Package ‘qqboxplot’

November 20, 2022

Title Implementation of the Q-Q Boxplot

Version 0.3.0

Description A system to implement the Q-Q boxplot. It is implemented as an extension to 'ggplot2'. The Q-Q boxplot is an amalgam of the boxplot and the Q-Q plot and allows the user to rapidly examine summary statistics and tail behavior for multiple distributions in the same pane. As an extension of the 'ggplot2' implementation of the boxplot, possible modifications to the boxplot extend to the Q-Q boxplot.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Imports ggplot2, grid

Depends R (>= 3.3)

Suggests knitr, rmarkdown, dplyr, gridExtra, testthat (>= 3.0.0), vdiiffr (>= 0.3.3), scales

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Jordan Rodu [aut, cre]

Maintainer Jordan Rodu <jordan.rodu@gmail.com>

Repository CRAN

Date/Publication 2022-11-20 03:30:02 UTC

R topics documented:

 comparison_dataset ... 2
 expression_data .. 2
 geom_qqboxplot ... 3
 indicators .. 5
comparison_dataset

Description

A dataset that contains simulated data to reproduce a figure in our manuscript.

Usage

`comparison_dataset`

Format

A vector

Source

simulations

expression_data

Description

A dataset that contains log expression data for randomly selected genes for two patients, one with autism and one control.

Usage

`expression_data`

Format

A data frame with 1200 rows and 3 variables:

- **gene**: gene identifier (not meaningful)
- **specimen**: autism or control
- **log_count**: the logged gene expression count...
Source

https://www.ebi.ac.uk/gxa/experiments/E-GEOD-30573/Results

geom_qqboxplot

A modification of the boxplot with information about the tails

Description

A modification of the boxplot with information about the tails

Usage

```r
geom_qqboxplot(
  mapping = NULL,
  data = NULL,
  stat = "qqboxplot",
  position = "dodge2",
  ...,
  outlier.colour = NULL,
  outlier.color = NULL,
  outlier.fill = NULL,
  outlier.shape = 19,
  outlier.size = 1.5,
  outlier.stroke = 0.5,
  outlier.alpha = NULL,
  notch = FALSE,
  notchwidth = 0.5,
  varwidth = FALSE,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

- **mapping**
 Set of aesthetic mappings created by `aes()` or `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

- **data**
 The data to be displayed in this layer. There are three options:
 - If NULL, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
 - A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See `fortify()` for which variables will be created.
 - A function will be called with a single argument, the layer data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).
stat
specifies the stat function to use

position
Position adjustment, either as a string, or the result of a call to a position adjustment function.

... Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `colour = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

outlier.colour, outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.stroke, outlier.alpha
Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for the box.
In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.
Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting `outlier.shape = NA`. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.

notch
If FALSE (default) make a standard box plot. If TRUE, make a notched box plot. Notches are used to compare groups; if the notches of two boxes do not overlap, this suggests that the medians are significantly different.

notchwidth
For a notched box plot, width of the notch relative to the body (defaults to `notchwidth = 0.5`).

varwidth
If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with widths proportional to the square-roots of the number of observations in the groups (possibly weighted, using the weight aesthetic).

na.rm
If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. `borders()`.

Value

Returns an object of class `GeomQqboxplot`, (inherits from `Geom, ggproto`), that renders the data for the Q-Q boxplot.

Description
The Q-Q boxplot inherits its summary statistics from the boxplot. See `geom_boxplot()` for details. The Q-Q boxplot differs from the boxplot by using more informative whiskers than the regular boxplot.
The vertical position of the whiskers can be interpreted as it is in the boxplot, and the maximal vertical value is chosen as it is done in the regular boxplot. The horizontal positioning of the whiskers indicates the deviation of the data set of interest from some reference data set (specified as either a
theoretical distribution or an actual data set). Taking the central vertical axis of the boxplot as being zero, deviations to the right indicate that those values are larger than the corresponding data points in the reference data set, where two data points correspond if their quantiles match. Deviations to the left indicate that the values are smaller than their corresponding data points. Consider a situation where your data set has fatter tails than the normal distribution. When the reference distribution is the normal distribution, then the whiskers below the box will be left of the central axis (the left tail values are smaller than they ought to be) and the whiskers above the box will be right of the central axis (the right tail values are larger than the ought to be).

In order to compare the data set of interest to the reference data set, they must be on the same scale. The Q-Q boxplot uses Tukey’s g-h distribution to determine the appropriate scaling factor.

Much of the code here is a modification of the `geom_boxplot()` code.

Examples

```r
p <- ggplot2::ggplot(simulated_data, ggplot2::aes(factor(group,
levels=c("normal, mean=2", "t distribution, df=32", "t distribution, df=16",
"t distribution, df=8", "t distribution, df=4")), y=y))
p + geom_qqboxplot()
p + geom_qqboxplot(reference_dist = "norm")

p + geom_qqboxplot(compdata = comparison_dataset)

