Package ‘quantkriging’

March 6, 2020

Type Package
Title Quantile Kriging for Stochastic Simulations with Replication
Version 0.1.0
Author Kevin R. Quinlan [aut, cre],
 Jim R. Leek [aut],
 Lawrence Livermore National Security [cph]
Maintainer Kevin R. Quinlan <quinlan5@llnl.gov>
Description A re-implementation of quantile kriging. Quantile kriging was described by Plum-lee and Tuo (2014) <doi:10.1080/00401706.2013.860919>. With computational sav-ings when dealing with replication from the recent paper by Binois, Gramacy, and Lu-dovski (2018) <doi:10.1080/10618600.2018.1458625> it is now possible to apply quantile krig-ing to a wider class of problems. In addition to fitting the model, other useful tools are pro-vided such as the ability to automatically perform leave-one-out cross validation.
Depends R (>= 3.6.0)
Imports hetGP (>= 1.1.1), Matrix (>= 1.2.17), ggplot2 (>= 3.2.1),
 reshape2 (>= 1.4.3), stats
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests testthat (>= 2.1.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-06 13:20:02 UTC

R topics documented:

LOOquants ... 2
newQuants ... 3
new_QKResults .. 3
predict.QKResults ... 4
Description

Generates Leave-One-Out predictions for each location and quantile.

Usage

LOOquants(QKResults)

Arguments

QKResults Output from the quantKrig function.

Details

Returns the estimated quantiles and a plot of the leave-one-out predictions against the observed values.

Value

Leave-one-out predictions at the input locations

Examples

```r
X <- seq(0,1,length.out = 20)
Y <- cos(5*X) + cos(X)
Xstar <- rep(X,each = 100)
Ystar <- rep(Y,each = 100)
e <- rchisq(length(Ystar),5)/5 - 1
Ystar <- Ystar + e
lb <- c(0.0001,0.0001)
ub <- c(10,10)
Qout <- quantKrig(Xstar,Ystar, seq(0.05,0.95, length.out = 7), lower = lb, upper = ub)
LOOquants(Qout)
```
newQuants

Revaluate Quantiles

Description
Generates new quantiles from a quantile object

Usage
```
newQuants(QKResults, quantv)
```

Arguments
- **QKResults**: Output from the quantKrig function.
- **quantv**: Vector of quantile values alpha between 0 and 1.

Value
The same quantile object with new estimated quantiles.

Examples
```
X <- seq(0,1,length.out = 20)
Y <- cos(5*X) + cos(X)
Xstar <- rep(X, each = 100)
Ystar <- rep(Y, each = 100)
e <- rchisq(length(Ystar), 5)/5 - 1
Ystar <- Ystar + e
lb <- c(0.0001, 0.0001)
ub <- c(10, 10)
Qout <- quantKrig(Xstar, Ystar, seq(0.05, 0.95, length.out = 7), lower = lb, upper = ub)
Qout2 <- newQuants(Qout, c(0.025, 0.5, 0.975))
QuantPlot(Qout2)
```

new_QKResults

QKResult Constructor

Description
Create Quantile Kriging Results class from list

Usage
```
new_QKResults(qkList)
```
Arguments

qkList
 list(quants, yquants, g, l, ll <- -optparb$value, beta0, nu, xstar, ystar, Ki, quantv, mult, ylisto, type)

Value

New class QKResults

Description

Quantile Predictions using Quantile Kriging model (class QKResults)

Usage

S3 method for class 'QKResults'
predict(object, xnew, quantnew = NULL, ...)

Arguments

object
 Output from the quantKrig function.

xnew
 Locations for prediction

quantnew
 Quantiles for prediction, default is to keep the same as the quantile object

...
 Ignore. No other arguments for this method

Value

Quantile predictions at the specified input locations

Author(s)

Kevin Quinlan quinlan5@llnl.gov

Examples

X <- seq(0,1,length.out = 20)
Y <- cos(5*X) + cos(X)
Xstar <- rep(X,each = 100)
Ystar <- rep(Y,each = 100)
e <- rchisq(length(Ystar),5)/5 - 1
Ystar <- Ystar + e
lb <- c(0.0001,0.0001)
ub <- c(10,10)
Qout <- quantKrig(Xstar,Ystar, seq(0.05,0.95, length.out = 7), lower = lb, upper = ub)
predict(Qout, xnew = c(0.4, 0.5, 0.6))

quantpreds <- predict(Qout, xnew = seq(0,1,length.out = 100), quantnew = seq(0.01,0.99,by = 0.01))
matplot(seq(0,1,length.out = 100), quantpreds, type = 'l')

quantKrig
Quantile Kriging

Description

Implements Quantile Kriging from Plumlee and Tuo (2014).

