Package ‘qch’

March 29, 2024

Title Query Composite Hypotheses
Version 2.0.0
Maintainer Tristan Mary-Huard <tristan.mary-huard@agroparistech.fr>

Description Provides functions for the joint analysis of Q sets of p-values obtained for the same list of items. This joint analysis is performed by querying a composite hypothesis, i.e. an arbitrary complex combination of simple hypotheses, as described in Mary-Huard et al. (2021) <doi:10.1093/bioinformatics/btab592> and De Walsche et al. (2023) <doi:10.1101/2024.03.17.585412>. In this approach, the Q-uplet of p-values associated with each item is distributed as a multivariate mixture, where each of the 2^Q components corresponds to a specific combination of simple hypotheses. The dependence between the p-value series is considered using a Gaussian copula function. A p-value for the composite hypothesis test is derived from the posterior probabilities.

License GPL-3
Depends R (>= 2.10)
Imports copula, dplyr, graphics, ks, purrr, qvalue, Rcpp, stats, stringr, utils
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation yes
Author Tristan Mary-Huard [aut, cre] (<https://orcid.org/0000-0002-3839-9067>), Annaig De Walsche [aut] (<https://orcid.org/0000-0003-0603-1716>), Franck Gauthier [ctb] (<https://orcid.org/0000-0003-0574-065X>)

Repository CRAN
Date/Publication 2024-03-29 22:50:02 UTC
Copula.Hconfig_gaussian_density

Gaussian copula density for each Hconfiguration.

Description

Gaussian copula density for each Hconfiguration.

Usage

```r
Copula.Hconfig_gaussian_density(Hconfig, F0Mat, F1Mat, R)
```

Arguments

- `Hconfig` : A list of all possible combination of H0 and H1 hypotheses generated by the `GetHconfig()` function.
- `F0Mat` : a matrix containing the evaluation of the marginal cdf under H0 at each items, each column corresponding to a p-value serie.
EM_calibration_gaussian

F1Mat a matrix containing the evaluation of the marginal cdf under H1 at each items, each column corresponding to a p-value serie.
R the correlation matrix.

Value
A matrix containing the evaluation of the Gaussian density function for each Hconfiguration in columns.

Description
EM calibration in the case of the gaussian copula (unsigned)

Usage
EM_calibration_gaussian(
 Hconfig,
 F0Mat,
 F1Mat,
 fHconfig,
 R.init,
 Prior.init,
 Precision = 1e-06
)

Arguments
Hconfig A list of all possible combination of H0 and H1 hypotheses generated by the GetHconfig() function.
F0Mat a matrix containing the evaluation of the marginal cdf under H0 at each items, each column corresponding to a p-value serie.
F1Mat a matrix containing the evaluation of the marginal cdf under H1 at each items, each column corresponding to a p-value serie.
fHconfig a matrix containing config densities evaluated at each items, each column corresponding to a configurations.
R.init the initialization of the correlation matrix of the gaussian copula parameter.
Prior.init the initialization of prior probabilities for each of the H-configurations.
Precision Precision for the stop criterion. (Default is 1e-6)
Value

A list of 2 objects 'priorHconfig' and 'Rcopula'. Object 'priorHconfig' is a vector of estimated prior probabilities for each of the H-configurations. Object 'Rcopula' is the estimated correlation matrix of the gaussian copula.

Description

EM calibration in the case of the gaussian copula (unsigned) with memory management

Usage

EM_calibration_gaussian_memory(
 Logf0Mat,
 Logf1Mat,
 F0Mat,
 F1Mat,
 Prior.init,
 R.init,
 Hconfig,
 Precision = 1e-06,
 threads_nb
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logf0Mat</td>
<td>a matrix containing the log(f0(xi_q))</td>
</tr>
<tr>
<td>Logf1Mat</td>
<td>a matrix containing the log(f1(xi_q))</td>
</tr>
<tr>
<td>F0Mat</td>
<td>a matrix containing the evaluation of the marginal cdf under H0 at each items, each column corresponding to a p-value serie.</td>
</tr>
<tr>
<td>F1Mat</td>
<td>a matrix containing the evaluation of the marginal cdf under H1 at each items, each column corresponding to a p-value serie.</td>
</tr>
<tr>
<td>Prior.init</td>
<td>the initialization of prior probabilities for each of the H-configurations.</td>
</tr>
<tr>
<td>R.init</td>
<td>the initialization of the correlation matrix of the gaussian copula parameter.</td>
</tr>
<tr>
<td>Hconfig</td>
<td>A list of all possible combination of H0 and H1 hypotheses generated by the GetHconfig() function.</td>
</tr>
<tr>
<td>Precision</td>
<td>Precision for the stop criterion. (Default is 1e-6)</td>
</tr>
<tr>
<td>threads_nb</td>
<td>The number of threads to use.</td>
</tr>
</tbody>
</table>
EM_calibration_indep

