other plot arguments

Value

Plots as specified.

See Also

summary.qbld, model.qbld
QBLD Summary Class

Description

Outputs a `summary.qbld` class object, and prints as described.

Usage

```r
## S3 method for class 'qbld'
summary(object, quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975), epsilon = 0.05, ...)
```

```r
## S3 method for class 'summary.qbld'
print(x, ...)
```

Arguments

- `object`: `qbld` class object
- `quantiles`: Vector of quantiles for summary of the covariates, defaulted to `c(0.025, 0.25, 0.5, 0.75, 0.975)`
- `epsilon`: epsilon value for calculating significance stars (see details), 0.05 by default.
- `...`: Other summary arguments
- `x`: (for print.summary.qbld) `qbld.summary` class object

Details

`qbld.summary` class summarizes the outputs of the `model.qbld` function. Markov Std Error (MCSE), Effective sample size (ESS) are calculated using mcmcse package. Gelman-Rubin diagnostic (R hat), and significance stars are indicated using Vats and Knudson et. al.

Value

`summary.qbld` produces following sets of summary statistics for each variable:

- **statistics**: Contains the mean, sd, markov std error, ess and Gelman-Rubin diagnostic
- **quantiles**: Contains quantile estimates for each variable
- **nsim**: No. of simulations run
- **burn**: Burn-in used or not
- **which**: Block, or Unblock version of sampler
- **p**: quantile for the AL distribution on the error term
- **multiess**: multiess value for the sample
- **multigelman**: multivariate version of Gelman-Rubin
References

Vats, Dootika and Christina Knudson. “Revisiting the Gelman-Rubin Diagnostic.” arXiv

See Also

plot.qbld, model.qbld

Additional functions: mcse.mat, ess, multiESS, stable.GR, target.psrfs
Index

* package
 qbld-package, 2
* qbld
 qbld-package, 2
airpollution, 2, 3, 10
aldmix, 2, 4
daldmix (aldmix), 4
dgig (gig), 6
ess, 12
gig, 2, 6
locust, 2, 7, 10
mcse.mat, 12
model.qbld, 2, 8, 10, 12
multiESS, 12
paldmix (aldmix), 4
plot.qbld, 2, 10, 10, 12
print.summary.qbld (summary.qbld), 11
qaldmix (aldmix), 4
qbld (qbld-package), 2
qbld-package, 2
raldmix, 7
raldmix (aldmix), 4
rgig, 5
rgig (gig), 6
stable.GR, 12
summary.qbld, 2, 10, 11
target.psrf, 12