Package ‘quadprog’

April 26, 2019

Type Package
Title Functions to Solve Quadratic Programming Problems
Version 1.5-6
Date 2019-04-07
Author S original by Berwin A. Turlach <Berwin.Turlach@gmail.com> R
port by Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at>
Maintainer Berwin A. Turlach <Berwin.Turlach@gmail.com>
Description This package contains routines and documentation for
solving quadratic programming problems.
Depends R (>= 3.6.0)
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-04-26 13:21:14 UTC

R topics documented:

- solve.QP ... 1
- solve.QP.compact ... 3

Index 5

solve.QP Solve a Quadratic Programming Problem

Description

This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic
programming problems of the form \(\min(-d^T b + 1/2b^T Db) \) with the constraints \(A^T b \geq b_0 \).
Usage

```r
solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)
```

Arguments

- **Dmat**: matrix appearing in the quadratic function to be minimized.
- **dvec**: vector appearing in the quadratic function to be minimized.
- **Amat**: matrix defining the constraints under which we want to minimize the quadratic function.
- **bvec**: vector holding the values of \(b_0 \) (defaults to zero).
- **meq**: the first meq constraints are treated as equality constraints, all further as inequality constraints (defaults to 0).
- **factorized**: logical flag: if TRUE, then we are passing \(R^{-1} \) (where \(D = R^T R \)) instead of the matrix \(D \) in the argument Dmat.

Value

A list with the following components:

- **solution**: vector containing the solution of the quadratic programming problem.
- **value**: scalar, the value of the quadratic function at the solution.
- **unconstrained.solution**: vector containing the unconstrained minimizer of the quadratic function.
- **iterations**: vector of length 2, the first component contains the number of iterations the algorithm needed, the second indicates how often constraints became inactive after becoming active first.
- **Lagrangian**: vector with the Lagrangian at the solution.
- **iact**: vector with the indices of the active constraints at the solution.

References

See Also

`solve.QP.compact`
Examples

Assume we want to minimize:

\[-(\begin{bmatrix} 0 & 5 & 0 \end{bmatrix} \begin{bmatrix} \star \star \end{bmatrix} b + 1/2 b^T b\]

under the constraints:

\[A^T b \geq b_0\]

with \(b_0 = (-8, 2, 0)^T\)

and

\[\begin{bmatrix} -4 & 2 & 0 \\ -3 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}\]

we can use solve.QP as follows:

```r
Dmat <- matrix(0,3,3)
dvec(Dmat) <- 1
dvec <- c(0,5,0)
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)
solve.QP(Dmat,dvec,Amat,bvec=bvec)
```

solve.QP.compact

Solve a Quadratic Programming Problem

Description

This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form

\[
\min(-d^T b + 1/2 b^T D b)
\]

with the constraints \(A^T b \geq b_0\).

Usage

```r
solve.QP.compact(Dmat, dvec, Amat, Aind, bvec, meq=0, factorized=FALSE)
```

Arguments

- **Dmat**: matrix appearing in the quadratic function to be minimized.
- **dvec**: vector appearing in the quadratic function to be minimized.
- **Amat**: matrix containing the non-zero elements of the matrix \(A\) that defines the constraints. If \(m_i\) denotes the number of non-zero elements in the \(i\)-th column of \(A\) then the first \(m_i\) entries of the \(i\)-th column of \(Amat\) hold these non-zero elements. (If \(maxm_i\) denotes the maximum of all \(m_i\), then each column of \(Amat\) may have arbitrary elements from row \(m_i + 1\) to row \(maxm_i\) in the \(i\)-th column.)
- **Aind**: matrix of integers. The first element of each column gives the number of non-zero elements in the corresponding column of the matrix \(A\). The following entries in each column contain the indexes of the rows in which these non-zero elements are.
- **bvec**: vector holding the values of \(b_0\) (defaults to zero).
- **meq**: the first \(meq\) constraints are treated as equality constraints, all further as inequality constraints (defaults to 0).
- **factorized**: logical flag: if \(TRUE\), then we are passing \(R^{-1}\) (where \(D = R^T R\)) instead of the matrix \(D\) in the argument \(Dmat\).
Value

- solution: a list containing the solution of the quadratic programming problem.
- value: a scalar, the value of the quadratic function at the solution.
- unconstrained.solution: a list containing the unconstrained minimizer of the quadratic function.
- iterations: a vector of length 2, the first component contains the number of iterations the algorithm needed, the second indicates how often constraints became inactive after becoming active first.
- Lagrangian: a list with the Lagragian at the solution.
- iact: a list with the indices of the active constraints at the solution.

References

See Also

- `solve.QP`

Examples

```r
## Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
## under the constraints: A^T b >= b0
## with b0 = (-8,2,0)^T
## and (-4 2 0)
## A = (-3 1 -2)
## ( 0 0 1)
## we can use solve.QP.compact as follows:
##
## Dmat <- matrix(0,3,3)
diag(Dmat) <- 1
dvec <- c(0,5,0)
Aind <- rbind(c(2,2,2),c(1,1,2),c(2,3))
Amat <- rbind(c(-4,2,-2),c(-3,1,1))
bvec <- c(-8,2,0)
solve.QP.compact(Dmat,dvec,Amat,Aind,bvec=bvec)
```
Index

+Topic optimize
 solve.QP, 1
 solve.QP.compact, 3

solve.QP, 1, 4
solve.QP.compact, 2, 3