Package ‘qualmap’

May 31, 2022

Type Package

Title Opinionated Approach for Digitizing Semi-Structured Qualitative GIS Data

Version 0.2.1

Description Provides a set of functions for taking qualitative GIS data, hand drawn on a map, and converting it to a simple features object. These tools are focused on data that are drawn on a map that contains some type of polygon features. For each area identified on the map, the id numbers of these polygons can be entered as vectors and transformed using qualmap.

Depends R (>= 3.5)

License GPL-3

URL https://chris-prener.github.io/qualmap/

BugReports https://github.com/chris-prener/qualmap/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Imports dplyr, glue, leaflet, purrr, rlang, sf

Suggests covr, ggplot2, testthat, tigris, tidycensus, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Christopher Prener [aut, cre] (<https://orcid.org/0000-0002-4310-9888>)

Maintainer Christopher Prener <chris.prener@gmail.com>

Repository CRAN

Date/Publication 2022-05-31 07:40:02 UTC

R topics documented:

 qm_combine ... 2
 qm_create .. 3
 qm_define ... 4
qm_combine

Description
A wrapper around dplyr::bind_rows for combining cluster objects created with qm_create into a single tibble. Input data for qm_combine are validated using qm_is_cluster as part of the cluster object creation process.

Usage
qm_combine(...)

Arguments
... A list of cluster objects to be combined.

Value
A single tibble with all observations from the listed cluster objects. This tibble is stored with a custom class of qm_cluster to facilitate data validation.

See Also
qm_create, qm_is_cluster

Examples
load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))

create clusters
cluster1 <- qm_define(118600, 119101, 119300)
cluster2 <- qm_define(119300, 121200, 121100)

create cluster objects
cluster_obj1 <- qm_create(ref = stl, key = TRACTCE, value = cluster1, rid = 1, cid = 1, category = "positive")
cluster_obj2 <- qm_create(ref = stl, key = TRACTCE, value = cluster2,
qm_create

```r
rid = 1, cid = 2, category = "positive")
```

combine cluster objects
clusters <- qm_combine(cluster_obj1, cluster_obj2)

qm_create

Create cluster object

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each vector of input values is converted to a tibble organized in a “tidy” fashion.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>qm_create(ref, key, value, rid, cid, category, ...)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ref</td>
</tr>
<tr>
<td>key</td>
</tr>
<tr>
<td>value</td>
</tr>
<tr>
<td>rid</td>
</tr>
<tr>
<td>cid</td>
</tr>
<tr>
<td>category</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>A cluster object contains a row for each feature in the reference data set. The key variable values are included in a variable named identically to the key. Three pieces of metadata are also included as arguments to provide data for subsetting later: a respondent identification number (rid), a cluster identification number (cid), and a category for the cluster type (category). These arguments are converted into values for the output variables RID, CID, and CAT respectively. Input data for qm_create are validated using qm_validate as part of the cluster object creation process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A tibble with the cluster values merged with elements of the reference data. This tibble is stored with a custom class of qm_cluster to facilitate data validation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>See Also</th>
</tr>
</thead>
<tbody>
<tr>
<td>qm_define, qm_validate</td>
</tr>
</tbody>
</table>
Examples

load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))

create cluster
cluster <- qm_define(118600, 119101, 119300)

create simple cluster object
cluster_obj1 <- qm_create(ref = stl, key = TRACTCE, value = cluster,
 rid = 1, cid = 1, category = "positive")

create cluster object with additional variables added from reference data
cluster_obj2 <- qm_create(ref = stl, key = TRACTCE, value = cluster,
 rid = 1, cid = 1, category = "positive", NAME, NAMELSD)

qm_define

Define input values

Description

A wrapper around base::c that is used for constructing vectors of individual feature values. Each output should correspond to a single cluster on the respondent’s map.

Usage

qm_define(...)

Arguments

... A comma separated list of individual features

Value

A vector list each feature.

Examples

cluster <- qm_define(118600, 119101, 119300)
qm_is_cluster

Validate cluster object

Description

This function tests to see whether an object contains the characteristics of an object created by qm_cluster. It is used as part of the qm_combine and qm_summarize functions, and is exported so that it can be used interactively as well.