# geom_qqboxplot inherits all arguments from geom_boxplot, e.g.:
p + geom_qqboxplot(notch = TRUE)
p + geom_qqboxplot(varwidth=TRUE)
p + geom_qqboxplot(ggplot2::aes(color = group)) + ggplot2::guides(color=FALSE)
```

indicators

World Bank indicator data for Labor Force participation rates

Description

A dataset that contains participation rates (%) for ages 15-24, separated by gender, and measured in the years 2008, 2012, and 2017

Usage

`indicators`

Format

A data frame with 612 rows and 7 variables:

- **Country Name** name of country
- **Country Code** unique country identifier (string)
Series Name Specifies male/female
Series Code unique identifier for series
year year for data
indicator participation rate in percents
log_indicator the log of the participation rate ...

Source

population_brain_data *Neuron population firing data*

Description

A dataset that contains populations of neurons from CA1 and LM and their firing rates for three situations: base firing rate, dot motion, and drifting gradient. Each row represents a neuron.

Usage

`population_brain_data`

Format

A data frame with 13731 rows and 3 variables:

- **ecephys_structure_acronym** acronym for population location
- **fr_type** situation under which firing rate was recorded
- **rate** the firing rate ...

Source

qqboxplot *qqboxplot package*

Description

Create qq-boxplots
simulated_data

Simulated t-distributions to show use of q-q boxplots

Description

A dataset that contains simulated data to reproduce the simulated data figures used in our manuscript.

Usage

`simulated_data`

Format

A data frame with 4500 rows and 2 variables:

- **y**: a value simulated from a distribution
- **group**: a string specifying the distribution from which the y value is drawn ...

Source

`simulations`

spike_data

Neuron spiking data for neural tuning orientation

Description

A dataset that contains the number of spikes for neurons across several possible orientations of a grating.

Usage

`spike_data`

Format

A data frame with 12800 rows and 5 variables:

- **orientation**: 1 to 8, specifies the orientation of the grating
- **nspikes**: number of spikes for a single trial of 1.28 seconds for a particular orientation
- **region**: region of the brain where the neuron is located ...

Source

`https://CRCNS.org`
stat_qqboxplot
Compute values for the Q-Q Boxplot

Description
Compute values for the Q-Q Boxplot

Usage
stat_qqboxplot(
 mapping = NULL,
 data = NULL,
 geom = "qqboxplot",
 position = "dodge2",
 ...,
 coef = 1.5,
 na.rm = FALSE,
 show.legend = NA,
 inherit.aes = TRUE,
 reference_dist = "norm",
 confidence_level = 0.95,
 numboots = 500,
 qtype = 7,
 compdata = NULL
)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_.() If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).

geom specifies the geom function to use

position Position adjustment, either as a string, or the result of a call to a position adjustment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.
stat_qqboxplot

coef
Length of the whiskers as multiple of IQR. Defaults to 1.5.

na.rm
If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

display.legend
logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes
If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders().

reference_dist
Specifies theoretical reference distribution.

confidence_level
Sets confidence level for deviation whisker confidence bands

numboots
specifies the number of bootstrap draws for bootstrapped CIs needed only if compdata is not NULL

qtype
an integer between 1 and 9 indicating which one of the quantile algorithms to use.

compdata
specifies a data set to use as the reference distribution. If compdata is not NULL, the argument reference_dist will be ignored.

Value
Returns an object of class StatQqboxplot, (inherits from Geom, ggproto), that helps to render the data for geom_qqboxplot().

Computed variables

stat_qqboxplot() provides the following variables, some of which depend on the orientation:

width width of boxplot

ymin or xmin lower whisker = smallest observation greater than or equal to lower hinge - 1.5 * IQR

lower or xlower lower hinge, 25% quantile

notchlower lower edge of notch = median - 1.58 * IQR / sqrt(n)

middle or xmiddle median, 50% quantile

notchupper upper edge of notch = median + 1.58 * IQR / sqrt(n)

upper or xupper upper hinge, 75% quantile

ymax or xmax upper whisker = largest observation less than or equal to upper hinge + 1.5 * IQR
Index

* datasets
 - comparison_dataset, 2
 - expression_data, 2
 - indicators, 5
 - population_brain_data, 6
 - simulated_data, 7
 - spike_data, 7

aes(), 3, 8
aes_(), 3, 8

borders(), 4, 9

comparison_dataset, 2
expression_data, 2

fortify(), 3, 8

geom_boxplot(), 4
geom_qqboxplot, 3

ggplot(), 3, 8

indicators, 5

layer(), 4, 8

population_brain_data, 6

qqboxplot, 6

simulated_data, 7

spike_data, 7

stat_qqboxplot, 8