Value

A list of 2 objects ‘priorHconfig’ and ‘Rcopula’. Object ‘priorHconfig’ is a vector of estimated prior probabilities for each of the H-configurations. Object ‘Rcopula’ is the estimated correlation matrix of the gaussian copula.

Description

EM calibration in the case of conditional independence

Usage

EM_calibration_indep(fHconfig, Prior.init, Precision = 1e-06)

Arguments

fHconfig a matrix containing config densities evaluated at each items, each column corresponding to a configurations.
Prior.init the initialization of prior probabilities for each of the H-configurations.
Precision Precision for the stop criterion. (Default is 1e-6)

Value

a vector of estimated prior probabilities for each of the H-configurations.

EM_calibration_indep_memory

EM calibration in the case of conditional independence with memory management (unsigned)

Description

EM calibration in the case of conditional independence with memory management (unsigned)

Usage

EM_calibration_indep_memory(
 Logf0Mat,
 Logf1Mat,
 Prior.init,
 Hconfig,
 Precision = 1e-06,
 threads_nb
)

Arguments

Logf0Mat a matrix containing the log(f0(xi_q))
Logf1Mat a matrix containing the log(f1(xi_q))
Prior.init the initialization of prior probabilities for each of the H-configurations.
Hconfig A list of all possible combination of H0 and H1 hypotheses generated by the GetHconfig() function.
Precision Precision for the stop criterion. (Default is 1e-6)
th:ds_nb The number of threads to use.

Value

da vector of estimated prior probabilities for each of the H-configurations.

f1_separation_signed

Signed case function: Separate f1 into f+ and f-

Description

Signed case function: Separate f1 into f+ and f-

Usage

f1_separation_signed(XMat, f0Mat, f1Mat, p0, plotting = FALSE)

Arguments

XMat a matrix of probit-transformed p-values, each column corresponding to a p-value serie.
f0Mat a matrix containing the evaluation of the marginal density functions under H0 at each items, each column corresponding to a p-value serie.
f1Mat a matrix containing the evaluation of the marginal density functions under H1 at each items, each column corresponding to a p-value serie.
p0 the proportions of H0 items for each series.
plotting boolean, should some diagnostic graphs be plotted. Default is FALSE.

Value

A list of 4 objects 'f1plusMat', 'f1minusMat', 'p1plus', 'p1minus'. Object 'f1plusMat' is a matrix containing the evaluation of the marginal density functions under H1plus at each items, each column corresponding to a p-value serie. Object 'f1minusMat' is a matrix containing the evaluation of the marginal density functions under H1minus at each items, each column corresponding to a p-value serie. Object 'p1plus' is an estimate of the proportions of H1plus items for each series. Object 'p1minus' is an estimate of the proportions of H1minus items for each series.
FastKerFdr_signed

Description

FastKerFdr signed

Usage

```
FastKerFdr_signed(X, p0 = NULL, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05)
```

Arguments

- **X**: a vector of probit-transformed p-values (corresponding to a p-value serie)
- **p0**: a priori proportion of H0 hypotheses
- **plotting**: boolean, should some diagnostic graphs be plotted. Default is FALSE.
- **NbKnot**: The (maximum) number of knot for the kde procedure. Default is 1e5
- **tol**: a tolerance value for convergence. Default is 1e-5

Value

A list of 3 objects. Object ’p0’ is an estimate of the proportion of H0 hypotheses, Object ’tau’ is the vector of H1 posteriors, Object ’f1’ is a numeric vector, each coordinate i corresponding to the evaluation of the H1 density at point xi, where xi is the ith item in X. Object ’F1’ is a numeric vector, each coordinate i corresponding to the evaluation of the H1 :cdf at point xi, where xi is the ith item in X.