Usage

qm_is_cluster(obj, verbose = FALSE)

Arguments

obj Object to test
verbose A logical scalar; if TRUE, a tibble with test results is returned

Value

A logical scalar that is TRUE if the given object contains the appropriate characteristics; if it does not, FALSE is returned.

See Also

qm_combine, qm_summarize

Examples

load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))

create cluster
cluster <- qm_define(118600, 119101, 119300)

create simple cluster object
cluster_obj <- qm_create(ref = stl, key = TRACTCE, value = cluster,
 rid = 1, cid = 1, category = "positive")

test cluster object
qm_is_cluster(cluster_obj)
qm_is_cluster(cluster_obj, verbose = TRUE)
Description

This function renders the input vector as a polygon shapefile using the leaflet package.

Usage

qm_preview(ref, key, value)

Arguments

ref An sf object that serves as a master list of features
key Name of geographic id variable in the ref object to match input values to
value A vector of input values created with qm_define

Value

An interactive leaflet map with the features from the defined vector specified in value highlighted in red.

See Also

qm_define

Examples

Not run:
load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))

create cluster
cluster <- qm_define(118600, 119101, 119300)

preview cluster
qm_preview(ref = stl, key = TRACTCE, value = cluster)

End(Not run)
Description

This function creates a column that contains a single observation for each unique value in the key variable. For each feature, a count corresponding to the number of times that feature is identified in a cluster for the given category is also provided.

Usage

```r
qm_summarize(ref, key, clusters, category, count, geometry = TRUE, use.na = FALSE)
```

Arguments

- `ref`: An `sf` object that serves as a master list of features
- `key`: Name of geographic id variable in the `ref` object to match input values to
- `clusters`: A tibble created by `qm_combine` with two or more clusters worth of data
- `category`: Value of the CAT variable to be analyzed
- `count`: How should clusters be summarizes: by counting each time a feature is included in a cluster ("clusters") or by counting the number of respondents ("respondents") who associated a feature with the given category.
- `geometry`: A logical scalar that returns the full geometry and attributes of `ref` when TRUE (default). If FALSE, only the key and count of features is returned after validation.
- `use.na`: A logical scalar that returns NA values in the count variable if a feature is not included in any clusters when TRUE. If FALSE (default), a 0 value is returned in the count variable for each feature that is not included in any clusters. This parameter only impacts output if the geometry argument is TRUE.

Value

A tibble or a sf object (if geometry = TRUE) that contains a count of the number of clusters a given feature is included in. The tibble option (when geometry = FALSE) will only return valid features. The sf option (default; when geometry = TRUE) will return all features with either zeros (when use.na = FALSE) or NA values (when use.na = TRUE) for features not included in any clusters.

See Also

`qm_combine`
Examples

```r
# load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))

# create clusters
cluster1 <- qm_define(118600, 119101, 119300)
cluster2 <- qm_define(119300, 121200, 121100)

# create cluster objects
cluster_obj1 <- qm_create(ref = stl, key = TRACTCE, value = cluster1,
                          rid = 1, cid = 1, category = "positive")
cluster_obj2 <- qm_create(ref = stl, key = TRACTCE, value = cluster2,
                          rid = 1, cid = 2, category = "positive")

# combine cluster objects
clusters <- qm_combine(cluster_obj1, cluster_obj2)

# summarize cluster objects
positive1 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
                          count = "clusters")
class(positive1)
mean(positive1$positive)

# summarize cluster objects with NA's instead of 0's
positive2 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
                          count = "clusters", use.na = TRUE)
class(positive2)
mean(positive2$positive, na.rm = TRUE)

# return tibble of valid features only
positive3 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
                          count = "clusters", geometry = FALSE)
class(positive3)
mean(positive3$positive)

# count respondents instead of clusters
positive4 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
                          count = "respondents")
mean(positive4$positive)
```

qm_validate

Validate input vector

This function ensures that the input vector values match valid values in a source shapefile.
qm_verify

Usage

qm_validate(ref, key, value)

Arguments

ref An sf object that serves as a master list of features
key Name of geographic id variable in the ref object to match input values to
value A vector of input values created with qm_define

Value

A logical scalar that is TRUE is all input values match values in the key variable.