Usage

```r
quantKrig(x, y, quantv, lower, upper, method = "loo",  
          type = "Gaussian", rs = TRUE, nm = TRUE, known = NULL,  
          optstart = NULL, control = list())
```

Arguments

- `x` Inputs
- `y` Univariate Response
- `quantv` Vector of Quantile values to estimate (ex: c(0.025, 0.975))
- `lower` Lower bound of hyperparameters, if isotropic set lengthscale then nugget, if anisotropic set k lengthscales and then nugget
- `upper` Upper bound of hyperparameters, if isotropic set lengthscale then nugget, if anisotropic set k lengthscales and then nugget
- `method` Either maximum likelihood ('mle') or leave-one-out cross validation ('loo') optimization of hyperparameters
- `type` Covariance type, either 'Gaussian', 'Matern3_2', or 'Matern5_2'
- `rs` If TRUE, rescales inputs to [0,1]
- `nm` If TRUE, normalizes output to mean 0, variance 1
- `known` Fixes all hyperparameters to a known value
- `optstart` Sets the starting value for the optimization
- `control` Control from optim function

Details

Fits quantile kriging using a double exponential or Matern covariance function. This emulator is for a stochastic simulation and models the distribution of the results (through the quantiles), not just the mean. The hyperparameters can be trained using maximum likelihood estimation or leave-one-out cross validation as recommended in Plumlee and Tuo (2014). The GP is trained using the Woodbury formula to improve computation speed with replication as shown in Binois et al. (2018). To get
meaningful results, there should be sufficient replication at each input. The quantiles at a location \(x_0 \) are found using:

\[
\mu(x_0) + kn(x_0)Kn^{-1}(y(i) - \mu(x))
\]

where \(Kn \) is the kernel of the design matrix (with nugget effect), \(y(i) \) the ordered sample closest to that quantile at each input, and \(\mu(x) \) the mean at each input.

Value

- **quants** The estimated quantile values in matrix form
- **yquants** The actual quantile values from the data in matrix form
- **g** The scaling parameter for the kernel
- **l** The lengthscale parameter(s)
- **ll** The log likelihood
- **beta0** Estimated linear trend
- **nu** Estimator of the variance
- **xstar** Matrix of unique input values
- **ystar** Average value at each unique input value
- **Ki** Inverted covariance matrix
- **quantv** Vector of alpha values between 0 and 1 for estimated quantiles, it is recommended that only a small number of quantiles are used for fitting and more quantiles can be found later using newQuants
- **mult** Number of replicates at each input

References

Examples

```r
# Simple example
X <- seq(0,1,length.out = 20)
Y <- cos(5*X) + cos(X)
Xstar <- rep(X,each = 100)
Ystar <- rep(Y,each = 100)
Ystar <- rnorm(length(Ystar),Ystar,1)
lb <- c(0.0001,0.0001)
ub <- c(10,10)
Qout <- quantKrig(Xstar,Ystar, quantv = seq(0.05,0.95, length.out = 7), lower = lb, upper = ub)
QuantPlot(Qout, Xstar, Ystar)

#fit for non-normal errors
```

Ystar <- rep(Y,each = 100)
e <- rchisq(length(Ystar),5)/5 - 1
Ystar <- Ystar + e
Qout <- quantKrig(Xstar,Ystar, quantv = seq(0.05,0.95, length.out = 7), lower = lb, upper = ub)
QuantPlot(Qout, Xstar, Ystar)

quantkriging

Description
Quantile Kriging is a method to model the uncertainty of a stochastic simulation by modelling both the overall simulation response and the output distribution at each sample point. The output distribution is characterized by dividing it into quantiles, where the division of each quantile is determined by kriging.

Details
This library is our re-implementation of Quantile Kriging as described by Matthew Plumlee & Rui Tuo in their 2014 paper "Building Accurate Emulators for Stochastic Simulations via Quantile Kriging." With computational savings when dealing with replication from the recent paper "Practical heteroskedastic Gaussian process modeling for large simulation experiments" by Binois, M., Gramacy, R., and Ludovski, M. it is now possible to apply Quantile Kriging to a wider class of problems. In addition to fitting the model, other useful tools are provided such as the ability to automatically perform leave-one-out cross validation.

quantkriging functions
- quantKrig : Implements Quantile Kriging
- quantPlot : Plots the Quantile output from quantKrig if there is only one input.
- newQuants : Generates new quantiles from a quantile object
- LOOquants : Generates Leave-One-Out predictions for each location and quantile.

QuantPlot
Plot Univariate Quantile Data

Description
Plots the Quantile output from quantKrig if there is only one input.

Usage
QuantPlot(QKResults, X1 = NULL, Y1 = NULL, main = NULL, xlab = NULL, ylab = NULL, colors = NULL)
Arguments

QKResults Output from the quantKrig function.
X1 X values if plotting the original data in the background
Y1 Y values if plotting the original data in the background
main Plot Title defaults to Fitted Quantiles
xlab Label for x-axis defaults to X
ylab Label for y-axis defaults to Y
colors Customize colors associated with the quantiles

Value

A ggplot object

Examples

```r
X <- seq(0,1,length.out = 20)
Y <- cos(5*X) + cos(X)
Xstar <- rep(X,each = 100)
Ystar <- rep(Y,each = 100)
Ystar <- rnorm(length(Ystar),Ystar,1)
Ystar <- (Ystar - mean(Ystar)) / sd(Ystar)
Xstar <- (Xstar - min(Xstar)) / (max(Xstar) - min(Xstar))
lb <- c(0.0001,0.0001)
ub <- c(10,10)
Qout <- quantKrig(Xstar,Ystar, seq(0.05,0.95, length.out = 7), lower = lb, upper = ub)
QuantPlot(Qout, Xstar, Ystar)
```
Index

LOOquants, 2

new_QKResults, 3
newQuants, 3

predict.QKResults, 4

quantKrig, 5
quantkriging, 7
quantkriging-package (quantkriging), 7
QuantPlot, 7