FastKerFdr_unsigned

Description

FastKerFdr unsigned

Usage

```
FastKerFdr_unsigned(X, p0 = NULL, plotting = FALSE, NbKnot = 1e+05, tol = 1e-05)
```
Arguments

- **X**
 - a vector of probit-transformed p-values (corresponding to a p-value serie)
- **p0**
 - a priori proportion of H0 hypotheses
- **plotting**
 - boolean, should some diagnostic graphs be plotted. Default is FALSE.
- **NbKnot**
 - The (maximum) number of knot for the kde procedure. Default is 1e5
- **tol**
 - a tolerance value for convergence. Default is 1e-5

Value

A list of 3 objects. Object 'p0' is an estimate of the proportion of H0 hypotheses, Object 'tau' is the vector of H1 posteriors, Object 'f1' is a numeric vector, each coordinate i corresponding to the evaluation of the H1 density at point xi, where xi is the ith item in X. Object 'F1' is a numeric vector, each coordinate i corresponding to the evaluation of the H1 cdf at point xi, where xi is the ith item in X.

fHconfig_sum_update_gaussian_copula_ptr_parallel

*Computation of the sum sum_c(w_c*psi_c) using Gaussian copula parallelized version*

Description

Computation of the sum sum_c(w_c*psi_c) using Gaussian copula parallelized version

Usage

```r
fHconfig_sum_update_gaussian_copula_ptr_parallel(
  Hconfig,  
  NewPrior,  
  Logf0Mat,  
  Logf1Mat,  
  zeta0,  
  zeta1,  
  R,  
  Rinv,  
  threads_nb = 0L
)
```

Arguments

- **Hconfig**
 - list of vector of 0 and 1, corresponding to the configurations
- **NewPrior**
 - a double vector containing the prior w_c
- **Logf0Mat**
 - a double matrix containing the log(f0(xi_q))
- **Logf1Mat**
 - a double matrix containing the log(f1(xi_q))
zeta0
- a double matrix containing the `qnorm(F0(x_iq))`

zeta1
- a double matrix containing the `qnorm(F1(x_iq))`

R
- a double matrix corresponding to the copula parameter

Rinv
- a double matrix corresponding to the inverse copula parameter

threads_nb
- an int the number of threads

Value
- a double vector containing `\sum_c(w_c*\psi_c)`

fHconfig_sum_update_ptr_parallel

Computation of the sum \(\sum_c(w_c\psi_c)\) parallelized version*

Description
- Computation of the sum \(\sum_c(w_c*\psi_c)\) parallelized version

Usage

```r
fHconfig_sum_update_ptr_parallel(Hconfig, NewPrior, Logf0Mat, Logf1Mat, threads_nb = 0L)
```

Arguments

- **Hconfig**: list of vector of 0 and 1, corresponding to the configurations
- **NewPrior**: a double vector containing the prior \(w_c\)
- **Logf0Mat**: a double matrix containing the log\((f0(x_i_q))\)
- **Logf1Mat**: a double matrix containing the log\((f1(x_i_q))\)
- **threads_nb**: an int the number of threads

Value
- a double vector containing \(\sum_c(w_c*\psi_c)\)
gaussian_copula_density

Gaussian copula density

Description

Gaussian copula density

Usage

```r
gaussian_copula_density(zeta, R, Rinv)
```

Arguments

- `zeta`: the matrix of probit-transformed observations.
- `R`: the correlation matrix.
- `Rinv`: the inverse correlation matrix.

Value

A numeric vector, each coordinate `i` corresponding to the evaluation of the Gaussian copula density function at observation `zeta_i`.

GetH1AtLeast

Specify the configurations corresponding to the composite \(H_1 \) test "AtLeast".