See Also

qm_define

Examples

load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))

create clusters
clusterValid <- qm_define(118600, 119101, 119300)
clusterError <- qm_define(118600, 119101, 800000)

validate clusters
qm_validate(ref = stl, key = TRACTCE, value = clusterValid)
qm_validate(ref = stl, key = TRACTCE, value = clusterError)
Arguments

clusters An object created by qm_combine with two or more clusters worth of data that has been previously saved and requires verification before summarization.

Value

A tibble stored with a custom class of qm_cluster to facilitate data validation.

Description

Provides a set of functions for taking qualitative GIS data, hand drawn on a map, and converting it to a simple features object. These tools are focused on data that are drawn on a map that contains some type of polygon features. For each area identified on the map, the id numbers of these polygons can be entered as vectors and transformed using qualmap.

Details

Qualitative GIS outputs are notoriously difficult to work with because individuals’ conceptions of space can vary greatly from each other and from the realities of physical geography themselves. qualmap builds on a semi-structured approach to qualitative GIS data collection. Respondents use a specially designed basemap that allows them free reign to identify geographic features of interest and makes it easy to convert their annotations into digital map features. This is facilitated by including on the basemap a series of polygons, such as neighborhood boundaries or census geography, along with an identification number that can be used by qualmap. A circle drawn on the map can therefore be easily associated with the features that it touches or contains.

qualmap provides a suite of functions for entering, validating, and creating sf objects based on these hand drawn clusters and their associated identification numbers. Once the clusters have been created, they can be summarized and analyzed either within R or using another tool.

This approach provides an alternative to either unstructured qualitative GIS data, which are difficult to work with empirically, and to digitizing respondents’ annotations as rasters, which require a sophisticated workflow. This semi-structured approach makes integrating qualitative GIS with existing census and administrative data simple and straightforward, which in turn allows these data to be used as measures in spatial statistical models.

There are six key verbs introduced in qualmap:

- **define**: create a vector of feature id numbers that constitute a single "cluster"
- **validate**: check feature id numbers against a reference data set to ensure that the values are valid
- **preview**: plot cluster on an interactive map to ensure the feature ids have been entered correctly (the preview should match the map used as a data collection instrument)
- **create**: create a single cluster object once the data have been validated and visually inspected
• *combine*: combine multiple cluster objects together into a single tibble data object
• *summarize*: summarize the combined data object based on a single qualitative construct to prepare for mapping

If you use `qualmap` in your work, please cite the package using the article that discusses this work in *Cartographica*. See `citation("qualmap")` for details.

Tidy Evaluation

`qualmap` makes use of tidy evaluation, meaning that key and category references may be either quoted or unquoted (i.e. bare).

Author(s)

Author and Maintainer: Christopher Prener, Ph.D.

See Also

Useful links:

- Package Website and Documentation
- Source Code on GitHub
- Bug Reports and Feature Requests

stLouis
St. Louis Census Tracts, 2016

Description

A simple features data set containing the geometry and associated attributes for the 2016 City of St. Louis census tracts.

Usage

```r
data(stLouis)
```

Format

A data frame with 106 rows and 7 variables:

- `STATEFP` state FIPS code
- `COUNTYFP` county FIPS code
- `TRACTCE` tract FIPS code
- `GEOID` full GEOID string
- `NAME` tract FIPS code, decimal
- `NAMELSAD` tract name
- `geometry` simple features geometry
Note

These data have been modified from the full version available from the Census Bureau - some variables related to geometry and geography type have been removed.

Source

U.S. Census Bureau

@examples str(stLouis) head(stLouis)
Index

* datasets
 stLouis, 11

qm_combine, 2, 9
qm_create, 3
qm_define, 4
qm_is_cluster, 5
qm_preview, 6
qm_summarize, 7, 9
qm_validate, 8
qm_verify, 9
qualmap, 10

stLouis, 11