Description

Specify which configurations among `Hconfig` correspond to the composite alternative hypothesis: \{at least "AtLeast" \(H_1 \) hypotheses are of interest \}

Usage

```r
GetH1AtLeast(Hconfig, AtLeast, Consecutive = FALSE, SameSign = FALSE)
```

Arguments

- `Hconfig`: A list of all possible combination of \(H_0 \) and \(H_1 \) hypotheses generated by the `GetHConfig()` function.
- `AtLeast`: How many \(H_1 \) hypotheses at least for the item to be of interest? (an integer or a vector).
- `Consecutive`: Should the significant test series be consecutive? (optional, default is FALSE).
- `SameSign`: Should the significant test series have the same sign? (optional, default is FALSE).
GetH1Equal

Value
A vector 'Hconfig.H1' of components of Hconfig that correspond to the 'AtLeast' specification.

See Also
GetH1Equal()

Examples
GetH1AtLeast(GetHconfig(4),2)

GetH1Equal

Specify the configurations corresponding to the composite H_1 test "Equal".

Description
Specify which configurations among Hconfig correspond to the composite alternative hypothesis
: {Exactly "Equal" H_1 hypotheses are of interest }

Usage
GetH1Equal(Hconfig, Equal, Consecutive = FALSE, SameSign = FALSE)

Arguments
Hconfig
A list of all possible combination of H0 and H1 hypotheses generated by the
GetHconfig() function.

Equal
What is the exact number of H_1 hypotheses for the item to be of interest? (an
integer or a vector).

Consecutive
Should the significant test series be consecutive ? (optional, default is FALSE).

SameSign
Should the significant test series have the same sign ? (optional, default is
FALSE).

Value
A vector 'Hconfig.H1' of components of Hconfig that correspond to the 'Equal' specification.

See Also
GetH1AtLeast()

Examples
GetH1Equal(GetHconfig(4),2)
GetHconfig
Generate the H_0/H_1 configurations.

Description

Generate all possible combination of simple hypotheses H_0/H_1.

Usage

```
GetHconfig(Q, Signed = FALSE)
```

Arguments

- `Q` The number of test series to be combined.
- `Signed` Should the sign of the effect be taken into account? (optional, default is FALSE).

Value

A list 'Hconfig' of all possible combination of H_0 and H_1 hypotheses among Q hypotheses tested.

Examples

```
GetHconfig(4)
```

prior_update_arma_ptr_parallel

Update of the prior estimate in EM algo parallelized version

Description

Update of the prior estimate in EM algo parallelized version

Usage

```
prior_update_arma_ptr_parallel(  
    Hconfig,  
    fHconfig_sum,  
    OldPrior,  
    Logf0Mat,  
    Logf1Mat,  
    threads_nb = 0L  
)
```
prior_update_gaussian_copula_ptr_parallel

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hconfig</td>
<td>list of vector of 0 and 1, corresponding to the configurations</td>
</tr>
<tr>
<td>fHconfig_sum</td>
<td>a double vector containing sum_c(w_c*psi_c), obtained by fHconfig_sum_update_ptr_parallel()</td>
</tr>
<tr>
<td>OldPrior</td>
<td>a double vector containing the prior w_c</td>
</tr>
<tr>
<td>Logf0Mat</td>
<td>a double matrix containing the log(f0(xi_q))</td>
</tr>
<tr>
<td>Logf1Mat</td>
<td>a double matrix containing the log(f1(xi_q))</td>
</tr>
<tr>
<td>threads_nb</td>
<td>an int the number of threads</td>
</tr>
</tbody>
</table>

Value

a double vector containing the new estimate of prior w_c

Description

Update of the prior estimate in EM algo using Gaussian copula, parallelized version

Usage

```r
prior_update_gaussian_copula_ptr_parallel(
    Hconfig,  # list of vector of 0 and 1, corresponding to the configurations
    fHconfig_sum,  # a double vector containing sum_c(w_c*psi_c), obtained by fHconfig_sum_update_ptr_parallel()
    OldPrior,  # a double vector containing the prior w_c
    Logf0Mat,  # a double matrix containing the log(f0(xi_q))
    Logf1Mat,  # a double matrix containing the log(f1(xi_q))
    zeta0,  # a double matrix containing the qnorm(F0(x_iq))
    zeta1,  #
    R,  #
    Rinv,  #
    threads_nb = 0L  #
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hconfig</td>
<td>list of vector of 0 and 1, corresponding to the configurations</td>
</tr>
<tr>
<td>fHconfig_sum</td>
<td>a double vector containing sum_c(w_c*psi_c), obtained by fHconfig_sum_update_ptr_parallel()</td>
</tr>
<tr>
<td>OldPrior</td>
<td>a double vector containing the prior w_c</td>
</tr>
<tr>
<td>Logf0Mat</td>
<td>a double matrix containing the log(f0(xi_q))</td>
</tr>
<tr>
<td>Logf1Mat</td>
<td>a double matrix containing the log(f1(xi_q))</td>
</tr>
<tr>
<td>zeta0</td>
<td>a double matrix containing the qnorm(F0(x_iq))</td>
</tr>
</tbody>
</table>
zeta1 a double matrix containing the qnorm(F1(x_iq))
R a double matrix corresponding to the copula parameter
Rinv a double matrix corresponding to the inverse copula parameter
threads_nb an int the number of threads

Value
 a double vector containing the new estimate of prior w_c

PvalSets Synthetic example to illustrate the main qch functions

Description
PvalSets is a data.frame with 10,000 rows and 3 columns. Each row corresponds to an item, columns 'Pval1' and 'Pval2' each correspond to a test serie over the items, and column 'Class' provides the truth, i.e. if item i belongs to class 1 then the H0 hypothesis is true for the 2 tests, if item i belongs to class 2 (resp. 3) then the H0 hypothesis is true for the first (resp. second) test only, and if item i belongs to class 4 then both H0 hypotheses are false (for the first and the second test).

Usage
PvalSets

Format
A data.frame

PvalSets_cor Synthetic example to illustrate the main qch functions using gaussian copula

Description
PvalSets_cor is a data.frame with 10,000 rows and 3 columns. Each row corresponds to an item, columns 'Pval1' and 'Pval2' each correspond to a test serie over the items, and column 'Class' provides the truth, i.e. if item i belongs to class 1 then the H0 hypothesis is true for the 2 tests, if item i belongs to class 2 (resp. 3) then the H0 hypothesis is true for the first (resp. second) test only, and if item i belongs to class 4 then both H0 hypotheses are false (for the first and the second test). The correlation between the two pvalues series within each class is 0.3.

Usage
PvalSets_cor

Format
A data.frame
Infer posterior probabilities of H_0/H_1 configurations.

Description

For each item, estimate the posterior probability for each configuration. This function uses either the model accounting for the dependence structure through a Gaussian copula function (copula="gaussian") or assuming the conditional independence (copula="indep"). Utilizes parallel computing, when available. For package documentation, see qch-package.

Usage

```r
qch.fit(
  pValMat,
  EffectMat = NULL,
  Hconfig,
  copula = "indep",
  threads_nb = 0,
  plotting = FALSE,
  Precision = 1e-06
)
```

Arguments

- **pValMat**: A matrix of p-values, each column corresponding to a p-value serie.
- **EffectMat**: A matrix of estimated effects corresponding to the p-values contained in pValMat. If specified, the procedure will account for the direction of the effect. (optional, default is NULL)
- **Hconfig**: A list of all possible combinations of H_0 and H_1 hypotheses generated by the `GetHconfig()` function.
- **copula**: A string specifying the form of copula to use. Possible values are "indep" and "gaussian". Default is "indep" corresponding to the independent case.
- **threads_nb**: The number of threads to use. The number of thread will set to the number of core available by default.
- **plotting**: A boolean. Should some diagnostic graphs be plotted? Default is FALSE.
- **Precision**: The precision for EM algorithm to infer the parameters. Default is 1e-6.

Value

A list with the following elements:

- **prior**: vector of estimated prior probabilities for each of the H-configurations.
- **Rcopula**: the estimated correlation matrix of the Gaussian copula. (if applicable)
- **Hconfig**: the list of all configurations.
• If the storage permits, the list will additionally contain:

- posterior matrix providing for each item (in row) its posterior probability to belong to each of the H-configurations (in columns).
- fHconfig matrix containing ψ_c densities evaluated at each items, each column corresponding to a configuration.

• Else, the list will additionally contain:

- f0Mat matrix containing the evaluation of the marginal densities under H_0 at each items, each column corresponding to a p-value serie.
- f1Mat matrix containing the evaluation of the marginal densities under H_1 at each items, each column corresponding to a p-value serie.
- F0Mat matrix containing the evaluation of the marginal cdf under H_0 at each items, each column corresponding to a p-value serie.
- F1Mat matrix containing the evaluation of the marginal cdf under H_1 at each items, each column corresponding to a p-value serie.
- fHconfig_sum vector containing $\left(\sum_c w_c \psi_c(Z_i)\right)$ for each items i.

The elements of interest are the posterior probabilities matrix, posterior, the estimated proportion of observations belonging to each configuration, prior, and the estimated correlation matrix of the Gaussian copula, Rcopula. The remaining elements are returned primarily for use by other functions.

Examples

```r
data(PvalSets_cor)
PvalMat <- as.matrix(PvalSets_cor[, -3])
## Build the Hconfig objects
Q <- 2
Hconfig <- GetHconfig(Q)

## Run the function
res.fit <- qch.fit(pValMat = PvalMat, Hconfig = Hconfig, copula = "gaussian")

## Display the prior of each class of items
res.fit$prior

## Display the correlation estimate of the gaussian copula
res.fit$Rcopula

## Display the first posteriors
head(res.fit$posterior)
```

qch.test

Perform composite hypothesis testing.

Description

Perform any composite hypothesis test by specifying the configurations 'Hconfig.H1' corresponding to the composite alternative hypothesis among all configurations 'Hconfig'.

By default, the function performs the composite hypothesis test of being associated with "at least q" simple tests, for $q = 1, .., Q$.
qch.test

Usage

qch.test(res.qch.fit, Hconfig, Hconfig.H1 = NULL, Alpha = 0.05, threads_nb = 0)

Arguments

- **res.qch.fit** The result provided by the qch.fit() function.
- **Hconfig** A list of all possible combination of \(H_0\) and \(H_1\) hypotheses generated by the GetHconfig() function.
- **Hconfig.H1** An integer vector (or a list of such vector) of the Hconfig index corresponding to the composite alternative hypothesis configuration(s). Can be generated by the GetH1AtLeast() or GetH1Equal() functions. If NULL, the composite hypothesis tests of being associated with "at least q" simple tests, for q=1..Q are performed.
- **Alpha** the nominal Type I error rate for FDR control. Default is 0.05.
- **threads_nb** The number of threads to use. The number of thread will set to the number of core available by default.

Value

A list with the following elements:

- **Rejection** a matrix providing for each item the result of the composite hypothesis test, after adaptive Benjamin-Höchberg multiple testing correction.
- **lFDR** a matrix providing for each item its local FDR estimate.
- **Pvalues** a matrix providing for each item its p-value of the composite hypothesis test.

See Also

qch.fit(), GetH1AtLeast(), GetH1Equal()

Examples

data(PvalSets_cor)
PvalMat <- as.matrix(PvalSets_cor[, -3])
Truth <- PvalSets[, 3]

Build the Hconfig objects
Q <- 2
Hconfig <- GetHconfig(Q)

Infer the posteriors
res.fit <- qch.fit(pValMat = PvalMat, Hconfig = Hconfig, copula="gaussian")

Run the test procedure with FDR control
H1config <- GetH1AtLeast(Hconfig, 2)
res.test <- qch.test(res.qch.fit = res.fit, Hconfig = Hconfig, Hconfig.H1 = H1config)
table(res.test$Rejection$AtLeast_2, Truth == 4)
R.MLE

Gaussian copula correlation matrix Maximum Likelihood estimator.

Description

Gaussian copula correlation matrix Maximum Likelihood estimator.

Usage

R.MLE(Hconfig, zeta0, zeta1, Tau)

Arguments

Hconfig A list of all possible combination of H0 and H1 hypotheses generated by the GetHconfig() function.
zeta0 a matrix containing the Phi(F_0(Z_iq)), each column corresponding to a p-value serie.
zeta1 a matrix containing the Phi(F_1(Z_iq)), each column corresponding to a p-value serie.
Tau a matrix providing for each item (in row) its posterior probability to belong to each of the H-configurations (in columns).

Value

Estimate of the correlation matrix.

R.MLE.check

Check the Gaussian copula correlation matrix Maximum Likelihood estimator

Description

Check the Gaussian copula correlation matrix Maximum Likelihood estimator

Usage

R.MLE.check(R)

Arguments

R Estimate of the correlation matrix.

Value

Estimate of the correlation matrix.
R.MLE.memory

Gaussian copula correlation matrix Maximum Likelihood estimator (memory handling)

Description

Gaussian copula correlation matrix Maximum Likelihood estimator (memory handling)

Usage

```r
R.MLE.memory(
  Hconfig,
  fHconfig_sum,
  OldPrior,
  Logf0Mat,
  Logf1Mat,
  zeta0,
  zeta1,
  OldR,
  OldRinv
)
```

Arguments

- `Hconfig`: A list of all possible combination of H0 and H1 hypotheses generated by the `GetHconfig()` function.
- `fHconfig_sum`: a vector containing \(\sum_c(w_c*\psi_c) \) for each items.
- `OldPrior`: a vector containing the prior probabilities for each of the H-configurations.
- `Logf0Mat`: a matrix containing \(\log(f0Mat) \), each column corresponding to a p-value serie.
- `Logf1Mat`: a matrix containing \(\log(f1Mat) \), each column corresponding to a p-value serie.
- `zeta0`: a matrix containing \(\text{qnorm}(F0Mat) \), each column corresponding to a p-value serie.
- `zeta1`: a matrix containing \(\text{qnorm}(F1Mat) \), each column corresponding to a p-value serie.
- `OldR`: the copula correlation matrix.
- `OldRinv`: the inverse of copula correlation matrix.

Value

Estimate of the correlation matrix.
R_MLE_update_gaussian_copula_ptr_parallel

Update the estimate of R correlation matrix of the gaussian copula, parallelized version

Description

Update the estimate of R correlation matrix of the gaussian copula, parallelized version

Usage

R_MLE_update_gaussian_copula_ptr_parallel(
 Hconfig,
 fHconfig_sum,
 OldPrior,
 Logf0Mat,
 Logf1Mat,
 zeta0,
 zeta1,
 OldR,
 OldRinv,
 RhoIndex,
 threads_nb = 0L
)

Arguments

Hconfig list of vector of 0 and 1, corresponding to the configurations
fHconfig_sum a double vector containing \(\sum_c(w_c \cdot \psi_c) \), obtained by fHconfig_sum_update_ptr_parallel()
OldPrior a double vector containing the prior \(w_c \)
Logf0Mat a double matrix containing the log(f0(xi_q))
Logf1Mat a double matrix containing the log(f1(xi_q))
zeta0 a double matrix containing the qnorm(F0(x_iq))
zeta1 a double matrix containing the qnorm(F1(x_iq))
OldR a double matrix corresponding to the copula parameter
OldRinv a double matrix corresponding to the inverse copula parameter
RhoIndex a int matrix containing the index of lower triangular part of a matrix
threads_nb an int the number of threads

Value

a double vector containing the lower triangular part of the MLE of R
Index

* datasets
 PvalSets, 14
 PvalSets_cor, 14

Copula.Hconfig_gaussian_density, 2

EM_calibration_gaussian, 3
EM_calibration_gaussian_memory, 4
EM_calibration_indep, 5
EM_calibration_indep_memory, 5

f1_separation_signed, 6
FastKerFdr_signed, 7
FastKerFdr_unsigned, 7
fHconfig_sum_update_gaussian_copula_ptr_parallel, 8
fHconfig_sum_update_ptr_parallel, 9

gaussian_copula_density, 10
GetH1AtLeast, 10
GetH1AtLeast(), 11, 17
GetH1Equal, 11
GetH1Equal(), 11, 17
GetHconfig, 12
GetHconfig(), 2–4, 6, 10, 11, 15, 17–19

prior_update_arma_ptr_parallel, 12
prior_update_gaussian_copula_ptr_parallel, 13
PvalSets, 14
PvalSets_cor, 14

qch.fit, 15
qch.fit(), 17
qch.test, 16

R.MLE, 18
R.MLE.check, 18
R.MLE.memory, 19
R_MLE_update_gaussian_copula_ptr_parallel, 20